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Preface

Many remarkable advances have been made in the field of integral equa-
tions, but these remarkable developments have remained scattered in a vari-
ety of specialized journals. These new ideas and approaches have rarely been
brought together in textbook form. If these ideas merely remain in scholarly
journals and never get discussed in textbooks, then specialists and students
will not be able to benefit from the results of the valuable research achieve-
ments.

The explosive growth in industry and technology requires constructive ad-
justments in mathematics textbooks. The valuable achievements in research
work are not found in many of today’s textbooks, but they are worthy of ad-
dition and study. The technology is moving rapidly, which is pushing for valu-
able insights into some substantial applications and developed approaches.
The mathematics taught in the classroom should come to resemble the mathe-
matics used in varied applications of nonlinear science models and engineering
applications. This book was written with these thoughts in mind.

Linear and Nonlinear Integral Equations: Methods and Applications is de-
signed to serve as a text and a reference. The book is designed to be acces-
sible to advanced undergraduate and graduate students as well as a research
monograph to researchers in applied mathematics, physical sciences, and en-
gineering. This text differs from other similar texts in a number of ways. First,
it explains the classical methods in a comprehensible, non-abstract approach.
Furthermore, it introduces and explains the modern developed mathematical
methods in such a fashion that shows how the new methods can complement
the traditional methods. These approaches further improve the understand-
ing of the material.

The book avoids approaching the subject through the compact and clas-
sical methods that make the material difficult to be grasped, especially by
students who do not have the background in these abstract concepts. The
aim of this book is to offer practical treatment of linear and nonlinear inte-
gral equations emphasizing the need to problem solving rather than theorem
proving.

The book was developed as a result of many years of experiences in teach-
ing integral equations and conducting research work in this field. The author
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has taken account of his teaching experience, research work as well as valu-
able suggestions received from students and scholars from a wide variety of
audience. Numerous examples and exercises, ranging in level from easy to dif-
ficult, but consistent with the material, are given in each section to give the
reader the knowledge, practice and skill in linear and nonlinear integral equa-
tions. There is plenty of material in this text to be covered in two semesters
for senior undergraduates and beginning graduates of mathematics, physical
science, and engineering.

The content of the book is divided into two distinct parts, and each part
is self-contained and practical. Part I contains twelve chapters that handle
the linear integral and nonlinear integro-differential equations by using the
modern mathematical methods, and some of the powerful traditional meth-
ods. Since the book’s readership is a diverse and interdisciplinary audience of
applied mathematics, physical science, and engineering, attempts are made
so that part I presents both analytical and numerical approaches in a clear
and systematic fashion to make this book accessible to those who work in
these fields.

Part II contains the remaining six chapters devoted to thoroughly ex-
amining the nonlinear integral equations and its applications. The potential
theory contributed more than any field to give rise to nonlinear integral equa-
tions. Mathematical physics models, such as diffraction problems, scattering
in quantum mechanics, conformal mapping, and water waves also contributed
to the creation of nonlinear integral equations. Because it is not always pos-
sible to find exact solutions to problems of physical science that are posed,
much work is devoted to obtaining qualitative approximations that highlight
the structure of the solution.

Chapter 1 provides the basic definitions and introductory concepts. The
Taylor series, Leibnitz rule, and Laplace transform method are presented
and reviewed. This discussion will provide the reader with a strong basis
to understand the thoroughly-examined material in the following chapters.
In Chapter 2, the classifications of integral and integro-differential equations
are presented and illustrated. In addition, the linearity and the homogene-
ity concepts of integral equations are clearly addressed. The conversion pro-
cess of IVP and BVP to Volterra integral equation and Fredholm integral
equation respectively are described. Chapters 3 and 5 deal with the linear
Volterra integral equations and the linear Volterra integro-differential equa-
tions, of the first and the second kind, respectively. Each kind is approached
by a variety of methods that are described in details. Chapters 3 and 5
provide the reader with a comprehensive discussion of both types of equa-
tions. The two chapters emphasize the power of the proposed methods in
handling these equations. Chapters 4 and 6 are entirely devoted to Fred-
holm integral equations and Fredholm integro-differential equations, of the
first and the second kind, respectively. The ill-posed Fredholm integral equa-
tion of the first kind is handled by the powerful method of regularization
combined with other methods. The two kinds of equations are approached
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by many appropriate algorithms that are illustrated in details. A compre-
hensive study is introduced where a variety of reliable methods is applied
independently and supported by many illustrative examples. Chapter 7 is
devoted to studying the Abel’s integral equations, generalized Abel’s inte-
gral equations, and the weakly singular integral equations. The chapter also
stresses the significant features of these types of singular equations with full
explanations and many illustrative examples and exercises. Chapters 8 and
9 introduce a valuable study on Volterra-Fredholm integral equations and
Volterra-Fredholm integro-differential equations respectively in one and two
variables. The mixed Volterra-Fredholm integral and the mixed Volterra-
Fredholm integro-differential equations in two variables are also examined
with illustrative examples. The proposed methods introduce a powerful tool
for handling these two types of equations. Examples are provided with a sub-
stantial amount of explanation. The reader will find a wealth of well-known
models with one and two variables. A detailed and clear explanation of ev-
ery application is introduced and supported by fully explained examples and
exercises of every type.

Chapters 10, 11, and 12 are concerned with the systems of Volterra in-
tegral and integro-differential equations, systems of Fredholm integral and
integro-differential equations, and systems of singular integral equations and
systems of weakly singular integral equations respectively. Systems of inte-
gral equations that are important, are handled by using very constructive
methods. A discussion of the basic theory and illustrations of the solutions
to the systems are presented to introduce the material in a clear and useful
fashion. Singular systems in one, two, and three variables are thoroughly in-
vestigated. The systems are supported by a variety of useful methods that
are well explained and illustrated.

Part II is titled “Nonlinear Integral Equations”. Part II of this book gives
a self-contained, practical and realistic approach to nonlinear integral equa-
tions, where scientists and engineers are paying great attention to the effects
caused by the nonlinearity of dynamical equations in nonlinear science. The
potential theory contributed more than any field to give rise to nonlinear in-
tegral equations. Mathematical physics models, such as diffraction problems,
scattering in quantum mechanics, conformal mapping, and water waves also
contributed to the creation of nonlinear integral equations. The nonlinearity
of these models may give more than one solution and this is the nature of
nonlinear problems. Moreover, ill-posed Fredholm integral equations of the
first kind may also give more than one solution even if it is linear.

Chapter 13 presents discussions about nonlinear Volterra integral equa-
tions and systems of Volterra integral equations, of the first and the second
kind. More emphasis on the existence of solutions is proved and empha-
sized. A variety of methods are employed, introduced and explained in a
clear and useful manner. Chapter 14 is devoted to giving a comprehensive
study on nonlinear Volterra integro-differential equations and systems of non-
linear Volterra integro-differential equations, of the first and the second kind.
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A variety of methods are introduced, and numerous practical examples are
explained in a practical way. Chapter 15 investigates thoroughly the existence
theorem, bifurcation points and singular points that may arise from nonlin-
ear Fredholm integral equations. The study presents a variety of powerful
methods to handle nonlinear Fredholm integral equations of the first and
the second kind. Systems of these equations are examined with illustrated
examples. Chapter 16 is entirely devoted to studying a family of nonlinear
Fredholm integro-differential equations of the second kind and the systems
of these equations. The approach we followed is identical to our approach in
the previous chapters to make the discussion accessible for interdisciplinary
audience. Chapter 17 provides the reader with a comprehensive discussion
of the nonlinear singular integral equations, nonlinear weakly singular inte-
gral equations, and systems of these equations. Most of these equations are
characterized by the singularity behavior where the proposed methods should
overcome the difficulty of this singular behavior. The power of the employed
methods is confirmed here by determining solutions that may not be unique.
Chapter 18 presents a comprehensive study on five scientific applications that
we selected because of its wide applicability for several other models. Because
it is not always possible to find exact solutions to models of physical sciences,
much work is devoted to obtaining qualitative approximations that highlight
the structure of the solution. The powerful Padé approximants are used to
give insight into the structure of the solution. This chapter closes Part II of
this text.

The book concludes with seven useful appendices. Moreover, the book
introduces the traditional methods in the same amount of concern to provide
the reader with the knowledge needed to make a comparison.

I deeply acknowledge Professor Albert Luo for many helpful discussions,
encouragement, and useful remarks. I am also indebted to Ms. Liping Wang,
the Publishing Editor of the Higher Education Press for her effective coop-
eration and important suggestions. The staff of HEP deserve my thanks for
their support to this project. I owe them all my deepest thanks.

I also deeply acknowledge Professor Louis Pennisi who made very valuable
suggestions that helped a great deal in directing this book towards its main
goal.

I am deeply indebted to my wife, my son and my daughters who provided
me with their continued encouragement, patience and support during the
long days of preparing this book.

The author would highly appreciate any notes concerning any constructive
suggestions.

Abdul-Majid Wazwaz
Saint Xavier University
Chicago, IL 60655
April 20, 2011
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Chapter 1
Preliminaries

An integral equation is an equation in which the unknown function wu(x)
appears under an integral sign [1-7]. A standard integral equation in u(z) is

of the form:
h(x)

u(z) = fx) + A K (z, t)u(t)dt, (1.1)
g(z)

where g(z) and h(z) are the limits of integration, A is a constant parameter,
and K(x,t) is a function of two variables x and ¢ called the kernel or the
nucleus of the integral equation. The function u(x) that will be determined
appears under the integral sign, and it appears inside the integral sign and
outside the integral sign as well. The functions f(x) and K (x,t) are given in
advance. Tt is to be noted that the limits of integration g(x) and h(z) may
be both variables, constants, or mixed.

An integro-differential equation is an equation in which the unknown func-
tion u(z) appears under an integral sign and contains an ordinary derivative
u(™(z) as well. A standard integro-differential equation is of the form:

h(x)
u™ (z) = f(z) + A . K(z,t)u(t)dt, (1.2)
glxr
where g(x), h(z), f(z), A and the kernel K (z,t) are as prescribed before.

Integral equations and integro-differential equations will be classified into
distinct types according to the limits of integration and the kernel K (z,t). All
types of integral equations and integro-differential equations will be classified
and investigated in the forthcoming chapters.

In this chapter, we will review the most important concepts needed to
study integral equations. The traditional methods, such as Taylor series
method and the Laplace transform method, will be used in this text. More-
over, the recently developed methods, that will be used thoroughly in this
text, will determine the solution in a power series that will converge to an
exact solution if such a solution exists. However, if exact solution does not
exist, we use as many terms of the obtained series for numerical purposes to
approximate the solution. The more terms we determine the higher numerical
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4 1 Preliminaries

accuracy we can achieve. Furthermore, we will review the basic concepts for
solving ordinary differential equations. Other mathematical concepts, such as
Leibnitz rule will be presented.

1.1 Taylor Series

Let f(z) be a function with derivatives of all orders in an interval [z, 21] that
contains an interior point a. The Taylor series of f(x) generated at = a is

x 4(n) (g
fo) =" @ g, (1.3)

—= n!
or equivalently
f@ = s+ Vw0 e ap I @0y
' ‘ ’ (1.4)
(n)
f @%x—@”+~-
n

The Taylor series generated by f(z) at a = 0 is called the Maclaurin series
and given by

> f(n)
f(l‘) _ Z f n|(0) xn7 (15)
n=0 '

that is equivalent to

! O i 0 " O
f(z)=f(0)+ fl(' )£C+f2(' ):r2+ fgs )m3+~~~
In what follows, we will discuss a few examples for the determination of

the Taylor series at z = 0.

(n)
+ f n'(o):v” +---. (1.6)

Example 1.1

Find the Taylor series generated by f(z) = e® at x = 0.
We list the exponential function and its derivatives as follows:

fO@) f@=e fa)=e )= ) =e
SO0 JO) =1 FO)=1, O)=1 [0)=1,

and so on. This gives the Taylor series for e” by
" 22 23 2t
e :1+x+2!+3!+4!+~-~ (1.7)

and in a compact form by
T - "
e 7§:nr (1.8)
n=0

Similarly, we can easily show that
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. 2 3 g
i e I A (1.9)
e (@@)? _ (ar)? _ (a2’
wr azx azx ax
e =14azx+ N a1 o (1.10)
Example 1.2

Find the Taylor series generated by f(z) = cosz at z = 0.
Following the discussions presented before we find

F)(z) f(z) = cosz, f'(x) = —sinz, '’ (z) = — cosx, ' () = sinz, V) (z) = cosz

fF(0) f(O)=1,  f'(0)=0, fro)=-1,  f7o)=0, fV0)=1,

and so on. This gives the Taylor series for cosz by
2 4

x x
cosx:1—2!+4!+--- (1.11)
and in a compact form by
o~ (-1)"
o - 27
cosx = Z (2n)! ", (1.12)
n=0
In a similar way we can derive the following
L (e () S,
cos(ax) =1— o1 + Al +o= ngo (2n)! (az)"™. (1.13)
For f(z) =sinz and f(x) = sin(ax), we can show that
: .133 1‘5 - (_l)n 2n+1
smx:x—3!+5!+...:T;)(2n+1)!x ,

(1.14)
3 5 0 n
(@ @5 D
3! 5! — (2n+1
n=0
In Appendix C, the Taylor series for many well known functions generated
at x = 0 are given.

As stated before, the newly developed methods for solving integral equa-
tions determine the solution in a series form. Unlike calculus where we deter-
mine the Taylor series for functions and the radius of convergence for each
series, it is required here that we determine the exact solution of the integral
equation if we determine its series solution. In what follows, we will discuss
some examples that will show how exact solution is obtained if the series
solution is given. Recall that the Taylor series exists for analytic functions
only.

sin(az) = (ax) — L,

) (02

Example 1.3

Find the closed form function for the following series:
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4 2
f(x):1+2x+2x2+3x3+3x4+~~ (1.15)

It is obvious that this series can be rewritten in the form:
(22)* | (22)®  (22)*
91 + 3] + Al + - (1.16)

that will converge to the exact form:
f(z) = e*. (1.17)

flx)=1+2z+

Example 1.4

Find the closed form function for the following series:

Notice that the second term can be written as
be rewritten as

9 27 81
Jla) =1t et g ot gyt o
(39c)27 therefore the series can

2!

(o, (Go)' | (32)°

fla) =1+, o o (1.19)
that will converge to
f(z) = cosh(3z). (1.20)
Example 1.5
Find the closed form function for the following series:
Ls, 25
= e 1.21
fla)=a+ @+ Lot (1.21)
This series will converge to
f(z) = tanz. (1.22)
Example 1.6
Find the closed form function for the following series:
1 1 1 1
f(x):lerf2!1273!x3+4lx4+5lx5+~~ (1.23)

The signs of the terms are positive for the first two terms then negative
for the next two terms and so on. The series should be grouped as

1 1 1 1
flx)=01- 2!:102 + 4!554 + )+ (x— 3!x3 + 5!:c5 +--0), (1.24)
that will converge to
f(z) = cosz + sinz. (1.25)

Exercises 1.1

Find the closed form function for the following Taylor series:

7

4 2 9 9 2
1. f(x):2x+2x2+31‘3+3x4+~~ 2. f(;z:):1731:+2x272x3+ 8x4+~-~
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1 1 1
_ 2 3 4 ...
3. f(l‘)—l‘+2!x +3!x +4!x +

& f(x)zl_m+21!m2+31!m3+41!m4_;!xs_;!xs“L"'
9 81 243
5. f(z) = 3z — 2x3+ 40;357 560367
6. f(x):?m—i—;lx?’—i- éx5+3§5m7+...
2 4 9 27 81
7. f(ac):1+2x2+3m4+45:c6+~~ 8. f(z) = 2m2+ 8x4+80$6+~~
2 4
9. f(x):2—2x2+31*4—45x6+...
1 1 1
0 f@)=1+o— 2+ 0%~ oa0® T
1 2 . 17
11. f(z) =z + 3x3+ 15x0+ 315x7+---
1 2 17
12. f(z) =o — 3x3—|— 15x5— 315m7+~~~
13. f(z) =2+ 2z + 1:027 1x3+ 1x4+ 1m5+~-~.
2! 3" T 51
14. 2+ 2z — 21!x2+i!x4—61!x6+--~

1.2 Ordinary Differential Equations

In this section we will review some of the linear ordinary differential equa-
tions that we will use for solving integral equations. For proofs, existence
and uniqueness of solutions, and other details, the reader is advised to use
ordinary differential equations texts.

1.2.1 First Order Linear Differential Equations

The standard form of first order linear ordinary differential equation is
v+ p(r)u = q(x), (1.26)
where p(z) and ¢(x) are given continuous functions on zg < z < x1. We first
determine an integrating factor p(z) by using the formula:
p(z) = el PO, (1.27)
Recall that an integrating factor p(x) is a function of x that is used to facil-

itate the solving of a differential equation. The solution of (1.26) is obtained
by using the formula:

u(z) = ,u(lx) [/ﬂf w(t)q(t)dt + c] ) (1.28)
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where ¢ is an arbitrary constant that can be determined by using a given
initial condition.

Example 1.7
Solve the following first order ODE:

u' —3u = 322", u(0) = 1. (1.29)

Notice that p(x) = —3 and g¢(x) = 322e3*. The integrating factor u(zx) is
obtained by

p(x) = elo =34 — =3 (1.30)

Consequently, u(z) is obtained by using

u(x) = M(lx) [/m p(t)g(t)dt + C} = e (/m 3t°dt + C) (1.31)

=3 (xg + c) =e3%(x3 + 1),
obtained upon using the given initial condition.
Example 1.8
Solve the following first order ODE:
au' 4+ 3u = co;x, u(m) =0,z > 0. (1.32)

We first divide the equation by x to convert it to the standard form (1.26).
As aresult, p(z) = ? and g(z) = “3”. The integrating factor u(z) is

M(x) — ejL %dt _ e3lna: _ .’133. (133)
Consequently, u(x) is
1 z 1 =
u(x) = t)q(t)dt 4+ c| = tcostdt + ¢
@ = o | [ w0+ = (s I

1 :
= ,(cosz+zxsinz+c) =
x

3 (cosz + xsinz + 1),

3
x
obtained upon using the given initial condition.

Exercises 1.2.1

Find the general solution for each of the following first order ODEs:

lL.u+u=e*,z>0 2. zu/ —4u = z%e®, x>0
3. (2 +9)u' +22u=0,2 >0 4. z2u —4u =228 +25 2 >0
5 zu’ +u=2x,2>0 6. zu’ —u =2a%sinz,x >0

Find the particular solution for each of the following initial value problems:

7.0 —u=2ze®, u(0) =0 8. zu' +u=2x, u(l)=1

9. (tanz)u’ + (sec? z)u = 237 u (Z) =e> 10 v —3u = 423e3®, u(0) =1
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11. 1+ 23)u’ +322u =1, u(0) =0 12. v/ + (tanz)u = cosz, u(0) =1

1.2.2 Second Order Linear D:ifferential Equations

As stated before, we will review some second order linear ordinary differential
equations. The focus will be on second order equations, homogeneous and
inhomogeneous as well.

Homogeneous Equations with Constant Coefficients

The standard form of the second order homogeneous ordinary differential
equations with constant coefficients is

au” +bu' +cu=0,a#0, (1.35)
where a, b, and ¢ are constants. The solution of this equation is assumed to
be of the form:

u(z) = e, (1.36)

Substituting this assumption into Eq. (1.35) gives the equation:
e"(ar® +br +¢) = 0. (1.37)
Since €™ is not zero, then we have the characteristic or the auxiliary equation:
ar® +br+c=0. (1.38)

Solving this quadratic equation leads to one of the following three cases:
(i) If the roots r1 and ro are real and r1 # ro, then the general solution of
the homogeneous equation is
u(z) = Ae™* + Be™*", (1.39)
where A and B are constants.

(ii) If the roots r1 and 7o are real and r; = ro = r, then the general
solution of the homogeneous equation is

u(x) = Ae™ + Bxe™, (1.40)

where A and B are constants.
(iii) If the roots r1 and 7o are complex and 1 = A+ ip, 79 = A — iu, then
the general solution of the homogeneous equation is given by

u(z) = e (Acos(uz) + Bsin(uzx)), (1.41)

where A and B are constants.

Inhomogeneous Equations with Constant Coefficients

The standard form of the second order inhomogeneous ordinary differential
equations with constant coefficients is
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av” +bu' + cu = g(z),a #0, (1.42)
where a,b, and ¢ are constants. The general solution consists of two parts,

namely, complementary solution u., and a particular solution u, where the
general solution is of the form:

u(z) = uc(x) + up(x), (1.43)
where u, is the solution of the related homogeneous equation:
au” +bu' +cu=0,a#0, (1.44)

and this is obtained as presented before. A particular solution u,, arises from
the inhomogeneous part g(x). It is called a particular solution because it
justifies the inhomogeneous equation (1.42), but it is not the particular solu-
tion of the equation that is obtained from (1.43) upon using the given initial
equations as will be discussed later. To obtain u,(x), we use the method of
undetermined coefficients. To apply this method, we consider the following
three types of g(x):

(i) If g(z) is a polynomial given by

g(x) = apr™ + arx" 1 + -+ ag, (1.45)
then wu, should be assumed as
up = 2" (box™ + byt + - +b,), T=0,1,2,... (1.46)
(ii) If g(z) is an exponential function of the form:
g(x) = ape™”, (1.47)
then u, should be assumed as
up = boz"e™, r=0,1,2,... (1.48)
(iii) If g(x) is a trigonometric function of the form:
g(x) = ag sin(ax) + by cos(fx), (1.49)
then u, should be assumed as
up = z' (Ag sin(ax) + By cos(Bx)), r=0,1,2,... (1.50)

For other forms of g(z) such as tanz and sec x, we usually use the variation
of parameters method that will not be reviewed in this text. Notice that r
is the smallest nonnegative integer that will guarantee no term in wu,(z) is a
solution of the corresponding homogeneous equation. The values of r are 0, 1
and 2.

