Week 8: Integration

Integration, in mathematics, technique of finding a function g(x) the derivative of which, Dg(x), is equal to a given function f(x). This is indicated by the integral sign “∫,” as in ∫f(x), usually called the indefinite integral of the function. The symbol dx represents an infinitesimal displacement along x; thus ∫f(x)dx is the summation of the product of f(x) and dx.  Integration is a way of adding slices to find the whole. Integration can be used to find areas, volumes, central points and many useful things. But it is easiest to start with finding the area between a function and the x-axis like this. Integration is the calculation of an integral. Integrals in maths are used to find many useful quantities such as areas, volumes, displacement, etc. When we speak about integrals, it is related to usually definite integrals. The indefinite integrals are used for antiderivatives.