Example 1.9
Solve the following second order ODE:

v —u=0. (1.51)
The auxiliary equation is given by
r?—1=0, (1.52)

and this gives
r==+l. (1.53)
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Accordingly, the general solution is given by

u(x) = Ae” + Be™”. (1.54)
It is interesting to point out that the normal form ODE:
u +u=0, (1.55)
leads to the auxiliary equation:
r?+1=0, (1.56)
and this gives
r = +i. (1.57)

The general solution is given by
u(x) = Acosz + Bsinzx. (1.58)

Example 1.10
Solve the following second order ODE:

u” —Tu' + 6u = 0. (1.59)
The auxiliary equation is given by
2 —Tr+6=0, (1.60)
with roots given by
r=1,6. (1.61)

The general solution is given by
u(z) = Ae® + Beb?. (1.62)

Example 1.11

Solve the following second order ODE:
' —5u’ + 6u=6x+17. (1.63)
We first find u.. The auxiliary equation for the related homogeneous equation
is given by
r2 —5r+6=0, (1.64)

with roots given by
r=2,3. (1.65)
The general solution is given by
u(z) = ae®® + Be3*. (1.66)
Noting that g(z) = 6x + 7, then a particular solution is assumed to be of the

form

u, = Az + B. (1.67)

Since this is a particular solution, then substituting u, into the inhomoge-
neous equation leads to

6Ax + (6B —5A) = 6x + 7. (1.68)
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Equating the coefficients of like terms from both sides gives
A=1, B=2. (1.69)
This in turn gives
u(z) = ue + up = ae®® + B’ + . + 2, (1.70)
where o and (3 are arbitrary constants.

Example 1.12

Solve the following initial value problem
u” +9u=20e", u(0)=3, y'(0)=5. (1.71)

We first find u.. The auxiliary equation for the related homogeneous equation
is given by
2 4+9=0, (1.72)

where we find
r=43i, i*=-1. (1.73)
The general solution is given by
u(x) = acos(3x) + B sin(3x). (1.74)
Noting that g(x) = 20e?, then a particular solution is assumed to be of the

form:

u, = Ae”. (1.75)

Since this is a particular solution, then substituting u, into the inhomoge-
neous equation leads to
10Ae" = 20e”, (1.76)

so that
A=2. (1.77)
This in turn gives the general solution
w(x) = ue + up = avcos(3x) + Bsin(3z) + 2e”. (1.78)

Since the initial conditions are given, the numerical values for o and § should
be determined. Substituting the initial values into the general solution we find

a+2=3, 38+2=5, (1.79)

where we find
a=1, B=1 (1.80)

Accordingly, the particular solution is given by
u(z) = cos(3z) + sin(3z) + 2¢*. (1.81)

Exercises 1.2.2

Find the general solution for the following second order ODEs:
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1. v —4u +4u =0 2.u" —2u" —3u=0 3.u —u —2u=0

4. u’" —2u" =0 5. u —6u +9u=0 6. v +4u=0

Find the general solution for the following initial value problems:

7.u" —2u 4+ 2u=0,u(0) =1,u'(0)=1 8 v —6u +9u=0,u(0)=1u4(0)=4
9. v —3u’ —10u = 0,u(0) = 2,4/(0) =3 10. v’ +9u = 0,u(0) = 1,u'(0) =0

11. v/ — 9/ = 0,u(0) = 3,4/ (0) =9 12. v — 9u = 0,u(0) = 1,4’ (0) =0

Use the method of undetermined coefficients to find the general solution for the
following second order ODEs:

13. v —u' =1 4. v +u=3 15. v/’ —u = 3z 16. v/’ —u = 2cosx

Use the method of undetermined coefficients to find the particular solution for the
following initial value problems:

17. v — v =6,u(0) = 3,u'(0) = 2 18. v’ + u = 6e*,u(0) = 3,u’(0) =2
19. v/ —u = —2sinz,u(0) = 1,4/ (0) = 2
20. v —5u’ +4u = —1 + 4z, u(0) = 3,u'(0) =9

1.2.3 The Series Solution Method

For differential equations of any order, with constant coefficients or with
variable coefficients, with x = 0 is an ordinary point, we can use the series
solution method to determine the series solution of the differential equation.
The obtained series solution may converge the exact solution if such a closed
form solution exists. If an exact solution is not obtainable, we may use a
truncated number of terms of the obtained series for numerical purposes.

Although the series solution can be used for equations with constant coeffi-
cients or with variable coefficients, where z = 0 is an ordinary point, but this
method is commonly used for ordinary differential equations with variable
coefficients where z = 0 is an ordinary point.

The series solution method assumes that the solution near an ordinary
point z = 0 is given by

u(z) = Z anz”, (1.82)
n=0

or by using few terms of the series
u(z) = ag + a1z + azr® + azz® + asx® + asx® + agx® + - - (1.83)
Differentiating term by term gives
u'(z) = ay + 2asx + 3azx® + dayx® + Sasxt + 6agrd + - - -
u'(x) = 2as + 6azr + 12a42° + 20as2® + 30agz? + - - (1.84)
u"(x) = 6az + 24a4x + 60asz? + 120ae2> + - - -
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and so on. Substituting u(z) and its derivatives in the given differential equa-
tion, and equating coefficients of like powers of = gives a recurrence relation
that can be solved to determine the coefficients a,,n > 0. Substituting the
obtained values of a,,n > 0 in the series assumption (1.82) gives the series
solution. As stated before, the series may converge to the exact solution. Oth-
erwise, the obtained series can be truncated to any finite number of terms to
be used for numerical calculations. The more terms we use will enhance the
level of accuracy of the numerical approximation.

It is interesting to point out that the series solution method can be used
for homogeneous and inhomogeneous equations as well when = 0 is an
ordinary point. However, if x = 0 is a regular singular point of an ODE, then
solution can be obtained by Frobenius method that will not be reviewed in
this text. Moreover, the Taylor series of any elementary function involved in
the differential equation should be used for equating the coefficients.

The series solution method will be illustrated by examining the following
ordinary differential equations where z = 0 is an ordinary point. Some ex-
amples will give exact solutions, whereas others will provide series solutions
that can be used for numerical purposes.

Example 1.13

Find a series solution for the following second order ODE:
u +u=0. (1.85)
Substituting the series assumption for u(x) and u”(x) gives
2a9 + 6agx + 12a4z2 + 20a5x3 + 3Oa6x4 + -
+ag + a1z + asx® + asx® + asxt + asz® + - =0, (1.86)
that can be rewritten by
(ao + 2a2) + (a1 + 6az)x + (ag + 12a4)2* + (a3 + 20as)2®
+(ay + 30ag)z* + - -- = 0. (1.87)
This equation is satisfied only if the coefficient of each power of x vanishes.
This in turn gives the recurrence relation

ap + 2as =0, a1 + 6as =0,
as +12a4 =0, asg+ 20a5 =0, (188)

By solving this recurrence relation, we obtain

1 1
a2 = — _, 00,03 = — _ 41,
2! 3!
B 1 B 1 B 1 1 (1.89)
Ay = *1202 = 4!610, as *2003 = 5!01,

The solution in a series form is given by

1 1 1
u(z) = ao (1—2!x2+4!x4+-~~)+a1 <$—3!$3+5!5E5+"')a (1.90)
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and in closed form by

u(z) = apcosx + ay sinz, (1.91)
where ag and a; are constants that will be determined for particular solution
if initial conditions are given.

Example 1.14

Find a series solution for the following second order ODE:
u —au —u=0. (1.92)
Substituting the series assumption for u(x), v’ (z) and u”’(z) gives
2a5 + 6asz + 12a42° + 20a52> + 30agz® + 42a72° + - - -
—a1x — 2a2x2 — 3agz® — 4a4x4 — Sagz® — - -
—ag — a1 — asx?® — asz® — asxt —asx® — - =0, (1.93)
that can be rewritten by
(—ao + 2az) + (—2a1 + 6az)z + (—3as + 12a4)x* + (—4asz + 20a5)z>
+(30ag — bayg)x* + (42a7 — 6as)z® + --- = 0. (1.94)
This equation is satisfied only if the coefficient of each power of x is zero.
This gives the recurrence relation

—ag + 2a2 =0, —2a1 + 6a3 =0, —3as+ 12a4 =0, (1 9 )
.95
—4ag 4+ 20a5 =0, —bas+30as =0, —6as+42a7=0,---
where by solving this recurrence relation we find
1 1 1
az = _aop, az = ,ap, a4 = — Az = ,Qo,
2 3 4 8
1 1 1 1 1 1 (1.96)
as = _az3 = __a ag = Q4 = . _Q ar = _as = a1, -
5= 503 = (01 6= = 4500 7= 505 = 0500
The solution in a series form is given by
1 1 1
u(z) = ao (1 2x2+ 8CE4+ 48966+"')
La, 1 5 L
1.97
+a1(x+3x T 0T ), (1.97)

where ag and a; are constants, where ag = u(0) and a; = «’(0). It is clear that
a closed form solution is not obtainable. If a particular solution is required,
then initial conditions u(0) and u'(0) should be specified to determine the
coefficients ag and aq.

Example 1.15

Find a series solution for the following second order ODE:
v —au' +u=—xcosz. (1.98)

Substituting the series assumption for u(x),u’, and u”(x), and using the
Taylor series for cosx, we find
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2a5 + 6asz + 12a42° + 20a52> + 30agz® + 42a72° + - - -
—aqz — 2a92° — 3asz® — 4a4m4 — Sagz® — - -
“+ag + a1 + a2x2 + a3x3 + a4x4 + a53:5 + -

1
R (1.99)

1 3
R TR

that can be rewritten by
(ap + 2az) + 6azz + (—az + 12a4)2? + (—2a3 + 20as)z>

L 5
e + .-+ .(1.100)
Equating the coefficient of each power of x be zero and solving the recurrence

relation we obtain

1
+(30a6 — 3as)x* + (42a7 — das)2® + - = —x + Q'm?’ -

1 1
a2*72a07 a3*73!3
1 1 1 1 1
U= T2 T Ty BT 0BTy T 190 (1.101)
1 1 2 1 1
ag=_ ag=—_ a ar = __as— =—
7107 2407 T 2177 1008 5040
The solution in a series form is given by
1 1 1
N R 6. 1.102
u(z) = ag ( 0% T g% T gg® T ( )
L g 15 14
ot <_3lx Tyt Tt )
that can be rewritten as
1 1 1
R T S R 1.103
u(z) = ag ( 5% T o4 T 940 + ) ( )
L g 15 14
s (5”_ TR TR (R
by setting B = a; — 1. Consequently, the solution is given by
1 1 1

Notice that sinx gives the particular solution that arises as an effect of the
inhomogeneous part.

Exercises 1.2.3

Find the series solution for the following homogeneous second order ODEs:
l.u +zu' +u=0 2. v —zu +z2u=0

v —(1+x)u' +u=0 4 v —uw +zu=0

Find the series solution for the following inhomogeneous second order ODEs:
5. u"” —u 4+ zu =sinzx 6. v’ —zu 4+ zu =€

7.u" —axu=cosx 8. v’ —z%u=1In(1 — x)
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1.3 Leibnitz Rule for Differentiation of Integrals

One of the methods that will be used to solve integral equations is the con-
version of the integral equation to an equivalent differential equation. The
conversion is achieved by using the well-known Leibnitz rule [4,6,7] for differ-
entiation of integrals.

Let f(x,t) be continuous and ‘g{ be continuous in a domain of the a-t
plane that includes the rectangle a < x < b, tg <t < t1, and let

(@)
Pla) = / :L) Fo ), (1.105)
g(x

then differentiation of the integral in (1.105) exists and is given by

dF dh(z) dg(z) M) 9 (x,t)
Flx)=", = h - .
@) = gy = San@) Y s g0+ [
(1.106)
If g(x) = a and h(xz) = b where a and b are constants, then the Leibnitz rule
(1.106) reduces to
dF b of(x,t)
F’ = = ’ 1.1
@=" = o (1.107)
which means that differentiation and integration can be interchanged such as
d [t b
e /a e"tdt = /a te®tdt. (1.108)

It is interested to notice that Leibnitz rule is not applicable for the Abel’s
singular integral equation:
xr
F(z) :/ O oca<t. (1.109)
o (z—t)

The integrand in this equation does not satisfy the conditions that f(z,t)
be continuous and ‘z,{ be continuous, because it is unbounded at x = t. We
illustrate the Leibnitz rule by the following examples.

Example 1.16

Find F’(x) for the following:

F(z) = / V1 + t3dt. (1.110)
We can set g(z) = sinz and h(x) = cosz. It is also clear that f(z,t) is a
function of ¢ only. Using Leibnitz rule (1.106) we find that

Fl(x) = fsinx\/l+cos3xfcos:c\/1+sin3x. (1.111)

Example 1.17
Find F’(x) for the following:

2

F(z) = /JE (x —t) costdt. (1.112)
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We can set g(x) = x, h(z) = 22, and f(x,t) = (x —t) cost is a function of =
and t. Using Leibnitz rule (1.106) we find that

$2

F'(z) = 22(x — 2?) cos x? +/ cos tdt, (1.113)
or equivalently

F'(z) = 2x(x — 2?) cos2? + sinz? — sin z. (1.114)
Remarks

In this text of integral equations, we will concern ourselves in differentiation
of integrals of the form:

/ K(z,t)u (1.115)
In this case, Leibnitz rule (1.106) reduces to the form:
K(z,t
F'(z) = K(z, x)u(z) + / J a(x ) u()dt. (1.116)
0 xXr

This will be illustrated by the following examples.
Example 1.18
Find F’(x) for the following:

F(z) = / (z — t)u(t)dt. (1.117)
0
Applying the reduced Leibnitz rule (1.116) yields
F'(z) = / u(t)dt. (1.118)
0

Example 1.19
Find F’(x) and F”(x) for the following:

Fla) = /m stu(t)dt. (1.119)

Applying the reduced Leibnitz rule (i).116) gives
F'(z) = 2%u(z) + /T tu(t)dt,

F/(@) = #2(x) + Brul).

(1.120)

Example 1.20
Find F'(z), F"(z), F"'(x) and FY) () for the following integral

F(z) = /Ow(x — t)3u(t)dt. (1.121)

Applying the reduced Leibnitz rule (1.116) four times gives
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F'(z) = ' 3(x —t)?u(t)dt, F"(x)= ' 6(x — t)u(t)dt,
/0 /O (1.122)

F'"(z) = /0 ’ 6u(t)dt, FW(z) = 6u(x).

Exercises 1.3

Find F’(z) for the following integrals:

2

1. F(z) = /I et dt 2. F(z) = /z In(1 + xt)dt
0 x
3. F(z) = /x sin(z? + t2)dt 4. F(z) = /x cosh(z® + t3)dt
0 0
Find F’(z) for the following integrals:
5. F(x) = /Ox(z — t)u(t)dt 6. F(x) = /Ox(:c —t)2u(t)dt
7. F(z) = /:(x —0u(t)dt 8. F(z) = /Oz(x — ptu(t)dt

Differentiate both sides of the following equations:

1 x x
9. 23 + 63:6 = / (44 z — t)u(t)dt 10. 1 4 ze” :/ e tu(t)dt
0 0
11. 222 + 323 = / (6 + 5 — Bt)u(t)dt
0
12. sinhz + In(sinz) = / (B3+z—thu(t)dt, 0 <z < ;T
0

Differentiate the following F(z) as many times as you need to get rid of the integral
sign:

13. F(z) =z + /OI (@ — tyu(t)dt 14, F(z) = 22 + /Oz (@ — )2u()dt

15. F(z) =1 +/ (@ —t)3u(t)dt 16. F(z) = e” +/ (@ — t)*u(t)dt
0 0
Use Leibnitz rule to prove the following identities:

x
17. If F(x) = / (x — t)™u(t)dt, show that F("*+1) = nlu(x), n > 0.
0

x |
18. F(x) :/ t"™ (x — t)™dt, show that F(™) = " zntl
0 n + 1

m and n are positive integers.
1.4 Reducing Multiple Integrals to Single Integrals

It will be seen later that we can convert initial value problems and other
problems to integral equations. It is normal to outline the formula that will



20 1 Preliminaries

reduce multiple integrals to single integrals. We will first show that the double
integral can be reduced to a single integral by using the formula:

/O /0 " F@dtde, = /0 "o — O F(b)dt. (1.123)

This can be easily proved by two ways. The first way is to set

Gla) = / (x — OF(t)dt, (1.124)
0
where G(0) = 0. Differentiating both sides of (1.124) gives

G'(z) = /0 " P, (1.125)

obtained by using the reduced Leibnitz rule. Now by integrating both sides
of the last equation from 0 to z yields

Glz) = /0 /O Ft)dtdas. (1.126)

Consequently, the right side of the two equations (1.124) and (1.126) are
equivalent. This completes the proof.
For the second method we will use the concept of integration by parts.

Recall that
/udv = uvf/vdu,

. (1.127)
u(xy) :/0 F(t)dt,

then we find

T T1 r1 z
/ / F(t)dtdz, = xl/ F(t)dt —/ 1 F(21)dxy
0o Jo 0 o Jo

—xé F(t)dt—/0 1 F(x1)dxy (1.128)
:/ (x — t)F(t)dt,
0

obtained upon setting x; = ¢.
The general formula that converts multiple integrals to a single integral is
given by

/Oz /Oz .../Ox”1u(a:n)dxnda:n_1...dx1 _ (ni o /Om(a:—t)”_lu(t)dt_
(1.129)

The conversion formula (1.129) is very useful and facilitates the calculation
works. Moreover, this formula will be used to convert initial value problems
to Volterra integral equations.

x

Corollary

As a result to (1.129) we can easily show the following corollary
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/ow /; . /Ow(x — t)u(t)dtdt - - - dt = ;! /Ow(x —t)"u(t)dt

~
n integrals
Example 1.21

Convert the following multiple integral to a single integral:

/I /wl u(xe)drydx.

Using the formula (1.129) we obtain

/ / u(zs dxldarf/ (z — tyu(t)dt.

Convert the following multiple integral to a single integral:

/ / / u(zs)drodrde.

Using the formula (1.129) we obtain

/ / / u(zs d:z:zd:z:ldxfy/ (& — OPut)dt.

Example 1.23

Example 1.22

Convert the following multiple integral to a single integral:

/$ / /I(x—t)dtdtdt.

Using the corollary (1.130) we obtain

/// (a — t)dtdtdt = !/Ox(l"t)?’u(t)dt.

Example 1.24

Convert the following multiple integral to a single integral:

// (x — t)u(xy)dtdx;.

Using the corollary (1.130) we obtain

/0 /0 (:z:—t)u(:vl)dtdx1:2/o (2 — Pu(t)dt.

Example 1.25

Convert the following multiple integral to a single integral:

/ / T — t u(zy)dtdzy .

Using the corollary (1.130) we obtain

21

(1.130)

(1.131)

(1.132)

(1.133)

(1.134)

(1.135)

(1.136)

(1.137)

(1.138)

(1.139)
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x 1 B 2ux . :1 xm_ 3u
/0/0 (@ = 1)l )dtda, 3/0( t) u(t)dt. (1.140)

Exercises 1.4

Prove the following:

L T @ 0Pu)dtdey = L[ @ = tu)dr
(0] 0 4 0

2 [T [ (@ = ruta)dtders = [ (@ — t)Pu(t)ar
o Jo 5Jo

3. o (z — t)u(zq)dtdz + o (x — t)%u(z1)dtdzy
(0] 0 0 0

1 (= ) o
:6/0 (z — £)2(3 + 2(x — t))u(t)dt

4. /0 /o u(en )dtdary + /O /Oml(x — t)u(e:)dtdz + /0 /OZI(z — O%ule)didzy

—1 xa:— 2 T — z—1t3u
74/0( 02 (4+2(x—t) + (z —t)°) u(t)dt

1.5 Laplace Transform

In this section we will review only the basic concepts of the Laplace trans-
form method. The details can be found in any text of ordinary differential
equations. The Laplace transform method is a powerful tool used for solving
differential and integral equations. The Laplace transform [1-4,7] changes dif-
ferential equations and integral equations to polynomial equations that can
be easily solved, and hence by using the inverse Laplace transform gives the
solution of the examined equation.

The Laplace transform of a function f(z), defined for « > 0, is defined by

F(s) = L{f(z)} = /OOO = f(2)da, (1.141)

where s is real, and L is called the Laplace transform operator. The Laplace
transform F'(s) may fail to exist. If f(x) has infinite discontinuities or if it
grows up rapidly, then F'(s) does not exist. Moreover, an important necessary
condition for the existence of the Laplace transform F'(s) is that F'(s) must
vanish as s approaches infinity. This means that

lim F(s) = 0. (1.142)

§—00
In other words, the conditions for the existence of a Laplace transform F(s)
of any function f(x) are:

1. f(z) is piecewise continuous on the interval of integration 0 < = < A
for any positive A,
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2. f(z) is of exponential order e** as x — oo, i.e. |f(z)| < Ke*™, x> M,
where «a is real constant, and K and M are positive constants. Accordingly,
the Laplace transform F(s) exists and must satisfy

lim F(s)=0. (1.143)

1.5.1 Properties of Laplace Transforms

From the definition of the Laplace transform given in (1.141), we can easily
derive the following properties of the Laplace transforms:

1). Constant Multiple:
L{af(x)} = al{f(x)},a is a constant. (1.144)

For example:

4

L{4e"y =4L{ey =~ (1.145)

L
2). Linearity Property:
L{af(x)+bg(x)} = al{f(x)} + bL{g(x)}, a,b are constants. (1.146)

For example:
6

L{4x + 32} = 4L{x} + 3L{2?} = 342 + o (1.147)
3). Multiplication by z:
d
Llaf(a)} = ) L{f(@)} = —F(5) (1.148)
For example:
. d . d 1 2s
L{zsinx} = fdsﬁ{smx} = s (82 N 1) = (241) (1.149)

To use the Laplace transform £ for solving initial value problems or integral
equations, we use the following table of elementary Laplace transforms as
shown below:

Table 1.1 Elementary Laplace Transforms

f() F(s) = L{f@) = [ e fa)da
0
(&
c , >0
S
! >0
T .8
82
. nl T(n+1)
T s"“‘l: gnt1 , >0, Ren>—1
1
er® ,8>a

S—a
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f(z)
sin ax
cos ax
sin“ ax

cos® ax
x sin ax
T cosar
sinh ax
cosh ax
sinh? az
cosh? ax
rsinh ax
x cosh ax
xneaz
e®* sin bx
e®* cos bx

e®® sinh bx

e®® cosh bx

H(z — a)
6(x)
o(x —a)

& (x —a)

1 Preliminaries

Continued

F(s) = £{/(z)} = / T e f (@) de

a
52 4+ a?
s
s2 + a2
2a?
(52 4 a2y () > [1m(a)]
52 4 2a?
st o a2y’ () > [1m(a)]
2as
(82 + a?)2
52 —a?
(s2 + a2)?
a
s2_ g2 5>l
s
2 g2 57 |a
2a?
st o gazy ) > (@)
52 — 2a?
ot — a2y’ () > [1m(a)]
2as
(52 — a2)2’ 5> lal
52 4 a?
(52 — a2)2’ 5> |a|
n!
( ynt1 ,8 > a, n is a positive integer
s—a)™
b >
, s>a
(s —a)? + b2
s—a S
, s>a
(s —a)?+b2
b
(s —a)2 — b2’ s>
s—a
(s —a)2 — b2’ s=a
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4). Laplace Transforms of Derivatives:
L{f (@)} = sL{f(x)} = [(0),
L{f" (@)} = s*L{f (x)} = s£(0) = f'(0),
L{f"(2)} = $*L{f(2)} = s*f(0) = s£"(0) = f"(0),

L{F (@)} = s"L{f(2)} = 5" f(0) = - = sf"72(0) = fU7D(0).
(1.150)
5). Inverse Laplace Transform
If the Laplace transform of f(x) is F(s), then we say that the inverse
Laplace transform of F(s) is f(x). In other words, we write

LTHF(s)} = f(a), (1.151)
where £7! is the operator of the inverse Laplace transform. The linearity

property holds also for the inverse Laplace transform. This means that
L7 HaF(s)+bG(s)} = aL™HF(s)} +bLH{G(s)}

= af(z) + by(x).
Notice that the computer symbolic systems such as Maple and Mathematica
can be used to find the Laplace transform and the inverse Laplace transform.
The Laplace transform method and the inverse Laplace transform method
will be illustrated by using the following examples.

Example 1.26

(1.152)

Solve the following initial value problem:
v +y=0, y0)=1, 3(0)=1. (1.153)
By taking Laplace transforms of both sides of the ODE, we use
L{y(x)} =Y (s),
L{y" ()} = s*L{y(=)} — sy(0) — ¥/ (0) (1.154)
=5%Y(s) —s—1,
obtained upon using the initial conditions. Substituting this into the ODE

gives

S n 1
s24+1  s241°

Y(s) =

To determine the solution y(x) we then take the inverse Laplace transform
L~ to both sides of the last equation to find

El{Y(s)}:Ll{ § }+£1{ ! } (1.156)

s2+1 s2+1

(1.155)

This in turn gives the solution by
y(x) = cosx + sinz, (1.157)
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obtained upon using the table of Laplace transforms. Notice that we obtained
the particular solution for the differential equation. This is due to the fact
that the initial conditions were used in the solution.

Example 1.27
Solve the following initial value problem
y'—y' =0, y(0)=2, ¥(0)=1. (1.158)
By taking Laplace transforms of both sides of the ODE, we set
L{y(x)} =Y (s),
L{y'(x)} = sY(s) = 2,
L{y" ()} = s*L{y(x)} — sy(0) — y'(0)
=5%Y(s) —2s — 1,
obtained by using the initial conditions. Substituting this into the ODE gives

1 1

. 1.160
1T (1.160)
To determine the solution y(x) we then the take inverse Laplace transform
L~ of both sides of the last equation to find

L7HY (s)} L‘l{s ! 1} +L‘1{i}. (1.161)

(1.159)

Y(s) = .

This in turn gives the solution by
y(z) =" +1, (1.162)
obtained upon using the table of Laplace transforms.

6). The Convolution Theorem for Laplace Transform

This is an important theorem that will be used in solving integral equations.
The kernel K (z,t) of the integral equation:
h(x)
u(z) = f(z) + A K (z,t)u(t)dt, (1.163)
g(z)
is termed difference kernel if it depends on the difference x — t. Examples
of the difference kernels are e*~! sin(z — t), and cosh(x — t). The integral
equation (1.163) can be expressed as
h(zx)
u(z) = f(x) + A K(x — t)u(t)dt. (1.164)
g(x)
Consider two functions f1(z) and f2(x) that possess the conditions needed
for the existence of Laplace transform for each. Let the Laplace transforms
for the functions f1(z) and f2(x) be given by

L{fi1(x)} = Fi(s),
L{f2(z)} = Fa(s).

The Laplace convolution product of these two functions is defined by

(1.165)
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(fix f2)(z / filz —t) fa2(t)dt (1.166)
or
(% f1)( / fol — ) fi()dt (1.167)
Recall that
(f1 = f2)(@) = (fa = f1) (). (1.168)

We can easily show that the Laplace transform of the convolution product
(f1* f2)(x) is given by

£l R} =£{ [ hle-0p0a} = AERE.  110)
0
It was stated before, that this theorem will be used in the coming chapters.
To illustrate the use of this theorem we examine the following example.

Example 1.28

Find the Laplace transform of

T+ /m(ac — t)y(t)dt. (1.170)

0
Notice that the kernel depends on the difference x — ¢. The integral includes
fi(xz) = x and fa(x) = y(x). The integral is the convolution product (f; *
f2)(x). This means that if we take Laplace transform of each term we obtain

L{a}+ L {/Ox(a: _ t)y(t)dt}  L{a} + L{} (). (L171)

Using the table of Laplace transforms gives

1 1
)+ Y () (1.172)

Example 1.29

Solve the following integral equation

weI:/ e ty(t)dt. (1.173)
0

Notice that fi(z) = e* and f2(z) = y(z). The right hand side is the convo-
lution product (f1 * f2)(x). This means that if we take Laplace transforms of
both sides we obtain

L{ze} = L { /0 ' efvty(t)dt} = L{e"}C{y(t)}. (1.174)

Using the table of Laplace transforms gives
1 1
= Y 1.175
(s—1)2 s-1 (), ( )
that gives

Y(s) = . (1.176)
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From this we find the solution is

y(x) :L—l{sll} =e”. (1.177)

The Laplace transform method will be used for solving Volterra integral equa-
tions of the first and the second type in coming chapters.

Exercises 1.5

Solve the given ODEs:

1Ly"+4y=0, y(0)=0, y(0) =1 2.y" +4y =4z, y(0) =0, y'(0) =1
3.y —y=-2z, y(0)=0, y(0) =1 4.y"”" -3y +2y=0, y(0) =2, y'(0) =3
Find the Laplace transform of the following expressions:

5.x +sinx 6.e* —cosz 7.1+ ze® 8. sinx+sinhx

Find the Laplace transform of the following expressions that include convolution
products:

9. / sinh(z — t)y(t)dt 10. z2 +/ ety (t)dt
0 0
x x
11. / (x — t)e® ty(t)dt 12. 1+ 2 f/ (x — t)y(t)dt
0 0
Find the inverse Laplace transform of the following:
1 4 1 3
13. F(s) = 14. F(s) =
(s) 52+1+53 (s) 52—1+52+9
1 s 1 1
15. F(s) = + 16. F(s) = -
(s) s24+1  s2—-4 (s) s(s24+1)  s(s2-—1)

1.6 Infinite Geometric Series

A geometric sequence is a sequence of numbers where each term after the first
is obtained by multiplying the previous term by a non-zero number r called
the common ratio. In other words, a sequence is geometric if there is a fixed
non-zero number r such that

apy1 = apr, n =1 (1.178)
This means that the geometric sequence can be written in a general form as
ai,air,ar?, . ar™ L (1.179)

where a; is the starting value of the sequence and r is the common ratio.
The associated geometric series is obtained as the sum of the terms of the
geometric series, and therefore given by

n
S, = Zalrk —a1+ar+ar? +ar® +art + -+ agr™. (1.180)
k=0
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The sum of the first n terms of a geometric sequence is given by
ay (1 —r™)
1—7r 7
An infinite geometric series converges if and only if |r| < 1. Otherwise it
diverges. The sum of infinite geometric series, for |r| < 1, is given by

Sy = r#1 (1.181)

. ay
1 n = , 1.182
S = (152)
obtained from (1.181) by noting that
lim ™ =0, |r]<1. (1.183)

Some of the methods that will be used in this text may give the solutions
in an infinite series. Some of the obtained series include infinite geometric
series. For this reason we will study examples of infinite geometric series.

Example 1.30

Find the sum of the infinite geometric series
4 8

2
1 1.184
+3+9+27+ ( )

The first value of the sequence and the common ratio are given by a; =1
and r = :23 respectively. The sum is therefore given by
1

S = 5 =3 (1.185)
1- 3

Example 1.31
Find the sum of the infinite geometric series:
elte?tePde (1.186)

The first term and the common ratio are a; = e~ ! and r = e~ ! < 1. The
sum is therefore given by

e ! 1
= = . 1.1
5 l—el e—-1 (1.187)
Example 1.32
Find the sum of the infinite geometric series:
n n? n3
x+4x+16m+64x+~-, 0<n<4. (1.188)

n

7 < 1. Consequently, the sum of this

It is obvious that a1 = = and r =
infinite series is given by

S = n = z, 0<n<A4d (1.189)

Example 1.33

Find the sum of the infinite geometric series:



30 1 Preliminaries

1 1 1
x+x2+x3+-~-, x> 1. (1.190)
It is obvious that a; = 910 and r = 913 < 1. The sum is therefore given by
1
1
S=_7*. = 1. 1.191
-1 -1 *7 (1.191)

Example 1.34

Find the sum of the infinite geometric series:

! + bl + (1.192)
2 4 8 '
It is obvious that a; =1 and r = —},|r| < 1. The sum is therefore given by
1 2
S = = _. 1.193
1+, 3 ( )

Exercises 1.6

Find the sum of the following infinite series:

1.1+1+1+1+-~~ 2.1—1+1—1+~--

2 4 8 16 2 4 8 16
3. 5aj+5x+ 5x+ > T+

6 36 216 1296
4.6sin3:+ 6 sinx 4+ 6 sinx 4+ 6 sinx 4 -

7 49 343 2401
5.e72+e t+e S 4e 84 .. 6.m+nx+n2x+ n3m+-~-,0<n<9

9 81 729
7.7rm+7ra:+7rx+7rm+-~~ 8.e+e2+63+64+“-
2 4 8 ™ w2 w omt

Inz Inz

d 2
9. Show that 1 =", z>0
ow tha dw(nx—l— 9 + 4 + ) . x

1 1

1
10. Show that [5+" ( + L+
x €T

xT
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Chapter 2

Introductory Concepts of Integral
Equations

As stated in the previous chapter, an integral equation is the equation in
which the unknown function u(x) appears inside an integral sign [1-5]. The
most standard type of integral equation in u(x) is of the form

h(z)
u(z) = f(x) + )\/( ) K (z,t)u(t)dt, (2.1)

where ¢g(z) and h(z) are the limits of integration, A is a constant parameter,
and K (x,t) is a known function, of two variables  and t, called the kernel
or the nucleus of the integral equation. The unknown function u(x) that
will be determined appears inside the integral sign. In many other cases,
the unknown function u(x) appears inside and outside the integral sign. The
functions f(z) and K(x,t) are given in advance. It is to be noted that the
limits of integration g(z) and h(x) may be both variables, constants, or mixed.

Integral equations appear in many forms. Two distinct ways that de-
pend on the limits of integration are used to characterize integral equations,
namely:

1. If the limits of integration are fixed, the integral equation is called a
Fredholm integral equation given in the form:

b
(@) = f(@) + A / K (2, tyu(t)dt, (2.2)

where a and b are constants.
2. If at least one limit is a variable, the equation is called a Volterra integral
equation given in the form:

u(z) = f(x) + /\/fﬂ K (z,t)u(t)dt. (2.3)

Moreover, two other distinct kinds, that depend on the appearance of the
unknown function u(x), are defined as follows:

1. If the unknown function u(x) appears only under the integral sign of
Fredholm or Volterra equation, the integral equation is called a first kind
Fredholm or Volterra integral equation respectively.

A-M. Wazwaz, Linear and Nonlinear Integral Equations
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2. If the unknown function u(x) appears both inside and outside the inte-
gral sign of Fredholm or Volterra equation, the integral equation is called a
second kind Fredholm or Volterra equation integral equation respectively.

In all Fredholm or Volterra integral equations presented above, if f(x) is
identically zero, the resulting equation:

b
u(z) = A / K (x, ut)dt (2.4)

u(x) = )\/m K(z,t)u(t)dt (2.5)

is called homogeneous Fredholm or homogeneous Volterra integral equation
respectively.

It is interesting to point out that any equation that includes both integrals
and derivatives of the unknown function w(z) is called integro-differential
equation. The Fredholm integro-differential equation is of the form:

b dku
u™ (z) = f(z) + A / K(x,tyu(t)dt, u™ = ok (2.6)
x
a
However, the Volterra integro-differential equation is of the form:
x dk
u®(z) = flz) + A / K (x,tyu(t)dt, u® = p fj (2.7)
o x

The integro-differential equations [6] will be defined and classified in this text.

2.1 Classification of Integral Equations

Integral equations appear in many types. The types depend mainly on the
limits of integration and the kernel of the equation. In this text we will be
concerned on the following types of integral equations.

2.1.1 Fredholm Integral Equations

For Fredholm integral equations, the limits of integration are fixed. Moreover,
the unknown function u(z) may appear only inside integral equation in the
form:

b
fla) = / K (z, t)u(t)dt. (2.8)

This is called Fredholm integral equation of the first kind. However, for Fred-
holm integral equations of the second kind, the unknown function u(z) ap-
pears inside and outside the integral sign. The second kind is represented by
the form:

b
u(z) = f(z) + )\/ K (z, t)u(t)dt. (2.9)
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Examples of the two kinds are given by
. 1
sinz — xcosx .
2 = / sin(xt)u(t)dt, (2.10)
0
and
1 /1
u@ =z, [ (@b, (2.11)

-1

respectively.

2.1.2 Volterra Integral Equations

In Volterra integral equations, at least one of the limits of integration is a
variable. For the first kind Volterra integral equations, the unknown function
u(x) appears only inside integral sign in the form:

flz) = /0 K (2, t)u(t)dt. (2.12)

However, Volterra integral equations of the second kind, the unknown func-
tion u(x) appears inside and outside the integral sign. The second kind is
represented by the form:

u(z) = f(x) + )\/z K (x,t)u(t)dt. (2.13)
Examples of the Volterra integral equa(‘;ions of the first kind are
ze ¥ = /$ e' " Tu(t)dt, (2.14)
and '
502 4 2% = /Oz(5 + 3z — 3t)u(t)dt. (2.15)

However, examples of the Volterra integral equations of the second kind are

() =1— /O u(t)dt, (2.16)
and

w(@) =z + /0 "o — ()t (2.17)

2.1.3 Volterra-Fredholm Integral Equations

The Volterra-Fredholm integral equations [6,7] arise from parabolic bound-
ary value problems, from the mathematical modelling of the spatio-temporal
development of an epidemic, and from various physical and biological mod-
els. The Volterra-Fredholm integral equations appear in the literature in two
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forms, namely

(@) = f(z) + A / " K (o Ou(t)dt + o / " Kowudt,  (218)

and
w(z, 1) :f(x,t)—i—/\/ /F(x,t,§,7‘,u(§,r))d§d7‘, (2,1) € Q% [0,T], (2.19)
0 Q

where f(x,t) and F(z,t,&, 7,u(§, 7)) are analytic functions on D = Q x [0, T7,
and Q is a closed subset of R",n = 1,2,3. It is interesting to note that
(2.18) contains disjoint Volterra and Fredholm integral equations, whereas
(2.19) contains mixed Volterra and Fredholm integral equations. Moreover,
the unknown functions u(x) and u(z, t) appear inside and outside the integral
signs. This is a characteristic feature of a second kind integral equation. If
the unknown functions appear only inside the integral signs, the resulting
equations are of first kind, but will not be examined in this text. Examples
of the two types are given by

w(z) = 62+ 322 + 2 — / " cu(t)dt — / (), (2.20)
0 0

and

t 1
u(z,t) =z + 3+ ;tZ - ;t — / / (1 — &)dédr. (2.21)
0 JO

2.1.4 Singular Integral Equations

Volterra integral equations of the first kind [4,7]

h(z)
F@) = A / K u (2.22)

or of the second kind
h(x)
u(z) = f(x) + K(x,t)u(t)dt (2.23)
g(z)
are called singular if one of the limits of integration g(z), h(x) or both are
infinite. Moreover, the previous two equations are called singular if the kernel
K (z,t) becomes unbounded at one or more points in the interval of integra-
tion. In this text we will focus our concern on equations of the form:
¥ 1
flz) = / u(t)dt, 0<a<l, (2.24)
o (z—1)*
or of the second kind:

u(z) = f(z) + /Oﬂf (z jt)au(t)dt, 0<a<l (2.25)

The last two standard forms are called generalized Abel’s integral equation
and weakly singular integral equations respectively. For o = ;, the equation:
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r 1
fz) = /0 PRERIGLE (2.26)

is called the Abel’s singular integral equation. It is to be noted that the
kernel in each equation becomes infinity at the upper limit t = x. Examples of
Abel’s integral equation, generalized Abel’s integral equation, and the weakly
singular integral equation are given by

Vo= xl_ tu(t)dt (2.27)

T
o V
T

1
2% = / L u(t)dt, (2.28)
o (z—1t)s
and " )
w(x) =1+ Vz + / L u(t)dt, (2.29)
o (z—t)s
respectively.

Exercises 2.1

For each of the following integral equations, classify as Fredholm, Volterra, or
Volterra-Fredholm integral equation and find its kind. Classify the equation as sin-
gular or not.

Lou(z) =1+ /Oz u(t)dt 23— /Omu + 2 — tu(t)dt

3. u(z) :ew+e—1—/01u(t)dt La+1-] :/(;Q(x—t)u(t)dt

5. u(z) = ;E - ; - /Ol(m “ut)dt 6 u(@) =+ éxg’ - /Ox(m — Hu(t)dt
7. éxS = '/Ox(z—t)u(t)dt 8. ;xQ - §x+ i = /Ol(x—t)u(t)dt
9. u(z) = 235-1— éIS - /Oz(:c — tu(t)dt — /: su(t)dt

1 1 t 1
10. u(z,t) =x+ 3+ 2 — t— / / (r —&)d&dr

11. 23 4+ Vx = /OI (1- —1t)2 u(t)dt 12. u(z) = 1 + 2?2 +/ tu(t)dt

S|
0o V& —
2.2 Classification of Integro-Differential Equations

Integro-differential equations appear in many scientific applications, espe-
cially when we convert initial value problems or boundary value problems
to integral equations. The integro-differential equations contain both integral
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and differential operators. The derivatives of the unknown functions may ap-
pear to any order. In classifying integro-differential equations, we will follow
the same category used before.

2.2.1 Fredholm Integro-D:ifferential Equations

Fredholm integro-differential equations appear when we convert differential
equations to integral equations. The Fredholm integro-differential equation
contains the unknown function u(z) and one of its derivatives u(™ (z),n > 1
inside and outside the integral sign respectively. The limits of integration
in this case are fixed as in the Fredholm integral equations. The equation
is labeled as integro-differential because it contains differential and integral
operators in the same equation. It is important to note that initial conditions
should be given for Fredholm integro-differential equations to obtain the par-
ticular solutions. The Fredholm integro-differential equation appears in the
form:

b
u™(z) = f(x) + A / K (, t)u(t)dt, (2.30)

where u(™) indicates the nth derivative of u(z). Other derivatives of less order
may appear with u(™) at the left side. Examples of the Fredholm integro-
differential equations are given by

u(x) =1-— ;m + /1 zu(t)dt, u(0) =0, (2.31)
0

and
u’(z) +u/(z) =z —sinx — /2 ztu(t)dt, u(0)=0, «'(0)=1. (2.32)
0

2.2.2 Volterra Integro-D:ifferential Equations

Volterra integro-differential equations appear when we convert initial value
problems to integral equations. The Volterra integro-differential equation con-
tains the unknown function u(z) and one of its derivatives u(™ (z),n > 1
inside and outside the integral sign. At least one of the limits of integration
in this case is a variable as in the Volterra integral equations. The equation
is called integro-differential because differential and integral operators are in-
volved in the same equation. It is important to note that initial conditions
should be given for Volterra integro-differential equations to determine the
particular solutions. The Volterra integro-differential equation appears in the
form:

u™ (z) = f(z) + A /0 " K (o, Dult)dt, (2.33)
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where u(™ indicates the nth derivative of u(z). Other derivatives of less order
may appear with u(" at the left side. Examples of the Volterra integro-
differential equations are given by

1 xr
u(z)=—-1+ 2x2 — xe® —/ tu(t)dt, u(0) =0, (2.34)
0

and

u” (x)+u' (x) = 1—2(sin x+cos a:)—/om tu(t)dt, u(0) = —1, v/ (0) = 1. (2.35)

2.2.3 Volterra-Fredholm Integro-D:ifferential Equations

The Volterra-Fredholm integro-differential equations arise in the same man-
ner as Volterra-Fredholm integral equations with one or more of ordinary
derivatives in addition to the integral operators. The Volterra-Fredholm
integro-differential equations appear in the literature in two forms, namely

u™(z) = f(z) + M /I Ki(z, t)u(t)dt + A2 /b Ko (z, t)u(t)dt, (2.36)
and

W) = fla,t) + A / t / Fla,t,€,7u(€, 7))dgdr, (x,1) € Q x [0,T),
0 Q

(2.37)
where f(x,t) and F(z,t,&,7,u(§, 7)) are analytic functions on D = Qx [0, T,
and € is a closed subset of R®, n = 1,2, 3. It is interesting to note that (2.36)
contains disjoint Volterra and Fredholm integral equations, whereas (2.37)
contains mixed integrals. Other derivatives of less order may appear as well.
Moreover, the unknown functions u(x) and u(z,t) appear inside and outside
the integral signs. This is a characteristic feature of a second kind integral
equation. If the unknown functions appear only inside the integral signs, the
resulting equations are of first kind. Initial conditions should be given to
determine the particular solution. Examples of the two types are given by

u'(z) = 24a + 2t + 3 — /I(x — t)u(t)dt — /1 tu(t)dt, u(0)=0, (2.38)
and

t 1
o (x,t) =1+83 + ;R - ;t f/ / (1 —&)dédr, u(0,t) =13 (2.39)
0 0

Exercises 2.2

For each of the following integro-differential equations, classify as Fredholm, Volterra,
or Volterra-Fredholm integro-equation
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1.u'(z)=1 +/ zu(t)dt, w(0) =0
0
1
2. v (z) =z + / (1+z—t)u(t)dt, u(0) =1, v'(0)=0
Jo
x 1
3. v (z) + u(z) = w+/ tu(t)dt +/ u(t)dt, uw(0) =0, u'(0) =1
0 0
x 1
4. v (z) +u (z) =2 +/ tu(t)de +/ u(t)dt, u(0) =0,u'(0) =1, v’ (0) =1
0 0
1
5. 0 (z) + u(z) = o +/ (@ — Du(®)dt, u(0) = 1
0

6. u(z) =1+ /0 tu(t)dt, u(0) =0, u'(0) =1

2.3 Linearity and Homogeneity

Integral equations and integro-differential equations fall into two other types
of classifications according to linearity and homogeneity concepts. These two
concepts play a major role in the structure of the solutions. In what follows
we highlight the definitions of these concepts.

2.3.1 Linearity Concept

If the exponent of the unknown function u(x) inside the integral sign is one,
the integral equation or the integro-differential equation is called linear [6]. If
the unknown function u(z) has exponent other than one, or if the equation
contains nonlinear functions of u(z), such as e*, sinhu, cosu,In(1l + u), the
integral equation or the integro-differential equation is called nonlinear. To
explain this concept, we consider the equations:

w(w) =1 /0 "o Hu(t)t, (2.40)
u(z) =1-— /0 (z — t)u(t)dt, (2.41)

u(z) =1+ /Ox(l +z — t)ut(t)dt, (2.42)

and )
u'(z) =1 +/ wte"Ddt,  u(0) = 1. (2.43)
0
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The first two examples are linear Volterra and Fredholm integral equations
respectively, whereas the last two are nonlinear Volterra integral equation
and nonlinear Fredholm integro-differential equation respectively.

It is important to point out that linear equations, except Fredholm integral
equations of the first kind, give a unique solution if such a solution exists.
However, solution of nonlinear equation may not be unique. Nonlinear equa-
tions usually give more than one solution and it is not usually easy to handle.
Both linear and nonlinear integral equations of any kind will be investigated
in this text by using traditional and new methods.

2.3.2 Homogeneity Concept

Integral equations and integro-differential equations of the second kind are
classified as homogeneous or inhomogeneous, if the function f(x) in the second
kind of Volterra or Fredholm integral equations or integro-differential equa-
tions is identically zero, the equation is called homogeneous. Otherwise it is
called inhomogeneous. Notice that this property holds for equations of the
second kind only. To clarify this concept we consider the following equations:

u(x) = sin:c—!—/o xtu(t)dt, (2.44)
u\r) =x X — 2u .
@=a+ [ (o=tPutar (2.45)
u(z) = /O (142 — ud(t)dt, (2.46)
and .
u'(z) = /0 ztu(t)dt, w(0)=1, «'(0)=0. (2.47)

The first two equations are inhomogeneous because f(z) = sinz and f(x) =
x, whereas the last two equations are homogeneous because f(x) = 0 for each
equation. We usually use specific approaches for homogeneous equations, and
other methods are used for inhomogeneous equations.

Exercises 2.3

Classify the following equations as Fredholm, or Volterra, linear or nonlinear, and
homogeneous or inhomogeneous

1Lou(@) =1+ /Ox(x —D2u(t)dt 2. u(z) = coshz + /Ol(x — Hu(t)dt

3. u(z) — /0 "2+ — tult)dt 4. u(z) = A /_ 11 2ut)dt
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x 1 1
5. u(z) =14z +/ (z—1) dt 6. u(x) =1 +/ u(t)dt
0 1+ u? 0

xT

7.4 (z) =1 +/O (z —t)u(t)dt, uw(0) =1 8. u/(x) :/ (z — t)u(t)dt, uw(0) =0

0

2.4 Origins of Integral Equations

Integral and integro-differential equations arise in many scientific and en-
gineering applications. Volterra integral equations and Volterra integro-
differential equations can be obtained from converting initial value prob-
lems with prescribed initial values. However, Fredholm integral equations
and Fredholm integro-differential equations can be derived from boundary
value problems with given boundary conditions.

It is important to point out that converting initial value problems to
Volterra integral equations, and converting Volterra integral equations to
initial value problems are commonly used in the literature. This will be ex-
plained in detail in the coming section. However, converting boundary value
problems to Fredholm integral equations, and converting Fredholm integral
equations to equivalent boundary value problems are rarely used. The conver-
sion techniques will be examined and illustrated examples will be presented.

In what follows we will examine the steps that we will use to obtain these
integral and integro-differential equations.

2.5 Converting IVP to Volterra Integral Equation

In this section, we will study the technique that will convert an initial
value problem (IVP) to an equivalent Volterra integral equation and Volterra
integro-differential equation as well [3]. For simplicity reasons, we will apply
this process to a second order initial value problem given by

y" () + p)y () + ¢(z)y(z) = g(x) (2.48)
subject to the initial conditions:
y(0) =, y'(0) =5, (2.49)

where « and (3 are constants. The functions p(z) and ¢(x) are analytic func-
tions, and g(x) is continuous through the interval of discussion. To achieve
our goal we first set

y" () = u(z), (2.50)

where u(z) is a continuous function. Integrating both sides of (2.50) from 0
to x yields

T

v@ -y = [ uta (2.51)

0
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or equivalently

y'(z) =B+ /O " u(t)dt. (2.52)
Integrating both sides of (2.52) from 0 to x yields
y(x) —y(0) = Bz + ' /m u(t)dtdt, (2.53)
or equivalently v
y(x) = a+ fr+ /Oz(x — tyu(t)dt, (2.54)

obtained upon using the formula that reduce double integral to a single inte-
gral that was discussed in the previous chapter. Substituting (2.50), (2.52),
and (2.54) into the initial value problem (2.48) yields the Volterra integral
equation:

(@) + p() [ﬁ + /0 ' u(t)dt} + q(a) [a + B + /0 . t)u(t)dt} — o(a).

(2.55)
The last equation can be written in the standard Volterra integral equation
form:

u(z) = f(z) — /Of K (x,t)u(t)dt, (2.56)

where
K(x,t) = p(z) + q(x)(z —t), (2.57)

and
f(@) =g(z) — [Bp(z) + aq(z) + Bzq(z)] - (2.58)

It is interesting to point out that by differentiating Volterra equation (2.56)
with respect to z, using Leibnitz rule, we obtain an equivalent Volterra
integro-differential equation in the form:
xr
@) + K apuia) = ') — [ N5
0 oz

The technique presented above to convert initial value problems to equiva-
lent Volterra integral equations can be generalized by considering the general
initial value problem:

u(t)dt, w(0) = f(0). (2.59)

y™ +ar @)y 4+ apo1 (@)Y + an(x)y = g(), (2.60)
subject to the initial conditions
y(0) = o,y (0) = c1, 5" (0) = g, ...,y V(0) = cpy. (2.61)

We assume that the functions a;(z),1 < ¢ < n are analytic at the origin, and
the function g(z) is continuous through the interval of discussion. Let u(x)
be a continuous function on the interval of discussion, and we consider the
transformation:

y ™ (z) = u(z). (2.62)

Integrating both sides with respect to x gives
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(=D () = ¢,_1 xu . .
Yy (z) +/0 (t)dt (2.63)

Integrating again both sides with respect to x yields

y" () = cpoz + coe 1x+/ / t)dtdt

=cCp_2+Cp1T + / (z — t)u(t)dt, (2.64)
0

obtained by reducing the double integral to a single integral. Proceeding as
before we find

1
Yy (2) = cooz + o 2+ Cn1T +/ / / t)dtdtdt
1

0

Continuing the integration process leads to

n—1

_ Ck k 1 ¢ _ p\n—1
y(x) = 2 Y + (n—l)!/ (x — )" u(t)dt. (2.66)
Substituting (2.62)—(2.66) into (2.60) gives
/ K(z,t)u (2.67)
where .
a
K = " — )kt 2.
@) =30 =0 (2.68)
k=1
and

|M:

(Z (jc”_ ]:)'xj_k> . (2.69)

Notice that the Volterra 1ntegro—d1fferent1al equation can be obtained by dif-
ferentiating (2.67) as many times as we like, and by obtaining the initial
conditions of each resulting equation. The following examples will highlight
the process to convert initial value problem to an equivalent Volterra integral
equation.

Example 2.1

Convert the following initial value problem to an equivalent Volterra integral
equation:

y'(z) — 2zy(z) =", y(0)=1. (2.70)
We first set
y'(z) = u(z). (2.71)

Integrating both sides of (2.71), using the initial condition y(0) = 1 gives

y(x) — y(0) = / “u(tyd, (2.72)
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or equivalently
y(z) =1 +/ u(t)dt, (2.73)
0

Substituting (2.71) and (2.73) into (2.70) gives the equivalent Volterra inte-
gral equation:

u(z) =2z + e + 2 /I u(t)dt. (2.74)

Example 2.2

Convert the following initial value problem to an equivalent Volterra integral
equation:

y"(z) —y(z) =sinz, y(0)=0, ' (0)=0. (2.75)
Proceeding as before, we set
y"(z) = u(x). (2.76)
Integrating both sides of (2.76), using the initial condition 3’(0) = 0 gives
x
y'(z) = / u(t)dt. (2.77)
0

Integrating (2.77) again, using the initial condition y(0) = 0 yields

/ / t)dtdt = /Om(xt)u(t)dt, (2.78)

obtained upon using the rule to convert double integral to a single integral.
Inserting (2.76)—(2.78) into (2.70) leads to the following Volterra integral
equation:

u(x) =sinz + /Ox(x — t)u(t)dt. (2.79)

Example 2.3

Convert the following initial value problem to an equivalent Volterra integral

equation:
"

v =y =y +y=0 y(0) =1, ¢ (0)=2 y"(0)=3 (2.80)
We first set
y" (z) = u(x), (2.81)

where by integrating both sides of (2.81) and using the initial condition
y”(0) = 3 we obtain

xT
"= 3+/ u(t)dt. (2.82)
0
Integrating again and using the initial condition 3’(0) = 2 we find

Y (z) = 2+3x—|—/ / t)dtdt = 2+3x+/m(x—t)u(t)dt. (2.83)
0

Integrating again and using y(0) = 1 we obtain
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y(z) =1+ 2+ x—f—/// t)dtdtdt

—1+2x+2x +2/O (z — t)%u(t)dt. (2.84)

Notice that in (2.83) and (2.84) the multiple integrals were reduced to single
integrals as used before. Substituting (2.81) — (2.84) into (2.80) leads to the
Volterra integral equation:

w(@) =442+ ggﬂ + [[1 b (r—t) - ;(x Cu(dt. (2.85)

Remark

We can also show that if y¥)(z) = u(z), then

y(@) =)+ [ utoy

y" () = y"(0) + 2y (0) + / (z = tyu(t)dt

0

V@) =10 +29"0) + 2" 0)+ ) [ (o= DPutoya

) = 9(0)+ 2/ 0) + yay(0) + gy O+ o [ " — tPu(t)dt.

(2.86)
This process can be generalized to any derivative of a higher order.
In what follows we summarize the relation between derivatives of y(z) and
u(x):

Table 2.1 The relation between derivatives of y(z) and u(x)

y(™) (z) Integral Equations
V(@) = u(z) y(@) = y(0) + / " u(tydt
Y (2) = u(z) V(@) = y'(0) + / "ty

y(@) = y(0) + 2’ (0) + / “(@ — u(t)dt
y'(@) = " (0) + / " u(tyat
y" () = u(x) V(@) = y/(0) + 2y (0) + / "(@ — tu(t)dt

y(z) = y(0) + =y’ (0) + m2 7(0) + / (x — t)2u(t)dt
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2.5.1 Converting Volterra Integral Equation to IVP

A well-known method for solving Volterra integral and Volterra integro-
differential equation, that we will use in the forthcoming chapters, converts
these equations to equivalent initial value problems. The method is achieved
simply by differentiating both sides of Volterra equations [6] with respect to
2 as many times as we need to get rid of the integral sign and come out with
a differential equation. The conversion of Volterra equations requires the use
of Leibnitz rule for differentiating the integral at the right hand side. The
initial conditions can be obtained by substituting x = 0 into u(x) and its
derivatives. The resulting initial value problems can be solved easily by using
ODEs methods that were summarized in Chapter 1. The conversion process
will be illustrated by discussing the following examples.

Example 2.4

Find the initial value problem equivalent to the Volterra integral equation:

u(x) = e” —|—/ u(t)dt. (2.87)
0
Differentiating both sides of (2.87) and using Leibnitz rule we find
u'(z) = e” + u(z). (2.88)
It is clear that there is no need for differentiating again because we got rid
of the integral sign. To determine the initial condition, we substitute x = 0
into both sides of (2.87) to find w(0) = 1. This in turn gives the initial value

problem:
u'(z) —u(z) =e*, u(0)=1. (2.89)

Notice that the resulting ODE is a linear inhomogeneous equation of first
order.

Example 2.5
Find the initial value problem equivalent to the Volterra integral equation:
u(w) = 2® + / "o Dt (2.90)
Differentiating both sides of (2.90) anod using Leibnitz rule we find
o' (z) = 2z + /Ox u(t)dt. (2.91)

To get rid of the integral sign we should differentiate (2.91) and by using
Leibnitz rule we obtain the second order ODE:

u'(z) =2+ u(z). (2.92)
To determine the initial conditions, we substitute x = 0 into both sides of
(2.90) and (2.91) to find u(0) = 0 and «'(0) = 0 respectively. This in turn
gives the initial value problem:

u'(x) —u(z) =2, «(0)=0, «(0)=0. (2.93)
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Notice that the resulting ODE is a second order inhomogeneous equation.

Example 2.6

Find the initial value problem equivalent to the Volterra integral equation:
u(z) =sinx — ; /Ox(:z: —t)2u(t)dt. (2.94)

Differentiating both sides of the integral equation three times to get rid of
the integral sign to find

u'(x) = cosx — /0 (: — tu(t)dt,
u'’(z) = —sinz — /0 u(t)dt,

u"”(x) = — cosz — u(x).

(2.95)

Substituting z = 0 into (2.94) and into the first two integro-differential equa-
tions in (2.95) gives the initial conditions:

u(0) =0, u'(0)=1, «"(0)=0. (2.96)
In view of the last results, the initial value problem equivalent to the Volterra
integral equation (2.94) is a third order inhomogeneous ODE given by

u"(z) + u(z) = —cosz, wu(0)=0, «'(0)=1, u"(0)=0. (2.97)

Exercises 2.5

Convert each of the following IVPs in 1-8 to an equivalent Volterra integral equation:
Ly —4y=0, y(0) =1 2.y +dzy = e 2%, y(0) =0

3.y +4y=0, y(0)=0, y'(0) =1 4.y”" —6y"+8y=1, y(0)=1, y'(0)=1
5. 9" —y =0, y(0) =2, y'(0) =y"(0) =1

6.y"" =2y +y ==, y(0)=1,9'(0) =0, y'(0) =1

7.y —y” =1, y(0) =y'(0) =0, y’(0) = y"'(0) = 1

8.y +y" +y=ua, y(0)=y(0) =1, y(0) =y""(0) =0

Convert each of the following Volterra integral equation in 9-16 to an equivalent IVP:

9. u(a:):m+2/0 u(t)dt 10. u(:v):l—i—e””—/o u(t)dt
u(r) = x2 macf u . u(r) =sinz — zacf u

11 u(@) =1+ +/0 (@—u®)dt 12, u() /0 (@ — Hyu(t)dt
u(z) =1—cosx mac— 2u cu(z) = sinhz mm— 2u

13, u(z) = 1 +2/0( #)2u(t)dt 14. u(z) = 2 + sinh +/0( £)2u(t)dt

15. u(x) = 1+ 2 /x(az — t)3u(t)dt 16. u(x) = 1 +€® + /x(l +x — t)3u(t)dt
0 0



2.6 Converting BVP to Fredholm Integral Equation 49

2.6 Converting BVP to Fredholm Integral Equation

In this section, we will present a method that will convert a boundary value
problem to an equivalent Fredholm integral equation. The method is simi-
lar to the method that was presented in the previous section for converting
Volterra equation to IVP, with the exception that boundary conditions will
be used instead of initial values. In this case we will determine another ini-
tial condition that is not given in the problem. The technique requires more
work if compared with the initial value problems when converted to Volterra
integral equations. For this reason, the technique that will be presented is
rarely used. Without loss of generality, we will present two specific distinct
boundary value problems (BVPs) to derive two distinct formulas that can be
used for converting BVP to an equivalent Fredholm integral equation.

Type 1
We first consider the following boundary value problem:
y'(z) + g(x)y(x) = h(z), 0<x <1, (2.98)
with the boundary conditions:
y(0) =, y(1) =4 (2.99)
We start as in the previous section and set
y"(x) = u(x). (2.100)

Integrating both sides of (2.100) from 0 to x we obtain
/ Yy (t)dt = / u(t)dt, (2.101)
0 0

Y (z) = y/(0) + /O ), (2.102)

where the initial condition y'(0) is not given in a boundary value problem.
The condition y(0) will be determined later by using the boundary condition
at = 1. Integrating both sides of (2.102) from 0 to x gives

y(x) = y(0) +ay'(0 // (2.103)

y(x) = a+zy/'(0) + /O (z — t)u(t)dt, (2.104)

that gives

or equivalently

obtained upon using the condition y(0) = « and by reducing double integral
to a single integral. To determine y’(0), we substitute = 1 into both sides
of (2.104) and using the boundary condition at y(1) = 8 we find

y(1):a+y’(0)+/o (1= yu(t)dt, (2.105)

that gives



50 2 Introductory Concepts of Integral Equations

1
B=a+y'(0)+ / (1 —t)u(t)dt. (2.106)
0
This in turn gives

1
y(0) = (5—a) /0 (1 - Hu(t)dt. (2.107)
Substituting (2.107) into (2.104) gives

x

y(x) =a+ (B —a)x — / 2(1 — t)u(t)dt + / (x —t)yu(t)dt.  (2.108)
0 0
Substituting (2.100) and (2.108) into (2.98) yields

1
u(®) + ag(z) + (6 — a)zg(z) - / rg()(1 — t)ut)dt

+ /ﬂf g(z)(x — t)u(t)dt = h(x). (2.109)
0

From calculus we can use the formula:

/ 0= o+ 0. (2.110)
to carry Eq. (2.109) to '

u(z) = h(z) — ag(z) — (5 — a)rg(z) — g(x) / "~ tyult)dt
x 1
+zg(x) [/0 (1 —t)u(t)dt +/ (1-— t)u(t)dt} , (2.111)

that gives

u(z) = f(z) + /037 t(1 — z)g(x)u(t)dt —|—/ z(1 —t)g(x)u(t)dt, (2.112)

that leads to the Fredholm integral equation:

(@) = f(@) + /0 K (, tyu(t)dt, (2.113)

where
f(@) = h(z) — ag(z) — (6 — a)zg(x), (2.114)

and the kernel K(z,t) is given by

t(l1—2x)g(x), for 0<

oy = 10 D9@)

(1 —t)g(x), for x<t<1.
An important conclusion can be made here. For the specific case where
y(0) = y(1) = 0 which means that « = § = 0, i.e. the two boundaries of
a moving string are fixed, it is clear that f(xz) = h(z) in this case. This

means that the resulting Fredholm equation in (2.113) is homogeneous or
inhomogeneous if the boundary value problem in (2.98) is homogeneous or

Pso 2.115
_ (2.115)
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inhomogeneous respectively when @ = § = 0. The techniques presented above
will be illustrated by the following two examples.

Example 2.7

Convert the following BVP to an equivalent Fredholm integral equation:

y"(z) +9y(z) = cosz, y(0)=1y(1)=0. (2.116)
We can easily observe that o = § = 0,g(z) = 9 and h(z) = cosz. This in
turn gives

f(z) = cosz. (2.117)
Substituting this into (2.113) gives the Fredholm integral equation:
1
u(x) = cosz +/ K (z,t)u(t)dt, (2.118)
0
where the kernel K (x,t) is given by
9t(1 —=z), for 0<t<ux,
K(z,t) = (2.119)
9x(1—1t), for x<t<1.

Example 2.8

Convert the following BVP to an equivalent Fredholm integral equation:
y"(z) +zy(z) =0, y(0)=0, y(1)=2. (2.120)
Recall that this is a boundary value problem because the conditions are
given at the boundaries # = 0 and « = 1. Moreover, the coefficient of y(z) is
a variable and not a constant.
We can easily observe that o = 0,8 = 2, g(z) = x and h(x) = 0. This in
turn gives
f(z) = —22°. (2.121)

Substituting this into (2.113) gives the Fredholm integral equation:
1
u(z) = —22° —|—/ K(z,t)u(t)dt, (2.122)
0

where the kernel K (x,t) is given by

te(l—2x), for 0<t<x,
K(z,t) = (2.123)
2?2(1—1t), for x<t<1.
Type 11
We next consider the following boundary value problem:
y'(x) + g(x)y(z) = h(z), 0<z<1, (2.124)
with the boundary conditions:
y(0) =a1, y'(1)=/p. (2.125)

We again set
y"(z) = u(x). (2.126)
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Integrating both sides of (2.126) from 0 to x we obtain
/ y"(t)dt = / u(t)dt, (2.127)
0 0

y'(z) = ' (0) + /Oﬂf u(t)dt, (2.128)

where the initial condition %'(0) is not given. The condition y’(0) will be
derived later by using the boundary condition at y’(1) = (;. Integrating
both sides of (2.128) from 0 to = gives

y(x) = y(0) + 2y'(0 // t)dtdt, (2.129)

that gives

or equivalently
y(@) = a1 + 23/(0) + / (z — t)ult)dt, (2.130)
0

obtained upon using the condition y(0) = «; and by reducing double integral
to a single integral. To determine y'(0), we first differentiate (2.130) with
respect to x to get

y'(z) =y'(0) +/Omu(t)dt, (2.131)

where by substituting = 1 into both sides of (2.131) and using the boundary
condition at y'(1) = 81 we find

y' (1) = y/'(0) +/01 u(t)dt, (2.132)
that gives
y'(0) = By — /O 1 u(t)dt. (2.133)
Using (2.133) into (2.130) gives
y(x) =y +x {61 - /O 1 u(t)dt} + /0 I(x — tyu(t)dt. (2.134)

Substituting (2.126) and (2.134) into (2.124) yields

1 x
u(®) + ong(z) + frg () — / rg(@yult)dt + / o) (& — tyu(t)dt = h(z).

(2.135)
From calculus we can use the formula:

/ = o+ 0. (2.136)
to carry Eq. (2.135) to '

u(x) = h(z) — (o1 + frz)g(x)
T 1 T
t2g(x) { /0 w(t)dt + / u(t)dt} —g(@) /0 (z — Du(t)dt. (2.137)
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The last equation can be written as
1

u(z) = f(z) + / ' tg(x)u(t)dt + / zg(x)u(t)dt, (2.138)

0 T
that leads to the Fredholm integral equation:

1
+/ K (z, t)u(t)dt, (2.139)
0
where
f(@) = h(x) — (a1 + pix)g(), (2.140)
and the kernel K (z,t) is given by

{tg(x), for 0 <t <,

K(z,t) = (2.141)

xzg(x), for z <t <1,

An important conclusion can be made here. For the specific case where y(0) =
y'(1) = 0 which means that oy = f; = 0, it is clear that f(z) = h(z)
in this case. This means that the resulting Fredholm equation in (2.139) is
homogeneous or inhomogeneous if the boundary value problem in (2.124) is
homogeneous or inhomogeneous respectively.

The second type of conversion that was presented above will be illustrated
by the following two examples.

Example 2.9

Convert the following BVP to an equivalent Fredholm integral equation:
y'(x) +ylz) =0, y(0)=1y(1)=0. (2.142)
We can easily observe that ay = 81 = 0,¢g(x) = 1 and h(xz) = 0. This in turn
gives
f(z)=0. (2.143)

Substituting this into (2.139) gives the homogeneous Fredholm integral equa-
tion:

1
x) :/ K(z,t)u(t)dt, (2.144)
0
where the kernel K (z,t) is given by
t, for 0<t<ux,
K(x,t) = (2.145)
r, for z<t<1.

Example 2.10

Convert the following BVP to an equivalent Fredholm integral equation:
y'(x) +2y(x) =4, y(0)=0, y(1)=1 (2.146)
We can easily observe that a; = 0,8; = 1,¢9(z) = 2 and h(z) = 4. This in

turn gives
flx) =4 -2z, (2.147)
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Substituting this into (2.139) gives the inhomogeneous Fredholm integral

equation:

w(w) = 4— 2+ /O 'K tyu(t)dt, (2.148)

where the kernel K (x,t) is given by

2t, for 0O
K(x,t) =

<t <
(2.149)
2z, for x<t<

2.6.1 Converting Fredholm Integral Equation to BVP

In a previous section, we presented a technique to convert Volterra integral
equation to an equivalent initial value problem. In a similar manner, we will
present another technique that will convert Fredholm integral equation to an
equivalent boundary value problem (BVP). In what follows we will examine
two types of problems:

Type 1
We first consider the Fredholm integral equation given by

1
u(z) = f(x) +/ K (z,t)u(t)dt, (2.150)
0
where f(z) is a given function, and the kernel K (x,t) is given by
t(1—x)g(x), for 0<t <,
oy 0 D0@)
z(1=t)g(x), for x<t<1.

For simplicity reasons, we may consider g(x) = A where X is constant. Equa-
tion (2.150) can be written as

(2.151)

1

u(z) = f(z) + A/Ow t(1 — z)u(t)dt + A/ z(1 — t)u(t)dt, (2.152)

or equivalently
1

u(z) = f(z) + M1 —x) /OI tu(t)dt + )\x/ (1 —t)u(t)dt. (2.153)

x

Each term of the last two terms at the right side of (2.153) is a product of
two functions of x. Differentiating both sides of (2.153), using the product
rule of differentiation and using Leibnitz rule we obtain

u'(x) = f'(x) + Az(1 — z)u )\/ tu(t

—Az(1—x) ()+)\/ 1— tyu(t)dt (2.154)

)\/tu +)\/ (1 -t
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To get rid of integral signs, we differentiate both sides of (2.154) again with
respect to x to find that

u'(z) = f'(x) — Avu(z) — A1 — 2)u(z), (2.155)
that gives the ordinary differential equations:
u(x) + du(x) = f(x). (2.156)

The related boundary conditions can be obtained by substituting z = 0 and
x =1 in (2.153) to find that

u(0) = £(0), w(l)= f(1). (2.157)
Combining (2.156) and (2.157) gives the boundary value problem equivalent
to the Fredholm equation (2.150).

Recall that y”(z) = wu(x). Moreover, if g(x) is not a constant, we can
proceed in a manner similar to the discussion presented above to obtain the
boundary value problem. The technique above for type I will be explained
by studying the following examples.

Example 2.11

Convert the Fredholm integral equation
1
u(z) =e* +/ K (2, t)u(t)dt, (2.158)
0

where the kernel K (z,t) is given by

9t(1 —x), for 0<t<
<t <

K(z,t) = (2.159)

9z(1 —t), for x
to an equivalent boundary value problem.

The Fredholm integral equation can be written as
1

(@) = ¢ +9(1 - x) /O " tu(t)dt + 92 / (1 Hu(t)dt. (2.160)

Differentiating (2.160) twice with respect to x gives
1

u(z) =e" — 9/; tu(t)dt + 9/ (1 —t)u(t)dt, (2.161)

and
u'(z) = e” — u(x). (2.162)
This in turn gives the ODE:
u’(x) + Yu(z) = e”. (2.163)
The related boundary conditions are given by
w(0)=f(0)=1, wu(l)=f(1)=e, (2.164)

obtained upon substituting = 0 and = = 1 into (2.160).
Example 2.12

Convert the Fredholm integral equation
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1
u\r) = 1’3 X u .
(x) +/0 K (z, t)u(t)dt, (2.165)

where the kernel K (z,t) is given by

(1 —=z), for 0<t <,
K(z,t) = (2.166)
dz(l —t), for <t <1,
to an equivalent boundary value problem.
The Fredholm integral equation can be written as
T 1
u(r) = 2 +4(1 - :z:)/ tu(t)dt + 4:1:/ (1 — t)u(t)dt. (2.167)
0 T
Proceeding as before we find
v’ (x) = 6x — du(x). (2.168)
This in turn gives the ODE:
u’(x) + du(x) = 6z, (2.169)
with the related boundary conditions:
u(0) = f(0)=0, wu(l)=f(1)=1. (2.170)
Type 11

We next consider the Fredholm integral equation given by

u(z) = f(2) +/0 K (z,t)u(t)dt, (2.171)

where f(z) is a given function, and the kernel K (x,t) is given by

tg(z), for 0< <,
K(z,t) = (2.172)
zg(x), for z <t <L
For simplicity reasons, we again consider g(x) = X\ where X is constant.
Equation (2.171) can be written as
T 1
u(z) = f(x) + )\/ tu(t)dtJr)\x/ u(t)dt. (2.173)
0 T

Each integral at the right side of (2.173) is a product of two functions of x.
Differentiating both sides of (2.173), using the product rule of differentiation

and using Leibnitz rule we obtain
1

u'(z) = f'(2) +)\/ u(t)dt. (2.174)

To get rid of integral signs, we differentiate again with respect to = to find
that
u’(x) = f'(x) — du(x), (2.175)

that gives the ordinary differential equations. Also change equations to equa-
tion

u’(z) + du(z) = (). (2.176)
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Notice that the boundary condition u(1) in this case cannot be obtained
from (2.173). Therefore, the related boundary conditions can be obtained by
substituting = 0 and x = 1 in (2.173) and (2.174) respectively to find that

uw(0) = £(0), /(1) = f'(1). (2.177)
Combining (2.176) and (2.177) gives the boundary value problem equivalent
to the Fredholm equation (2.171).

Recall that y”(z) = wu(z). Moreover, if g(x) is not a constant, we can
proceed in a manner similar to the discussion presented above to obtain the
boundary value problem. The approach presented above for type II will be
illustrated by studying the following examples.

Example 2.13

Convert the Fredholm integral equation:
1
u(z) =e* +/ K (2, t)u(t)dt, (2.178)
0

where the kernel K (z,t) is given by

At,  for 0<t<
K(xz,t) = S

x7
(2.179)
4z, for x <t <1,

to an equivalent boundary value problem.

The Fredholm integral equation can be written as
1

(@) = ¢ +4 /0 " tu(t)dt + 42 / w(t)dt. (2.180)

Differentiating (2.180) twice with respect to = gives

u'(z) = e® + 4/1 u(t)dt, (2.181)
and ’
u’(z) = e* — du(z). (2.182)
This in turn gives the ODE:
' (x) + du(x) = €”. (2.183)
The related boundary conditions are given by
w(0) = f(0)=1, «'(1)=f'(1)=e, (2.184)

obtained upon substituting z = 0 and « = 1 into (2.180) and (2.181) re-
spectively. Recall that the boundary condition u(1) cannot obtained in this
case.

Example 2.14
Convert the Fredholm integral equation
1
u(z) = 2* +/ K(z,t)u(t)dt, (2.185)
0

where the kernel K (z,t) is given by
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6t, for 0<t<
K(z,t) = (2.186)
6x, for v <t<1

to an equivalent boundary value problem.

The Fredholm integral equation can be written as
1

u(z) = 2% + 6/0m tu(t)dt + Gx/ u(t)dt. (2.187)

Proceeding as before we find

1
o' (z) = 2w + 6/ u(t)dt. (2.188)
and :
u”(z) + 6u(x) =2, (2.189)
with the related boundary conditions
uw(0) = f(0)=0, «'(1)=f'(1)=2. (2.190)

Exercises 2.6

Convert each of the following BVPs in 1-8 to an equivalent Fredholm integral equa-
tion:

1.y +4y=0,0<z <1, y(0)=y(1)=0
2.y" +xy=0, y(0) =y(1) =0

3.y +2y=2z,0<z <1, y(0)=1,y(1)=0
4.y +3zy=4, 0<z <1, y0)=0,y(1) =0
5.9" +4y=0, 0<z <1, y0)=0,7/(1) =0
6.y" +xy=0, y(0) =0, y'(1) =0

Ty ' +4y=2z, 0<z<1, y(0)=1,9(1)=0
8.y +4zy=2,0<x<1, y(0)=0,y'(1)=1

Convert each of the following Fredholm integral equation in 9-16 to an equivalent
BVP:

o

o 8
o N N NI
-~ /N N NN

3t(1 —z), for
3z(1—t), for

-
— 8

9. u(z) = 2@ +/0 K(z,t)u(t)dt, K(z,t) = {

1 t(l—z), for x
10. u(z) = 322 +/ K(z,t)u(t)dt, K(z,t) =
0 z(l—t), for <t<1
1 6t(1 —x), for <z
11. u(z) = cosz +/ K(z,t)u(t)dt, K(z,t) = S
0 6x(l—1t), for z<t<1
1 (1l —z), for 0<t<
12. u(z) = sinhz + / K(z,t)u(t)dt, K(z,t) =
0 4z(1—t), for <t <1
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1 t, for 0Kt
13. u(z) = e3® +/ K(z,t)u(t)dt, K(z,t) =
0 z, for x<t<1
1 6t, for 0<t<x
14. u(z) = =4 +/ K(z, t)u(t)dt, K(z,t) =
0 6z, for x<t<1
1 4¢, for 0 <t < x
15. u(z) = 222 + 3 +/ K(z, t)u(t)dt, K(z,t) =
0 4r, for z <t <1

1 2t, for 0<t<x
16. u(z) = e® + 1+ / K (2, Hut)dt, K(z,t) =
0 <t<K1

2z, for =z

2.7 Solution of an Integral Equation

A solution of a differential or an integral equation arises in any of the following
two types:

1). Exact solution:
The solution is called exact if it can be expressed in a closed form, such as a
polynomial, exponential function, trigonometric function or the combination
of two or more of these elementary functions. Examples of exact solutions
are as follows:
u(z) = x + e,
u(x) = sinx + €27, (2.191)
u(x) =1+ coshz + tan z,

and many others.

2). Series solution:
For concrete problems, sometimes we cannot obtain exact solutions. In this
case we determine the solution in a series form that may converge to exact
soliton if such a solution exists. Other series may not give exact solution, and
in this case the obtained series can be used for numerical purposes. The more
terms that we determine the higher accuracy level that we can achieve.

A solution of an integral equation or integro-differential equation is a func-
tion u(z) that satisfies the given equation. In other words, the obtained so-
lution w(z) must satisfy both sides of the examined equation. The following
examples will be examined to explain the meaning of a solution.

Example 2.15

Show that u(x) = sinhz is a solution of the Volterra integral equation:

u(x) =z + / (@ — t)u(t)dt. (2.192)
0
Substituting u(z) = sinhz in the right hand side (RHS) of (2.192) yields
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x
RHS =z —|—/ (x —t)sinh tdt
0
=z + (sinht —t)[§
= sinhx = u(z) = LHS. (2.193)
Example 2.16

Show that u(x) = sec?x is a solution of the Fredholm integral equation

1 I
u(z) = o T sec’x + 9 /0 u(t)dt. (2.194)

Substituting u(z) = sec?z in the right hand side of (2.194) gives
1 1[4
RHS = —_ +sec’r + / u(t)dt
2 2 Jo

1 , 1 .
==, + sec’z + 5 (tant) ’6‘

= sec’s = u(x) = LHS. (2.195)
Example 2.17

Show that u(x) = sinz is a solution of the Volterra integro-differential equa-
tion:

u(r)=1- /090 u(t)dt. (2.196)

Proceeding as before, and using u(x) = sinz into both sides of (2.196) we
find

LHS = «/(z) = cosz,
T
RHS =1 - / sintdt =1 — (— cost)|§ = cosz. (2.197)
0

Example 2.18

Show that u(x) = = + €” is a solution of the Fredholm integro-differential
equation:

7 _
u'(z) =e 3

Substituting u(z) = = + €® into both sides of (2.198) we find
LHS = " (z) = €*,

1
x—i—aﬁ/ t(t + e')dt
0

1
r+x (3t3 + tet —et>

1
4x+/ xtu(t)dt. (2.198)
0

RHS = e* —

1
=¢®. (2.199)
0

zex—

W = W
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Example 2.19

Show that u(x) = cosx is a solution of the Volterra-Fredholm integral equa-
tion:

u(z) = cosz —x +/ / t)dtdt. (2.200)
Proceeding as before, and using u(z) = cosz into both sides of (2.200) we
find
LHS = cosz,
€ 3
RHS = cosax — x + / / costdt = cos. (2.201)

Example 2.20

Show that u(x) = € is a solution of the Fredholm integral equation of the
first kind:

41 _ 1 1
¢ P / e tu(t)dt. (2.202)
0

Proceeding as before, and using u(z) = e” into the right side of (2.202) we
find

el@?+1)t =1

2+ 1
t=0

x2+1 _ 1
= — LHS. (2.203)

1
RHS = / @+t gy —
0 1'2 + ].

Example 2.21

Show that u(z) = z is a solution of the nonlinear Fredholm integral equation

™ 1 (" 1
=x— dt. 2.204
ua) =z =y + 3/0 1+ u2(t) (2:204)
Using u(x) = z into the right side of (2.204) we find
S | m 1 t=1
HS = 2 — =z — -1
RHS ==z 12+3/0 1+t2dt x 12+3tan t‘t:O
™ 1w
=z — — = ¢ = LHS. 2.2

2= o+ g () —0) =o=LHS (2.205)

Example 2.22
Find f(z) if u(x) = 2% + 23 is a solution of the Fredholm integral equation

u(w) = f(a)+ 2 / "ot + 2yl (2.206)

—1
Using u(z) = 22 + 2% into both sides of (2.206) we find
LHS = 22 + 2?2,
5 (1
RHS = f(z) + ) / (xt? + 22 t)u(t)dt = f(x) + 2> + . (2.207)
~1
Equating the left and right sides gives
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flx) =2 —a. (2.208)

Exercises 2.7

In Exercises 1-4, show that the given function u(z) is a solution of the corresponding
Fredholm integral equation:

™

1 f]
1. u(z) = cosz + 5 /2 sinzu(t)dt, u(z) = sinz + cosx
0
2wt 1 [t o5y 2
2. u(z) =e""s — 3 e s u(t)dt, u(z) =e="
Jo
1
3.u(x) ==z +/ (z* —tHu)dt, —1 <z <1, ulz) ==
—1

1

4 u(z) =xz+ (1 —x)e” +/ z2et@ Dy (t)dt, u(z) = e®
0

In Exercises 5-8, show that the given function u(z) is a solution of the corresponding

Volterra integral equation:

5 u(z) =1+ ; /OI w(t)dt, u(z) = e2®

6. u(r) = 4z +sinz + 222 —cosz + 1 — / u(t)dt, u(z) = 4z + sinz
0

T.ou(z)=1— ;x2 — /Oz(z — t)u(t)dt, u(z) =2cosxz —1

x
8. u(xr) =1+ 2z +sinz + 22 — cosz — / u(t)dt, u(z) = 2z + sinz
0

In Exercises 9-12, show that the given function u(z) is a solution of the corresponding
Fredholm integro-differential equation:

1 1
9. v (z) =ze® +e* —xz + 9 / zu(t)dt,u(0) =0, u(z) = xe”
0

1
10. v/(z) = e* + (e —1) — /0 u(t)dt, uw(0) =1, u(x) =e”
11. w’(z) =1 — sinz — /O2 tu(t)dt, u(0) =0, v’ (0) =1, u(z) =sinz

12w (z) =1+ sinw — /2 (z — t)u(t)dt,
0

u(0) =1, ¥/ (0) =0, v (0) = —1, u(xz) =cosz

In Exercises 13-16, show that the given function u(z) is a solution of the corresponding
Volterra integro-differential equation:

13. u'(z) =2+ = + 22 —/ u(t)dt, uw(0) =1, u(z) =1+ 2z
0

x
14. v’ (z) = x cosz — 2sinz +/ tu(t)dt, u(0) =0, v’ (0) =1, u(z) =sinz
0

15. v/ (z) =1+ /OI(JU — t)u(t)dt, w(0) =1, u'(0) =0, u(x) = coshz
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16.

u'(r)=1—ze™ % — /Ox tu(t)dt, uw(0) =1, v/ (0) = —1, u(z) =e *

In Exercises 17-24, find the unknown if the solution of each equation is given:

17.

18.

19.

20.

21.

22.

23.

24.

If u(z) = e*® is a solution of u(z) = f(z) + 16 /ac (z — t)u(t)dt, find f(z)
0

1
If u(x) = e2® is a solution of u(z) = €2 — a(e? + 1)z + / xtu(t)dt, find o
0

s

If u(z) = sinz is a solution of u(z) = f(z) + sinz — /02 zu(t)dt, find f(x)
If u(z) = e—=" is a solution of u(z) = 1 — & /0 " tu(t)dt, find a

If u(z) = e® is a solution of u(z) = f(z) + /Oz (2u?(t) + u(t))dt, find f(z)

If u(x) = sinx is a solution of u(zx) = f(x) + j; /Ox /Og u?(t)dtdt, find f(x)

x 1

If u(z) = 2 + 1222 is a solution of u/(x) = f(x) + 20z — / / (z — t)u(t)dtdt,
o Jo

find f(z)

If u(z) = 6z is a solution of u(z) = f(z) + /Oz(l — t)u(t)dt—

x /1(1‘ — t)u(t)dtdt, find f(zx)
Jo
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Chapter 3
Volterra Integral Equations

3.1 Introduction

It was stated in Chapter 2 that Volterra integral equations arise in many
scientific applications such as the population dynamics, spread of epidemics,
and semi-conductor devices. It was also shown that Volterra integral equa-
tions can be derived from initial value problems. Volterra started working on
integral equations in 1884, but his serious study began in 1896. The name
integral equation was given by du Bois-Reymond in 1888. However, the name
Volterra integral equation was first coined by Lalesco in 1908.

Abel considered the problem of determining the equation of a curve in a
vertical plane. In this problem, the time taken by a mass point to slide under
the influence of gravity along this curve, from a given positive height, to the
horizontal axis is equal to a prescribed function of the height. Abel derived the
singular Abel’s integral equation, a specific kind of Volterra integral equation,
that will be studied in a forthcoming chapter.

Volterra integral equations, of the first kind or the second kind, are charac-
terized by a variable upper limit of integration [1]. For the first kind Volterra
integral equations, the unknown function u(x) occurs only under the integral

sign in the form:
z) = / K (x, u(t)dt. (3.1)
0

However, Volterra integral equations of the second kind, the unknown func-
tion u(z) occurs inside and outside the integral sign. The second kind is
represented in the form:

u(x) +A/ K(z,t)u (3.2)

The kernel K (z,t) and the function f(z) are given real-valued functions, and
A is a parameter [2—4].

A variety of analytic and numerical methods, such as successive approx-
imations method, Laplace transform method, spline collocation method,

A-M. Wazwaz, Linear and Nonlinear Integral Equations
© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011
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Runge-Kutta method, and others have been used to handle Volterra inte-
gral equations. In this text we will apply the recently developed methods,
namely, the Adomian decomposition method (ADM), the modified decom-
position method (mADM), and the variational iteration method (VIM) to
handle Volterra integral equations. Some of the traditional methods, namely,
successive approximations method, series solution method, and the Laplace
transform method will be employed as well. The emphasis in this text will
be on the use of these methods and approaches rather than proving theo-
retical concepts of convergence and existence. The theorems of uniqueness,
existence, and convergence are important and can be found in the literature.
The concern will be on the determination of the solution u(x) of the Volterra
integral equation of first and second kind.

3.2 Volterra Integral Equations of the Second Kind

We will first study Volterra integral equations of the second kind given by
xT
(@) = f(z)+ A / K, u(t)dt. (3.3)
0

The unknown function u(z), that will be determined, occurs inside and out-
side the integral sign. The kernel K(x,t) and the function f(z) are given
real-valued functions, and A is a parameter. In what follows we will present
the methods, new and traditional, that will be used.

3.2.1 The Adomian Decomposition Method

The Adomian decomposition method (ADM) was introduced and developed
by George Adomian in [5-7] and is well addressed in many references. A con-
siderable amount of research work has been invested recently in applying this
method to a wide class of linear and nonlinear ordinary differential equations,
partial differential equations and integral equations as well.

The Adomian decomposition method consists of decomposing the un-
known function u(z) of any equation into a sum of an infinite number of
components defined by the decomposition series

u(z) = Z un (), (3.4)
n=0
or equivalently
u(z) = up(x) + ur(x) + uz(x) + -+, (3.5)

where the components wu, (x),n > 0 are to be determined in a recursive man-
ner. The decomposition method concerns itself with finding the components
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Ug, U1, Uz, - . . individually. As will be seen through the text, the determination
of these components can be achieved in an easy way through a recurrence
relation that usually involves simple integrals that can be easily evaluated.

To establish the recurrence relation, we substitute (3.4) into the Volterra
integral equation (3.3) to obtain

Zun(m) = f(z) + /\/I K(z,t) (Z un(t)> dt, (3.6)
n=0 0 n=0

or equivalently

uop(x) + ur(x) +us(z) + -+ = f(a) +>\/O$K(x,t) [uo(t) + ua(t) + -+ -] dt.

(3.7)
The zeroth component ug(x) is identified by all terms that are not included
under the integral sign. Consequently, the components u;(x),j > 1 of the
unknown function u(z) are completely determined by setting the recurrence

relation:
Uo (Z‘) = f(x)v

Upt1(x) = )\/ch K(z,t)u,(t)dt, n =0, (38)
0
that is equivalent to
uo(z) = f(x), up(z) = )\/ K (z,t)up(t)dt,
0 (3.9)

us(x) = )\/Ox K(z,t)ui (t)dt, wus(z) = )\/(:c K (z,t)us(t)dt,

and so on for other components.

In view of (3.9), the components ug(z), u1(z), uz(z), ug(x), ... are com-
pletely determined. As a result, the solution u(x) of the Volterra integral
equation (3.3) in a series form is readily obtained by using the series assump-
tion in (3.4).

It is clearly seen that the decomposition method converted the integral
equation into an elegant determination of computable components. It was
formally shown by many researchers that if an exact solution exists for the
problem, then the obtained series converges very rapidly to that solution. The
convergence concept of the decomposition series was thoroughly investigated
by many researchers to confirm the rapid convergence of the resulting series.
However, for concrete problems, where a closed form solution is not obtain-
able, a truncated number of terms is usually used for numerical purposes.
The more components we use the higher accuracy we obtain.

Example 3.1

Solve the following Volterra integral equation:

u(x) =1-— /OI u(t)dt. (3.10)
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We notice that f(z) =1, A = —1, K(z,¢) = 1. Recall that the solution u(z) is
assumed to have a series form given in (3.4). Substituting the decomposition
series (3.4) into both sides of (3.10) gives

up(z) =1-— Y un (t)dt, 3.11
> / > () (3.11)

or equivalently
wo(x) +up(x) +ug(x)+---=1— /0 [uo(t) + ur(t) + ua(t) + -+ -] dt. (3.12)

We identify the zeroth component by all terms that are not included under
the integral sign. Therefore, we obtain the following recurrence relation:

up(z) =1,

w1 (2) = — / Cu(B)dt,k >0, (3.13)
so that ’
up(x) =1, ) )
ui(x) = —/ uo(t)dt = —/ 1dt = —x,
0 0
ua () = — /m wn (1) dt = — /m(—t)dt =l
0 0 2! (3.14)
us(z) = — /IUQ(t)dt = —/m ! t2dt = — ! z3,
0 0 2! 3!
ug(x) = f/wu;g(t)dt = 7/307 1tsdt: 71 zt,
0 o 3l 4!
and so on. Using (3.4) gives the series solution:
u(:v):l—x+21!x2—31!x3+41!x4+~-, (3.15)
that converges to the closed form solution:
u(z) =e". (3.16)

Example 3.2

Solve the following Volterra integral equation:

x
u(z) =1 +/ (t — x)u(t)dt. (3.17)
0
We notice that f(z) =1, A = 1, K(x,t) =t — x. Substituting the decompo-
sition series (3.4) into both sides of (3.17) gives

D un(z) =1+ /O >t — 2)un(t)dt, (3.18)

n=0 n=0

or equivalently
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wo(x) +uy(z) +ug(z) +---=1 +/0x(t—x) [uo(t) + uy(t) + ua(t) + - - -] dt.

(3.19)
Proceeding as before we set the following recurrence relation:

uo(z) =1,
Uk41 (l') = /0 (t — x)uk(t)dt’ E> 0’ (320)

that gives
uo(x) =1,
L o

ui(z) = /j(t — x)up(t)dt = /Om(t —x)dt = — g
s () = /x(t — 2)u(B)dt = —21! /Oz(t )t — L o .

0

us(z) = /j(t — x)ug(t)dt = i! /j(t —x)ttdt = —61!;56,

ug(z) = /Om(t — r)uz(t)dt = _61! /Om@ - x)tGdt - 81!368’

and so on. The solution in a series form is given by

1 1 1 1
u(p) = 1= g ot = g2 g (3.22)
and in a closed form by
u(z) = cosz, (3.23)
obtained upon using the Taylor expansion for cosz.
Example 3.3
Solve the following Volterra integral equation:
1 xr
u(z)=1—xz— 2332 - / (t — x)u(t)dt. (3.24)
0
Notice that f(z) =1 —z — Ja?, A = —1,K(z,t) = t — 2. Substituting the

decomposition series (3. ) mto both sides of (3.24) gives

Zun( =1l—-z-— 33 —/ Zt—xun (3.25)
n=0

or equivalently

1 xr
uo(x) +up () fug(z)+---=1—z— 2:172 —/ (t—x) [up(t) + ur (t) + - -] dt.
0
(3.26)
This allows us to set the following recurrence relation:

1
up(z) =1—xz — 2x2,
(3.27)

wpsr (z) = — /0 (= ()t k> 0
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that gives

1
up(z) =1—z — 2x2,

* 1 1 1
ui(z) = _/0 (t — x)up(t)dt = 2!x2 - 3!333 - 4!x4,

z 1 1 1 (3.28)
ug(z) = —/0 (t — z)up (t)dt = 4!:1:4 - 5!x5 — 6!936,
v 1 1 1
us(z) = 7/ (t — 2)us(t)dt = a8 — _ 27 — a8,
0 6! 7! 8!
and so on. The solution in a series form is given by
1 1 1
u(z):lf(x+3!x3+5!x5+7!x7+~~), (3.29)
and in a closed form by
u(z) =1 —sinhx, (3.30)
obtained upon using the Taylor expansion for sinh .
Example 3.4
We consider here the Volterra integral equation:
x
(@) = 52° — 2% + / tu(t)dt. (3.31)
0

Identifying the zeroth component ug(x) by the first two terms that are not
included under the integral sign, and using the ADM we set the recurrence

relation as
up(x) = 5a® — 5,

x 3.32
wpsr () = / tur(t)dt, k> 0. (8:32)
0

This in turn gives

up(z) = b3 — a°,

v 1
ui(z) = / tug(t)dt = z° — 7x7,
0

* 1 1 3.33
us(x) :/ tuy (t)dt = 7x7 - 63:109, (3:33)
0
1

v 1
us(z) = / tuy (t)dt = 63x9 — 693x11,
0

The solution in a series form is given by

1 1 1 1 1
u(z) = (52° — 2°) + <m5 — 7x7> + (7x7 — 63x9> +(63x9— 693x11)+-~- .
(3.34)

We can easily notice the appearance of identical terms with opposite signs.
Such terms are called noise terms that will be discussed later. Canceling
the identical terms with opposite signs gives the exact solution
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u(r) = 5a3, (3.35)

that satisfies the Volterra integral equation (3.31).

Example 3.5

We now consider the Volterra integral equation:
1 1 ¢
u(z) =2+ + 2x2 + 51'5 - / u(t)dt. (3.36)
0

Identifying the zeroth component ug(z) by the first four terms that are not
included under the integral sign, and using the ADM we set the recurrence
relation as

1 1
up(r) = x + 2t + 2332 + 5955,
x (3.37)
upt1(z) = —/ up(t)dt, k = 0.
0
This in turn gives
1 1
up(x) = o + 2t + 23:2 + 53:5,
£ 1 1 1 1
ul(a:):f/ up(t)dt = — _a* — _a® — 2% —  ab,
0 2 5 6 30
z ; o 1, 1 (3.38)
= t)dt =
uy(z) /0 us (t) R Y A
@) == [ sl = — a1
’ 0 24" 7 210
The solution in a series form is given by
1 1 1 1 1 1
_ 4 2 5) _ 2 5 3 6
u(x) <x+w +2x +5x> (2x +5:c +6x +3Ox>

s, 1 e, 1 4 L L4 L 7
+<6x +30x +24x +210x oy ™ +21Ox+ +
(3.39)

We can easily notice the appearance of identical terms with opposite signs.
This phenomenon of such terms is called noise terms phenomenon that will
be presented later. Canceling the identical terms with opposite terms gives
the exact solution

u(z) = o + 2t (3.40)
Example 3.6

We finally solve the Volterra integral equation:
1 x
u(z) =2+ 3 / xt3u(t)dt. (3.41)
0

Proceeding as before we set the recurrence relation
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x
up(z) =2, ups1(z) = ;/0 wt3uy(t)dt, k> 0. (3.42)
This in turn gives
uo(x) = 2,
L% s L 5
up(x) = 3/0 2t uo(t)dt = 6%
L% s L 1o
us(x) = 3/0 xt®uq (t)dt = 1695 (3.43)
L[* s L s
us(x) = 3/0 xt us(t)dt = 6804% 7

1/ 1
ug(x) = 3/0 ct3us(t)dt = 387828x20’

and so on. The solution in a series form is given by

1 1
u(z) =24 x5+ 0 4 220 ... (3.44)

x

6 6-33 6-34-14 6-35-14-19
It seems that an exact solution is not obtainable. The obtained series solution
can be used for numerical purposes. The more components that we determine

the higher accuracy level that we can achieve.

Exercises 3.2.1

In Exercises 1-26, solve the following Volterra integral equations by using the Ado-

mian decomposition method:

1. u(z) = 6z — 322 + /Ox w(t)dt

3. u(z) =1— ;xz + /Oz w(t)dt

5. u(z) =1+ + /Oz (@ — Byu(t)dt
T u@) = 14z — /Om(x — u(t)dt
9. u(z) = 1— /Ox(x — u(t)dt

1. u(z) = o — /Oz(x o
13, u(z) = 1+ /Om w(t)dt

15. u(@) =1+ z/oz tu(t)dt

17. (@) = 1— 22 — /Ox (@ — Du()dt

2. u(x) = 6z — x> + /Ox(x — t)u(t)dt
4 u(@) = o — zx?’ - 2/; u(t)dt

6. uz)=1—a+ /Oz(m — tyu(t)dt

8 u(z)=1—o— /OI(:U ~ tult)dt
10. u(z) = 1+ /O "(@ — tyult)dt

12, u(z) = = + /Oz(x — Du(t)dt

4. u(z) =1 — /O " u(t)dt

16, u(z) = 1 — 2/0 tu(t)dt

18. u(z) = —2 4 3z — 2% — /x(a? — t)u(t)dt
0
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19. u(z) = 22 + /Ox(m — t)u(t)dt 20. u(x) = —2 4 22 + 22 + /Ox(a: — t)u(t)dt

21. u(z) =142z + 4/01(95 —u(t)dt 22. u(z) =5+ 222 — /Om(:c — t)u(t)dt
23. u(z) =1+x+ ;wQ + ; /Om(x — t)2u(t)dt

24. u(z) = 1— ;xz ¥ é/om(x — pPu(t)dt

2. u(z) = 1+ ;x-i— ; /Ox(m — ot Du(t)de

26. u(x) =1+ 22 — / (x —t 4 1)%u(t)dt
0
In Exercises 27-30, use the Adomian decomposition method to find the series solution

27 u(z) =3+ /I ot2u(t)dt 28, u(z) = 3+ i /z(a: +£2)u(t)dt
0 0

29. u(z) =1+ / (@ — t*)u(t)dt 30. u(z) =1+ ; /z x2u(t)dt
0

3.2.2 The Modified Decomposition Method

As shown before, the Adomian decomposition method provides the solution
in an infinite series of components. The components u;,j = 0 are easily
computed if the inhomogeneous term f(z) in the Volterra integral equation:

u(x) +/\/ K(z,t)u (3.45)

consists of a polynomial. However, if the function f(x) consists of a com-
bination of two or more of polynomials, trigonometric functions, hyperbolic
functions, and others, the evaluation of the components u;,j > 0 requires
cumbersome work. A reliable modification of the Adomian decomposition
method was developed by Wazwaz and presented in [7—9]. The modified de-
composition method will facilitate the computational process and further ac-
celerate the convergence of the series solution. The modified decomposition
method will be applied, wherever it is appropriate, to all integral equations
and differential equations of any order. It is interesting to note that the modi-
fied decomposition method depends mainly on splitting the function f(x) into
two parts, therefore it cannot be used if the function f(z) consists of only one
term. The modified decomposition method will be outlined and employed in
this section and in other chapters as well.

To give a clear description of the technique, we recall that the standard
Adomian decomposition method admits the use of the recurrence relation:
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uo(z) = f(x),

upt1(z) = /\/; K, tyu(t)dt, k > 0, (3.46)

where the solution u(x) is expressed by an infinite sum of components defined
before by

u(x) = Z Up (). (3.47)

In view of (3.46), the components u,(x), n > 0 can be easily evaluated.

The modified decomposition method [7-9] introduces a slight variation
to the recurrence relation (3.46) that will lead to the determination of the
components of u(z) in an easier and faster manner. For many cases, the
function f(x) can be set as the sum of two partial functions, namely fi(x)
and fa(z). In other words, we can set

f(@) = fi(@) + fa(2). (3.48)
In view of (3.48), we introduce a qualitative change in the formation of the
recurrence relation (3.46). To minimize the size of calculations, we identify
the zeroth component ug(x) by one part of f(z), namely fi(z) or fa(x). The
other part of f(x) can be added to the component u(x) among other terms.
In other words, the modified decomposition method introduces the modified
recurrence relation:

ug(z) = fi(x),

ui(z) = fa(x) + A /Ox Ria, tuo(t)dt, (3.49)

U1 (x) = )\/ K(z, t)ur(t)dt, k> 1.
0

This shows that the difference between the standard recurrence relation (3.46)
and the modified recurrence relation (3.49) rests only in the formation of the
first two components ug(z) and ui(x) only. The other components u;,j > 2
remain the same in the two recurrence relations. Although this variation in
the formation of wo(x) and wi(x) is slight, however it plays a major role
in accelerating the convergence of the solution and in minimizing the size of
computational work. Moreover, reducing the number of terms in f(x) affects
not only the component wu;(z), but also the other components as well. This
result was confirmed by several research works.

Two important remarks related to the modified method [7-9] can be made
here. First, by proper selection of the functions fi(z) and fs(x), the exact
solution u(z) may be obtained by using very few iterations, and sometimes
by evaluating only two components. The success of this modification depends
only on the proper choice of f1(z) and fa(x), and this can be made through
trials only. A rule that may help for the proper choice of fi(z) and f2(x)
could not be found yet. Second, if f(x) consists of one term only, the standard
decomposition method can be used in this case.
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It is worth mentioning that the modified decomposition method will be
used for Volterra and Fredholm integral equations, linear and nonlinear equa-
tions. The modified decomposition method will be illustrated by discussing
the following examples.

Example 3.7

Solve the Volterra integral equation by using the modified decomposition
method:

(@) = sing + (e — e%57) — / €Oty (t) dt. (3.50)
0

We first split f(x) given by
f(z) =sinz + (e — %), (3.51)
into two parts, namely
fi(z) = sinaz,

3.52
fa(x) = e — e5%, ( )
We next use the modified recurrence formula (3.49) to obtain
uo(z) = f1(z) =sinzx,
ul(x) — (e _ ecosz) _ /0 eCOStuo(t>dt =0, (3'53)

wpsr (z) = —/ Kz, up(t)dt = 0, k> 1.
0

It is obvious that each component of u;,j > 1 is zero. This in turn gives the
exact solution by
u(z) = sinz. (3.54)

Example 3.8

Solve the Volterra integral equation by using the modified decomposition
method:

x
u(z) = secxtanz 4 (5% —e) — / e lu(t)dt, r < r
0

5 (3.55)

Proceeding as before we split f(x) into two parts
fi(x) =secaxtanz, fo(x)=e>" —e. (3.56)
We next use the modified recurrence formula (3.49) to obtain

up(z) = f1(x) = secx tan x,

ui(z) = (7 —¢) — /0 e**tug(t)dt = 0, (3.57)

wpsr (@) = —/ Kz, up(t)dt = 0, k> 1.
0

It is obvious that each component of u;,j > 1 is zero. This in turn gives the
exact solution by
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u(x) = secx tan x. (3.58)

Example 3.9
Solve the Volterra integral equation by using the modified decomposition
method: .
u(z) = 2z +sinz + 22 — cosx + 1 — / u(t)dt. (3.59)
0

The function f(z) consists of five terms. By trial we divide f(x) given by
f(z) =2z +sinz + 22 — cosx + 1, (3.60)
into two parts, first two terms and the next three terms to find
fi(z) =2z +sinz,

3.61
fo(x) = 2% — cosz + 1. (8:61)
We next use the modified recurrence formula (3.49) to obtain
up(x) = 2z + sin
ui(z) = 2% —cosz + 1 — / uo(t)dt =0, (3.62)
Ugt1(x /thuk t)ydt=0, k>1.
It is obvious that each component of u;,j > 1 is zero. The exact solution is
given by
u(z) = 2z + sinz. (3.63)

Example 3.10

Solve the Volterra integral equation by using the modified decomposition
method:
1

uw(r) =1+ 2%+ cosx —x — 3x3 —sinx + / u(t)dt. (3.64)
0
The function f(z) consists of six terms. By trial we split f(z) given by
1
f(x):l+x2+cosx—m—3$3—sinx, (3.65)

into two parts, the first three terms and the next three terms, hence we set
fi(z) =1+ 2%+ cosz,

1 3.66
faz) = —(z + 3x3+sinx). (3.66)
Using the modified recurrence formula (3.49) gives
up(x) = 1+ 2% + cosz,
1 €T
ui(x) = —(x + 3333 + sinz) —|—/0 up(t)dt =0, (3.67)

Ut (z /thuk t)ydt =0, k>1.
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As a result, the exact solution is given by
u(z) =1+ 2 + cosz. (3.68)

Exercises 3.2.2

Use the modified decomposition method to solve the following Volterra integral equa-
tions:

1. u(z) = cosz + sinx — / u(t)dt
0

2. u(z) = sinhz 4 coshax — 1 — / u(t)dt
Jo

3. u(z) = 2z = 322 + (6322"'9”3 —-1) - / et2+t3u(t)dt
0

4. u(z) =322 + (1 — e_xs) 7/ e_:cd"'t'ju(t)dt
0
5 u(z) =2z — (1— 6712) +/ 67I2+t2u(t)dt
0

6. u(z) = e = z(l — 6_22) — /03j xtu(t)dt

x
7. u(x) = coshz + xsinha — / zu(t)dt
Jo

8. u(z) =e® +xe® —x —/ zu(t)dt
0

9. u(z) =1+sinz + = + 2 f:ccos:cf/ xu(t)dt
0

10. u(xz) = e® — ze” +sinz + zcosz + / zu(t)dt
0

1 x
11 u(z) =1+2+ 2% + 2x3 + coshz + zsinhz —/ zu(t)dt
0

12. u(z) = cosz — (1 — esmz) T — m/ eSin by (t)dt
0
13. u(z) =secz® — (1 — ™" ®) gz — x/ etan by (t)dt
0

14. u(z) = coshx + 32: (1 —esinhe) 4 ; / estnh by () dt
0

1

1
15. — sinh _ _coshax
u(z) = sinhz + 10 (e e ) + 10

/ ecosh tu(t)dt
0

1 x
16. u(z) = 2> — 25 +5 / tu(t)dt
10 Jo
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3.2.3 The Noise Terms Phenomenon

It was shown before that the modified decomposition method presents a reli-
able tool for accelerating the computational work. However, a proper selection
of fi(x) and f2(x) is essential for a successful use of this technique.

A useful tool that will accelerate the convergence of the Adomian decom-
position method is developed. The new technique depends mainly on the
so-called noise terms phenomenon that demonstrates a fast convergence of
the solution. The noise terms phenomenon can be used for all differential
and integral equations. The noise terms, if existed between the components
up(z) and wuq(z), will provide the exact solution by using only the first two
iterations.

In what follows, we outline the main concepts of the noise terms :

1. The noise terms are defined as the identical terms with opposite signs
that arise in the components ug(z) and wu;(z). Other noise terms may ap-
pear between other components. As stated above, these identical terms with
opposite signs may exist for some equations, and may not appear for other
equations.

2. By canceling the noise terms between ug(x) and u(z), even though
w1 (z) contains further terms, the remaining non-canceled terms of ug(z) may
give the exact solution of the integral equation. The appearance of the noise
terms between wug(x) and uq(z) is not always sufficient to obtain the exact
solution by canceling these noise terms. Therefore, it is necessary to show
that the non-canceled terms of ug(x) satisfy the given integral equation.

On the other hand, if the non-canceled terms of ug(x) did not satisfy the
given integral equation, or the noise terms did not appear between wug(x)
and wuq(z), then it is necessary to determine more components of u(x) to
determine the solution in a series form as presented before.

3.It was formally shown that the noise terms appear for specific cases
of inhomogeneous differential and integral equations, whereas homogeneous
equations do not give rise to noise terms. The conclusion about the self-
canceling noise terms was based on solving several specific differential and
integral models. However, a proof for this conclusion was not given. For fur-
ther readings about the noise terms phenomenon, see [7,10].

4. Tt was formally proved in [7,10] that the appearance of the noise terms
is governed by a necessary condition. The conclusion made in [7,10] is that
the zeroth component wug(x) must contain the exact solution wu(z) among
other terms. In addition, it was proved that the inhomogeneity condition of
the equation does not always guarantee the appearance of the noise terms as
examined in [10].

A useful summary about the noise terms phenomenon can be drawn as
follows:



3.2 Volterra Integral Equations of the Second Kind 79

1. The noise terms are defined as the identical terms with opposite signs
that may appear in the components uo(x) and u;(z) and in the other com-
ponents as well.

2. The noise terms appear only for specific types of inhomogeneous equa-
tions whereas noise terms do not appear for homogeneous equations.

3. Noise terms may appear if the exact solution of the equation is part of
the zeroth component ug(z).

4. Verification that the remaining non-canceled terms satisfy the integral
equation is necessary and essential.

The phenomenon of the useful noise terms will be explained by the follow-
ing illustrative examples.

Example 3.11
Solve the Volterra integral equation by using noise terms phenomenon:
3 xT
u(z) =8z +a* - / tu(t)dt, (3.69)
0

Following the standard Adomian method we set the recurrence relation:
ug(z) = 8z + 23,
xT

wa(e) = =5 [ tu()dt, k>0, (3.70)
0
This gives
up(x) = 8z + 23,
® 3.71
wi(x) = —2/0 huo(t)dt =~} o — . (38.71)

The noise terms +z3 appear in ug(z) and u;(z). Canceling this term from
the zeroth component ug(x) gives the exact solution:

u(z) = 8z, (3.72)
that satisfies the integral equation. Notice that if the modified method is

used, we select ug(z) = 8z. As a result, we find that u;(z) = 0. This in turn
gives the same result.

Example 3.12

Solve the Volterra integral equation by using noise terms phenomenon:

1 T
u(z) = -2+ +22 + 12x4 +sinx 4+ 2cosx — / (z —t)?u(t)dt. (3.73)
0

Following the standard Adomian method we set the recurrence relation:

1
up(x) = -2+ + 22+ 12904 +sinx + 2 cosz,

v (3.74)
Upy1(x) = —/0 (x —t)?u(t)dt, k=0.

This gives
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1
up(x) = -2+ +22+ _2* +sinz + 2cos,

12
ul(x):—Z/o tug(t)dt
_9_ .2 1 4 o L s 3 7
=2—=x 123: 2cosx +4sinx 3030 +3x 126096 4.

(3.75)

The noise terms F2,+z% + 2% and +£2cosz appear in uo(z) and u(z).

Canceling these terms from the zeroth component ug(z) gives the exact so-
lution

u(z) = x + sinzx, (3.76)

that satisfies the integral equation. It is to be noted that the other terms of
w1 (z) vanish in the limit with other terms of the other components.

Example 3.13

Solve the Volterra integral equation by using noise terms phenomenon

2 4
We set the recurrence relation:

u(z) = 1:c t sinh(2z) + sinh® z +/ u(t)dt. (3.77)
0

1 1
ug(z) = 0%y sinh(2z) + sinh® z,

x (3.78)
uk+1(x) = / uk(t)dt, k } 0.
0
This gives
1 L. 2
uo(z) = 0T ™ 4 sinh(2x) + sinh” z,
v 11 11 (3.79)
— - : 2 _ 2
u () 7/0 uo(t)dt = 2x+ 4 sinh(2z) + 4 + 4% 4cosh x.

The noise terms =+ 2 and F sinh(2x) appear in ug(z) and u;(z). Canceling
these terms from the zeroth component ug(z) gives the exact solution:

u(z) = sinh? z, (3.80)
that satisfies the integral equation.

Example 3.14
Show that the exact solution for the Volterra integral equation:
u(z) = —1+x+ ;xQ + 2" — /Ox u(t)dt, (3.81)
cannot be obtained by using the noise terms phenomenon.
We set the recurrence relation:

1
up(z) = —-1+z+ 2302 + 2e”,
. (3.82)
s () = — / wk()dt, k> 0.
0
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This gives

1
up(z) = -1+ + 2x2 + 2e%,
(3.83)

v 1 1
ul(x):—/ uo(t)dt:—2x2—26m+2+x—Gx?’.
0

The noise terms =+ 22 and £2e* appear in ug(z) and u;(z). Canceling these
terms from the zeroth component wug(x) gives

u(r) =z —1, (3.84)
that does not satisfy the integral equation. This confirms our belief that

the non-canceled terms of up(x) do not always give the exact solution, and
therefore justification is necessary. The exact solution is given by

u(z) =+ €%, (3.85)
that can be easily obtained by using the modified decomposition method by
setting f1(x) = x + e*.

Exercises 3.2.3

Use the noise terms phenomenon to solve the following Volterra integral equations:

T

1. u(z) = 6x + 322 —/ w(t)dt 2. u(z) = 6x + 3z —/ zu(t)dt

0 0
3. u(x) = 6z + 223 — / tu(t)dt 4. u(z) =+ 2% —22% —2* + 12/ (z — t)u(t)dt

0 0

x
5. u(z) = =2+ 22 +sinz + 2cosx — / (@ — t)2u(t)dt
0
6. u(z) =2z — 2sinx + cosz — / (z — t)2u(t)dt
0

7. u(z) = sinhz + xsinhz — % coshz + / ztu(t)dt
0

x
8. u(x) = x 4 coshx 4+ z% sinha — z coshx — / xtu(t)dt
0

x
9. u(z) =sec? x — tanx + / u(t)dt
0

1
10. u(z) = — = —

9 sin(2z) + cos® x + / u(t)dt
0

S

1 x
11. u(z) = — ¥ +  sin(2z) +sin? x + / u(t)dt
0

x
12. u(z) = —z + tanz + tan? z — / u(t)dt
0
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3.2.4 The Variational Iteration Method

In this section we will study the newly developed variational iteration method
that proved to be effective and reliable for analytic and numerical purposes.
The variational iteration method (VIM) established by Ji-Huan He [11-12] is
now used to handle a wide variety of linear and nonlinear, homogeneous and
inhomogeneous equations. The method provides rapidly convergent succes-
sive approximations of the exact solution if such a closed form solution exists,
and not components as in Adomian decomposition method. The variational
iteration method handles linear and nonlinear problems in the same manner
without any need to specific restrictions such as the so called Adomian poly-
nomials that we need for nonlinear problems. Moreover, the method gives the
solution in a series form that converges to the closed form solution if an exact
solution exists. The obtained series can be employed for numerical purposes
if exact solution is not obtainable. In what follows, we present the main steps
of the method.
Consider the differential equation:

Lu+ Nu = g(t), (3.86)

where L and N are linear and nonlinear operators respectively, and g(t) is
the source inhomogeneous term.

The variational iteration method presents a correction functional for equa-
tion (3.86) in the form:

tra(5) = ua(2) + | N (Lun() + Nin€) - g(&))de,  (3.87)

where \ is a general Lagrange’s multiplier, noting that in this method A
may be a constant or a function, and w, is a restricted value that means it
behaves as a constant, hence du,, = 0, where § is the variational derivative.
The Lagrange multiplier A can be identified optimally via the variational
theory as will be seen later.

For a complete use of the variational iteration method, we should follow
two steps, namely:

1. the determination of the Lagrange multiplier A(§) that will be identified
optimally, and

2. with A determined, we substitute the result into (3.87) where the re-
strictions should be omitted.

Taking the variation of (3.87) with respect to the independent variable u,,
we find
5’I,Ln+1 0 r ~
=1+ ME) (Lun (&) + Nan(§) — g(£)) d€ | (3.88)
Oy, oun \Jo

or equivalently

Stims1 = Otn + 6 ( /0 "NE) (Lun(€)) dg) . (3.89)
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Integration by parts is usually used for the determination of the Lagrange
multiplier A(§). In other words we can use

/ "N (E)dE = MEun(€) — / N (©un(€)de,
0

0

/O "N (E)dE = MEWL(E) — N(E)un(E) + /0 "N un(©)de,

/O "X (E)dE = MEWLI(E) — N(Ey (€) + N (€)un(€)

z (3.90)
- [ xr©uneras
/0 AE)uM (€)de = ME)upy (€) = N ()un(€) + N ()up, (&) — N un(€)
+ [ A €,
and so on. These identities are obtained by integrating by parts.
For example, if Luy(§) = u,(§) in (3.89), then (3.89) becomes
OUps1 = Oup + 0 (/ M) (Lun(8)) df) . (3.91)
0
Integrating the integral of (3.91) by parts using (3.90) we obtain
St = B+ NS ()~ [ NOFu(OdE  (39)
or equivalently
Sttm 1 = S1n (€)(1 + Nees) — / N o de. (3.93)
0

The extremum condition of u,41 requires that du,4+1 = 0. This means that
the left hand side of (3.93) is zero, and as a result the right hand side should
be 0 as well. This yields the stationary conditions:

1+ )\|§:m =0, )\/|§:x =0. (3.94)
This in turn gives
A=—1 (3.95)
As a second example, if Lu,(£) = u!/(£) in (3.89), then (3.89) becomes
OUpt1 = 0up + 6 (/ &) (Lun(8)) d§> . (3.96)
0
Integrating the integral of (3.96) by parts using (3.90) we obtain
Sttt = Gt + OA((un))E — (N Sun)? / N Gund, (3.97)

or equivalently

Stnt1 = 0un(§)(1 — Nle=z) + A ((un)|e=z) + /OI N GupdE, (3.98)



84 3 Volterra Integral Equations

The extremum condition of wu,; requires that du,4+1 = 0. This means
that the left hand side of (3.98) is zero, and as a result the right hand side
should be 0 as well. This yields the stationary conditions:

1—Neze =0, Memz =0, N'|e—y =0. (3.99)
This in turn gives
A=¢—um. (3.100)

Having determined the Lagrange multiplier A(§), the successive approxi-
mations u,4+1,n = 0, of the solution u(x) will be readily obtained upon using
selective function wug(z). However, for fast convergence, the function ug(x)
should be selected by using the initial conditions as follows:

uo(x) = u(0), for first order u/,,

uo(z) = u(0) + zu’(0), for second order u.,

1, (3.101)
uo(z) = u(0) + zu’(0) + o u’(0), for third order ./,
and so on. Consequently, the solution
u(z) = lm wuy(2). (3.102)

In other words, the correction functional (3.87) will give several approxima-
tions, and therefore the exact solution is obtained as the limit of the resulting
successive approximations.

The determination of the Lagrange multiplier plays a major role in the
determination of the solution of the problem. In what follows, we summarize
some iteration formulae that show ODE;, its corresponding Lagrange multi-
pliers, and its correction functional respectively:

u' 4 f(u(§), v () =0,A = —1,
(1) @
it = = [l P, )]
0
u' 4 f(u(€),u (§),u’(§) =0, A= ({—z),
(ii)
Unt1=un + / (€ — @) [ull + Flun, oy, ul))] de,

(iii)

z 1
un«‘rl:un*/ 2'(§_I)2[u£{/+f(u’ﬂ77 lvil}dgv
0 !

w4 F(u(©), w' (€)' (€),u” (), ul (€) = 0,2 = _ (€~ )7,
(iv) |

{ " F(€),u (€), () (€)= 0, = — ) (€~ 2)?,

Un+1 :un+/ 3|(€71")3 u'/r:/+f(u’"-7u;17"'au5:\,)):| d&,
0 :
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and generally
u) L€, (€), . uM(€) =0, A= (~)" T (€—z)nD),

(n—1)!
|
a1 = Un + (—1)n/ € =)™V [u? 4 Flun, ..., ul)] de,
0 (TL — 1)'
for n > 1.

To use the variational iteration method for solving Volterra integral equa-
tions, it is necessary to convert the integral equation to an equivalent initial
value problem or to an equivalent integro-differential equation. As defined
before, integro-differential equation is an equation that contains differential
and integral operators in the same equation. The integro-differential equa-
tions will be studied in details in Chapter 5. The conversion process is pre-
sented in Section 2.5.1. However, for comparison reasons, we will examine the
obtained initial value problem by two methods, namely, standard methods
used for solving ODEs, and by using the variational iteration method as will
be seen by the following examples.

Example 3.15

V)

Solve the Volterra integral equation by using the variational iteration method

u(z) =1 +/ u(t)dt. (3.103)
0
Using Leibnitz rule to differentiate both sides of (3.103) gives
o' (z) —u(x) = 0. (3.104)

Substituting « = 0 into (3.103) gives the initial condition u(0) = 1.

Using the variational iteration method
The correction functional for equation (3.104) is

Unt1(2) = un(z) +/0 AE) (1, () = i (§))dE. (3.105)
Using the formula (i) given above leads to
A=-1 (3.106)

Substituting this value of the Lagrange multiplier A = —1 into the functional
(3.105) gives the iteration formula:

s (@) = uala) = [ (@)~ () de. (3.107)
0

As stated before, we can use the initial condition to select ug(z) = u(0) = 1.
Using this selection into (3.105) gives the following successive approximations:

uo(z) = 1,
lM@=1—A(%@—w%D%=1+%

1

wfe) = 1o [0 - m©)de =1+

2
v
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o) = Lot 02 = [ — ual@) dg =14 o+ 0+

(3.108)
and so on. The VIM admits the use of
u(z) = limy, o0 un ()
3.109
:lim,Hoo(l—Fa:—F21!x2+;!x3+i!x4+---+;!x"), ( )
that gives the exact solution by
u(z) =e”. (3.110)

Using ODEs method
The ODE (3.104) is of first order, therefore the integrating factor u(x) is
given by .
p(x) = el DA — o=, (3.111)

For first order ODE, we use the formula:
1 xr
u(z) = i [/ uq(x)derC} = Ce”. (3.112)

To obtain the particular solution, we use the initial condition «(0) = 1 to
find that C' = 1. This gives the particular solution:

u(z) = e". (3.113)
Example 3.16

Solve the Volterra integral equation by using the variational iteration method
u(z) =z + / (x —t)u(t)dt. (3.114)
0

Using Leibnitz rule to differentiate both sides of (3.114) once with respect to
x gives the integro-differential equation:

u(z) =1+ /Om u(t)dt, u(0) = 0. (3.115)

However, by differentiating (3.115) with respect to 2 we obtain the differential
equation:
u(x) = u(z). (3.116)

Substituting = 0 into (3.114) and (3.115) gives the initial conditions u(0) =
0 and «/(0) = 1. The resulting initial value problem, that consists of a second
order ODE and initial conditions is given by

u'(z) —u(x) =0, wu(0)=0, u(0)=1. (3.117)
The integro-differential equation (3.115) and the initial value problem (3.116)
will be handled independently by using the variational iteration method.

Using the variational iteration method

(i) We first start using the variational iteration method to handle the integro-
differential equation (3.115) given by
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u(z) =1+ /03c u(t)dt,u(0) = 0. (3.118)

The correction functional for Eq. (3.118) is

T 3
Upt1(2) = up () —&—/0 A(€) (u;(f) -1 _/0 ﬂn(r)dr> dg. (3.119)

Using the formula (i) for A we find that
A=—1. (3.120)

Substituting this value of the Lagrange multiplier A = —1 into the functional
(3.119) gives the iteration formula:

z 3
Unt1(2) = up(x) _/o (u;(ﬁ) -1 —/O un(r)dr> d€. (3.121)

We can use the initial conditions to select ug(x) = w(0) = 0. Using this
selection into (3.121) gives the following successive approximations:

UQ(.’E) = 0,

z €
ui(z) = —/O (ug(f) —1- /0 uo(r)dr> d¢ =z,
z 13
uz(x)—x—/o (u’l(f)—l—/o ul(r)dr> dfzm—i-;!wB,

(3.122)
v ¢ 1, 1
U3(.’E):l'—/ ug(f)—l—/ ua(rydr | dé =z + 23+ _ 2®,
0 0 3! 5!
_ Vs, Vs, 1 7 1 2n+1
Unl@) =@ g @ @t at e
The VIM admits the use of
u(z) = lm upy(z), (3.123)

n—oo

that gives the exact solution by

u(z) = sinhz. (3.124)
(i) We can obtain the same result by applying the variational iteration
method to handle the initial value problem (3.117) given by

u'(z) —u(x) =0, wu(0)=0, u(0)=1. (3.125)
The correction functional for Eq. (3.117) is
(@) = wa@) + [ MO @O —in©)de (3.120)

Using the formula (ii) given above leads to
A=¢—z. (3.127)
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Substituting this value of the Lagrange multiplier A = £ —x into the functional
(3.126) gives the iteration formula:

U1 (z) = un<x)+jgw(5x)(ux<f)un(§))d§. (3.128)

We can use the initial conditions to select ug(z) = u(0) + zu’(0) = z. Using
this selection into (3.128) gives the following successive approximations

uo(x) =z,

wiw) =t [ €D O - w@) e =r+

1 r 1 1
up(e) = w4 L2t + | (§—a) (Wf(§) —wi(§)d =z + ja® + _ 2’
3! o 31° T 51
1 3 1 5 * "
usla) = vt yat Lot (€~ a) (uh(E) — ua(6)) de
. . 0
_ L g 1 5 12
DR TR T
1 1 1 1
_ 3 5 7. 2n+1
Unl@) =@ g B T g
(3.129)
The VIM admits the use of
u(z) = lUm wupy(z), (3.130)
n—oo

that gives the exact solution by
u(z) = sinhx. (3.131)
Standard methods for solving ODFEs

The initial value problem (3.125) is of second order, therefore the auxiliary

equation is of the form
r?—1=0, (3.132)

that gives r = £1. This in turn gives the general solution by
u(z) = Asinha + Bcoshz. (3.133)

To obtain the particular solution, we use the initial conditions w(0) =
0,4'(0) =1 to find that the particular solution is given by

u(z) = sinh x. (3.134)
Example 3.17

Solve the Volterra integral equation by using the variational iteration method
1 . ¥
u(z) =14z + 3‘333 - / (z — t)u(t)dt. (3.135)
: 0

Using Leibnitz rule to differentiate both sides of (3.135) once with respect to
x gives the integro-differential equation:
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1 xT
u(r) =1+ 2|$2 —/ w(t)dt,u(0) =1, (3.136)
: 0
and by differentiating again we obtain the initial value problem
v (z) + u(x) = z,u(0) = 1,4/(0) = 1. (3.137)

Using the variational iteration method

(1) We first start using the variational iteration method to handle the integro-
differential equation (3.136) given by

u(x) =1+ 1| x? — /zu(t)dt,u(O) =1, (3.138)
0

2!
The correction functional for Eq. (3.138) is

x 3
Uny1(2) = un(x) — /0 A(€) (%(g) -1- 252 + /0 ﬂn(r)dr> d¢. (3.139)

Using the formula (i) for A we find that
A=—1. (3.140)

Substituting this value of the Lagrange multiplier A = —1 into the functional
(3.139) gives the iteration formula

x 13
Upa1(7) = up(x) —/0 <u’n(§) -1- ;52 —l—/o un(r)dr> de.  (3.141)

We can use the initial conditions to select ug(x) = u(0) = 1. Using this
selection into (3.141) gives the following successive approximations
uo(z) =1,
’ / 1 2 ¢
@ == [ (u©-1- 46+ [uir) a
Lo, 1 3
= la g g
‘ / 1 2 ¢
ug(m):x—/ ul(f)—l—Zf —|—/ uy (r)dr | d€
0 0
_ Lo, b a1
—1—|—a:—2!x +4!a: 5 (3.142)
‘ / 1 2 ¢
us(z) = — ug(§) — 1 — 2§ + [ wa(r)dr ) d€
0 0
_ Lo, b a 1
SR T g

1 1 1 —-1)"
un(x)—x+(1—2'x2+4'x4— :c6+~-~+( )m2”>

The VIM admits the use of
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u(z) = lim w,(x), (3.143)
that gives the exact solution by
u(z) = x + cosx. (3.144)

(ii) We next use the variational iteration method for solving the initial value
problem

u(z) +u(z) =2, w0)=1, +'(0)=1. (3.145)

The correction functional for Eq. (3.145) is
Unt1(T) = un(x / A€ )+ an(€) =€) dE. (3.146)

Using the formula (ii) given above leads to
A=¢€—u. (3.147)

Substituting this value of the Lagrange multiplier A = £ —xz into the functional
(3.146) gives the iteration formula

() = o) + [ "€ — @) (WAE) + un(€) — €) d. (3.148)

0
We can use the initial conditions to select ug(z) = w(0) + zu’(0) = 1 + «.
Using this selection into (3.148) gives the following successive approximations

up(z) =1+,
u1<x>=1+x+/<s—x>< 1(€) + uol(€) — &) de
0

L
—1+x—2!x,

wae) =140~ 2+ [ (6= 0) () + ma(©) — ) g

1 1
=1l+z-— 2!x2+ 4!x4, (3.149)

ug(z) =1+2x — 1x2+ i!:v4+/ogﬁ(£x) (ub (&) + ua(€) — &) d€

21
_ 1 2 1 4 1 6
TP TE Rt
_ 1 2 1 4 1 6 1 8 (71)n 2n
“"(x)er(lz!x Tt e Tt T g ™)

Proceeding as before, the VIM gives the exact solution by
u(z) = x 4 cosx. (3.150)
Standard methods for solving ODFEs

The ODE (3.169) is of second order and nonhomogeneous. The auxiliary
equation for the homogeneous part is of the form
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r?+1=0, (3.151)
that gives r = 4,42 = —1. The general solution is given by
w(x) = ue + up,
u(x) = Acosz + Bsinzx + a + bz,

where u. is the complementary solution, and u,, is a particular solution. Using
ODE methods and initial conditions we find that B=a =0, and A =b=1.
The particular solution is given by

u(x) = x + cosx. (3.153)

(3.152)

Example 3.18

Solve the Volterra integral equation by using the variational iteration method

u(z) =1+ + ;:c? + ; /Ox(x — 1) u(t)dt. (3.154)

Using Leibnitz rule to differentiate both sides of (3.154) three times with
respect to = gives the two integro-differential equations

u(z)=14x+ /x(x —thu(t)dt, wu(0)=1
Y (3.155)
u(x) =1 +/ u(t)dt,u(0) =1, «'(0)=1.
0

and the third order initial value problem
o (z) = u(z), w(0)=1u4(0)=1u"(0)=1. (3.156)
Using the variational iteration method VIM

(i) We first note that we obtained two equivalent integro-differential equations
(3.155). We will apply the VIM to these two equations. We first start using
the VIM to handle the integro-differential equation

u(z)=1+x+ /Oﬁ(a: — t)u(t)dt,u(0) = 1. (3.157)

The correction functional for Eq. (3.157) is

€T 6
Unt1(2) = un(z) +/0 AE) (%(5) —1-¢ —/0 (S T)ﬂn(f)df> dg.

(3.158)
Proceeding as before we find
A=—1, (3.159)

that gives the iteration formula
z 13
Unt1(T) = up(z) — / (u;(f) —1-¢&— / (€ - r)un(r)dr> d¢. (3.160)
0 0

We can use the initial conditions to select ug(x) = w(0) = 1. Using this
selection into (3.160) gives the following successive approximations
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1
_ 2 3
14+x+ le + 3!x ,
x £
3.161
w()=1- | <ua<£>—1—f—/ <§—r>u1<r>dr> de (3.161)
0 0
_ Lo bg b, 15 15
R T TP TR R TE AR
_ Lo, bg by 1 s 1 Lo,
Un(@) = L @54 g @t 4 @t b @t g at et o
This in turn gives the exact solution by
u(z) = e”. (3.162)
(ii) We next consider the integro-differential equation
u(x) =1 +/ u(t)dt, u(0)=1, u'(0)=1. (3.163)
0

The correction functional for Eq. (3.163) is

s 3
Unt1(7) = un(z) +/0 AE) (uﬁ(ﬁ) —1 */0 ﬂn(?")dT> dg. (3.164)

Notice that the integro-differential equation is of second order. Therefore, we
can show that
A=¢&—ux, (3.165)

that gives the iteration formula

@ ¢
Un+1(2) = un(z) +/0 ((5 —z)(uy (§) =1 - /0 (S T)un(r)dr)> dg.

(3.166)
We can use the initial conditions to select ug(x) = 1+ x. Using this selection
into (3.166) gives the following successive approximations

up(z) =1+ =z,

1 1 1
ui(z) =1+z+ 2!x2+ 3!:173+ 4!9:4,
1 1 1 1 1 1
us(z) =1+z+ 2!1’24— 3!x3 + 4!$4+ 5!x5 + 6!.’1;‘6—|- 7!907, (3.167)
— Lo, bg b 4 1 5 1 g L.
un(:c)—1+:c+2!x A A TC T S AL LR T A

This in turn gives the exact solution by
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u(x) = e*. (3.168)
(iii) We next use the variational iteration method for solving the initial value

problem
u”(x) — u(z) ='(0) ="(0) = 1. (3.169)

U1 (2) = un (@ / ME) (U (€) — i (€)) dE. (3.170)
Using the formula (iii) given above for A leads to
1
A= —2'(§—x)2. (3.171)

Substituting this value of the Lagrange multiplier into the functional (3.170)
gives the iteration formula

1 xr

tniale) = un(e) = o [ (€= 2P @O - wlO)de (372
*Jo

As stated before, we can use the initial conditions to select

1 1
up(x) = u(0) + zu'(0) + 2u”(O) =1l+z+ 2'x2

Using this selection into (3.172) gives the following successive approximations

(3.173)

1
up(z) =14z + _ 22

21
1 L 1, 15
w@) =1tat ot + g +4!x Tyt
1 1 1 1 1 1 1
-1 8 (3.174
uz () +x+2 +3 +4 5x+6x+7 +8!x, ( )
1 1
un(z) = +x+2'x+3x+4m+5x+6x+7:6+8 S
The VIM admits the use of
u(z) = lm wuy(z), (3.175)
that gives the exact solution by
u(z) = e”. (3.176)

Using standard methods for solving ODEs
The ODE (3.169) is of third order, therefore the auxiliary equation is of
the form

¥ —1=0, (3.177)
that gives r = 1, —% + \231‘, i2 = —1. The general solution is given by
3 3
u(x):Ae“’%—e_;g” Bcos\g J;—&—C’sin\g x| . (3.178)

To obtain the particular solution, we use the initial conditions to find that
the particular solution
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u(z) = e”. (3.179)

It is interesting to point out that we need to use different approaches to
solve ODEs by standard methods, whereas the variational iteration method
attacks all problems directly and in a straightforward manner.

Exercises 3.2.4

Use the wvariational iteration method to solve the following Volterra integral equa-
tions by converting the equation to initial value problem or to an equivalent integro-
differential equation:

x 1 1 "
1 u(z)=1- ./0 u(t)dt 2. u(x) =z +z* + 2x2 + 5x5 7/0 u(t)dt
3. u(z)=1- ;xz +/Om u(t)dt 4. u(z)=1—z — ;xQ + /Om(ac — t)u(t)dt
5. u(z) = 1 — /Oz (@ — tyu(t)dt 6. u(z) = = + /Oz (@ — tyu(t)dt

x x
7. u(w) = 1+2m+4/ (@ — u(t)dt 8. ulx) = 5 + 22 —/ (@ — tyu(t)de
0 0
1, 1 /[= 2
9. u(z)=14+z+ _z°+ (z —t)%u(t)dt
2 2 /o
1 1 [=
10. u(z) =1+ _x+ / (z —t+ Du(t)dt
2" "2 J,
11. u(z) = 1 + 22 —/ (x —t 4+ 1)2u(t)dt
0
1, 1 /= 3
12, u(z) =1— 2%+ (z — ) u(t)dt
2 6 Jo
13. u(z) :2+x—200sx—/ (z —t+ 2)u(t)dt
Jo
x
14. u(z) =1 — 2sinhz +/ (z —t+ 2)u(t)dt
0
15. u(z) =1+ 3x+ ! z? 4 ! /z(m7t+2)2u(t)dt
’ n 5 10 10 Jo
3., 1.4 1 [ 2
16. u(z) =243z + _z°+ z° — (z —t+2)%u(t)dt
2 6 2 /o

17. u(z) =1 —xsinx+/

tu(t)dt 18. u(z) = xcoshz — / tu(t)dt
0

0

1 1 [=®
19. u(z) = —1+4+¢e* + 2:6263C ~ / tu(t)dt
0

20. u(z) =1 —zsinxz + zcosz + / tu(t)dt
0
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3.2.5 The Successive Approxrimations Method

The successive approximations method, also called the Picard iteration method
provides a scheme that can be used for solving initial value problems or inte-
gral equations. This method solves any problem by finding successive approx-
imations to the solution by starting with an initial guess, called the zeroth
approximation. As will be seen, the zeroth approximation is any selective
real-valued function that will be used in a recurrence relation to determine
the other approximations.
Given the linear Volterra integral equation of the second kind

u(z) = f(z) + )\/Om K (z,t)u(t)dt, (3.180)

where u(z) is the unknown function to be determined, K (z,t) is the kernel,
and )\ is a parameter. The successive approximations method introduces the
recurrence relation

un(z) = f(z) + )\/;K(x,t)un_l(t)dt,n >, (3.181)

where the zeroth approximation ug(z) can be any selective real valued func-
tion. We always start with an initial guess for ug(z), mostly we select 0,1, x
for ugp(z), and by using (3.181), several successive approximations uy, k > 1
will be determined as

ui(z) = f(z) + )\/OI K (x,t)uo(t)dt,

wle) = )+ [ K ou o

uz(r) = f(z) + A/Om K (z, t)us(t)dt, (3.182)

un(z) = f(2) —|—)\/:K(a:,t)un_1(t)dt.

The question of convergence of u,(x) is justified by noting the following
theorem.

Theorem 3.1 If f(x) in (3.181) is continuous for the interval 0 < x < a, and
the kernel K(z,t) is also continuous in the triangle 0 < x < a,0 < t < z, the
sequence of successive approzimations u,(x),n = 0 converges to the solution
u(x) of the integral equation under discussion.

It is interesting to point out that the variational iteration method admits
the use of the iteration formula:

tni1(0) = un(e) + [ A© (8“55) - Mf)) . (3.183)

whereas the successive approximations method uses the iteration formula
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x
up(z) = f(z) + )\/ K(z,t)up—1(t)dt,n > 1. (3.184)
0
The difference between the two formulas can be summarized as follows:

1. The first formula contains the Lagrange multiplier A that should be
determined first before applying the formula. The successive approximations
formula does not require the use of A.

2. The first variational iteration formula allows the use of the restriction
U (&) where 0, () = 0. The second formula does require this restriction.

3. The first formula is applied to an equivalent ODE of the integral equa-
tion, whereas the second formula is applied directly to the iteration formula
of the integral equation itself.

The successive approximations method, or the Picard iteration method
will be illustrated by the following examples.

Example 3.19

Solve the Volterra integral equation by using the successive approximations
method

u(z) =1-— /Om(x — t)u(t)dt. (3.185)

For the zeroth approximation ug(x), we can select

uo(z) = 1. (3.186)
The method of successive approximations admits the use of the iteration
formula

s (2) = 1 — / (& — un (D)t n > 0. (3.187)
0
Substituting (3.186) into (3.187) we obtain

up(z) =1— /Oz(x — up(t)dt =1 — 21!932,

v 1 1
ug(x) =1— / (x —tu(t)dt =1 — _ 2? +  z*,
0

2! 4!
‘ 1 1 1 (3.188)
us(z) =1— / (x —tug(t)dt =1 — _2® 4+ o' — ab,
0 2! 4! 6!
v 1 1 1 1
ug(z) =1— / (x —tus(t)dt =1 — _ 2?4+ o* — 204+ a8
0 2! 4! 6! 8!
Consequently, we obtain
n . a2k
k=0 '

The solution u(z) of (3.185)
u(z) = lm upyq(x) = cosw. (3.190)
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Example 3.20
Solve the Volterra integral equation by using the successive approximations
method

145 1 (7 9
u(lz)=1+z+ 5% + 2/0 (x —t)*u(t)dt. (3.191)

For the zeroth approximation ug(x), we can select
uo(x) = 0. (3.192)

The method of successive approximations admits the use of the iteration
formula

1 1 [
Unt1(z) =1+ + 2x2 + 9 / (x — t)2up, (t)dt,n > 0. (3.193)
0
Substituting (3.192) into (3.193) we obtain
1
ui(z) =1+z+ 2'1‘2,
1 1 1 1
ug(z) =1+ + 2!332 - 3!933 - 4!904 - 5!335, (3.194)
— Lo, g by s be 1o 1
ta@) =Tt g o T T T T Tyt
and so on. The solution u(x) of (3.191) is given by
u(z) = lm upqqi(x) = €”. (3.195)

Example 3.21

Solve the Volterra integral equation by using the successive approximations
method

w(@) = —1+ ¢ + Lq2er ! / " tu(t)dt. (3.196)
2 2 /s
For the zeroth approximation wug(x), we select
up(x) = 0. (3.197)
We next use the iteration formula
U1 () = —1 4+ €® + ;xzez _ ; /0 tun (t)dt,m > 0. (3.198)

Substituting (3.197) into (3.198) we obtain

1
up(z) =—1+¢€" + 2'9:26"”,

1 5 1
ug(:c):—3—|—4:102—|—e””(3—2:v—4—4;102—43103)7
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1 1 1 1
us(x) = (1 +z+ 2'x2 + 3'333 + 4'334 + 5'335 —l—) ) (3.199)
1 1 1 1 1
Uny1(z) = (1+$+ 2!962 + 3!x3+ 4!x4 + 5!565 + 7!m7+-~-) .

Notice that we used the Taylor expansion for e* to determine ug(x), us(z), ...
The solution u(z) of (3.196)

u(z) = lm upyi(x) = xe®. (3.200)
Example 3.22

Solve the Volterra integral equation by using the successive approximations
method

u(z) =1—xsinz + zcosz + / tu(t)dt. (3.201)
0
For the zeroth approximation wug(x), we may select
uo(x) = . (3.202)
We next use the iteration formula
Upt1(z) =1 —zsinx + zcosx + / tuy, (t)dt,n > 0. (3.203)
0

Substituting (3.202) into (3.203) gives

1,
up(x) =1+ 3% —zsinz + zcosw,

1 1
ug(z) =3+ 2x2 + 151‘3 — (2432 —2?)sinx — (2 — 3z — 2?) cos z,
1 1 1 1 1 1
us(z) = <x 3 7!”“"7) * (l B LA i 6!x6> :
n 241 n 2k
_ E T kT
tna () = 3 (=1) @k+1) > (1) (2k)!"
k=0 k=0

(3.204)
Notice that we used the Taylor expansion for sinx and cosx to determine
the approximations us(x), us(x),. ... The solution u(x) of (3.201) is given by

u(z) = lm upq1(x) =sinx + cosx. (3.205)

Exercises 3.2.5

Use the successive approzimations method to solve the following Volterra integral
equations:

1. u(z) =2+ /Ox u(t)dt 2. u(z) =z + /O:C(x — t)u(t)dt
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3. u(z) = éxs - /:(x “Hu(®)dt A u(z) =1+ 22+ 4/:(@» e

5. u(z) = éx?’ n /Oz(x “Du®dt 6 ulz) =1+ a2 — /:(m 1) 2u(t)dt

7. u(z) = ;mQ — /Oz(x — t)u(t)dt 8. u(x) =1- ;wQ + (15 /Oz(x — t)3u(t)dt

9. u(z) = 1+ 3/; u(t)dt 10. u(z) = 1 — 2sinha + /Oz (@ — t + 2)u(t)dt

11. u(z) =3 + 22 — /Ox(x —tu(t)dt 12. u(z) =1— zsinz + /0£C tu(t)dt

13. u(z) = zcoshx — /I tu(t)dt 4. u(z)=1—z— /z (z — t)u(t)dt
Jo 0

x x
15. u(z) =1 — / 3t2u(t)dt 16. u(z) = 2z coshz — 4/ tu(t)dt
0 0

17. u(z) = 1+ sinhx — sinz + cosz — coshz + / u(t)dt
0

18. u(z) = 1+ sinhx 4 sinaz — cosz + coshz — / u(t)dt
0

19. u(z) =2 —2cosx — /m (z — t)u(t)dt
Jo

20. u(z) = —x + 2sinhz + / (z — t)u(t)dt
0

3.2.6 The Laplace Transform Method

The Laplace transform method is a powerful technique that can be used for
solving initial value problems and integral equations as well. We assume that
the reader has used the Laplace transform method, and the inverse Laplace
transform, for solving ordinary differential equations. The details and prop-
erties of the Laplace method can be found in ordinary differential equations
texts.

Before we start applying this method, we summarize some of the con-
cepts presented in Section 1.5. In the convolution theorem for the Laplace
transform, it was stated that if the kernel K (x,t) of the integral equation:

u(z) = f(z) + )\/096 K (z,t)u(t)dt, (3.206)

depends on the difference x —t, then it is called a difference kernel. Examples
of the difference kernel are e¢*~¢, cos(z — t), and & — t. The integral equation
can thus be expressed as

u(z) = f(x) + A /01/’ K(x — t)u(t)dt. (3.207)
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Consider two functions fi(z) and fo(z) that possess the conditions needed
for the existence of Laplace transform for each. Let the Laplace transforms
for the functions f;(z) and f2(x) be given by

L{fi(z)} = Fi(s),
L{f2(x)} = Fa(s).

The Laplace convolution product of these two functions is defined by

(3.208)

(fix f2)(z / fi(z —1t) fa2(t)dt (3.209)
or
(f2* fu)( / fa(x —t) fr(t)dt (3.210)
Recall that
(f1# f2)(2) = (f2 % f1) (). (3.211)

We can easily show that the Laplace transform of the convolution product
(f1 % f2)(x) is given by

Eﬂh*hﬂ@}zﬁ{ééhm—ﬂﬁmﬁ}:FM@E@) (3.212)

Based on this summary, we will examine specific Volterra integral equations
where the kernel is a difference kernel. Recall that we will apply the Laplace
transform method and the inverse of the Laplace transform using Table 1.1
in Section 1.5.

By taking Laplace transform of both sides of (3.207) we find

U(s) = F(s) + AK(s)U(s), (3.213)
where
U(s) = Lu@)}, K(s) = L{K (@)}, Fs) = £{f(2)}.  (3214)
Solving (3.213) for U(s) gives
_ F(s)
U(s) = 1= AK(s)” K(s) # 1. (3.215)

The solution u(x) is obtained by taking the inverse Laplace transform of both
sides of (3.215) where we find

- F(s)
=Lt . 21
u(z) =L {1 B AMS)} (3.216)
Recall that the right side of (3.216) can be evaluated by using Table 1.1

in Section 1.5. The Laplace transform method for solving Volterra integral
equations will be illustrated by studying the following examples.

Example 3.23

Solve the Volterra integral equation by using the Laplace transform method

u(z) =1+ /OI u(t)dt. (3.217)
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Notice that the kernel K (z —t) = 1, A = 1. Taking Laplace transform of both
sides (3.217) gives

L{u(z)} = L{1} + L{1 xu(x)}, (3.218)
so that L1
U(s) = 5 + SU(s)7 (3.219)
or equivalently
Us) = ! . (3.220)

By taking the inverse Laplace transform of both sides of (3.220), the exact
solution is therefore given by

u(z) = e”. (3.221)

Example 3.24
Solve the Volterra integral equation by using the Laplace transform method
w(@) =1 /0 "o = Dt (3.222)

Notice that the kernel K (x —t) = (x —t), A = —1. Taking Laplace transform
of both sides (3.222) gives

L{u(z)} = L{1} — L{(z — ) xu(x)}, (3.223)

so that L1
U(s) = ¢ g2 U(s), (3.224)

or equivalently .
U(s) = EYRE (3.225)

By taking the inverse Laplace transform of both sides of (3.225), the exact
solution
u(z) = cosz, (3.226)

is readily obtained.
Example 3.25

Solve the Volterra integral equation by using the Laplace transform method

u(r) = 31! - /:(x — t)u(t)dt. (3.227)
Taking Laplace transform of both sides (3.227) gives
L{u(z)} = 31!6{963} — L{(z —t) xu(x)}. (3.228)
This gives
U(s) = ! X 3 1U(s), (3.229)

so that
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1 1 1
s2(s24+1) 82 s241°

Taking the inverse Laplace transform of both sides of (3.230) gives the exact
solution

U(s) = (3.230)

u(z) =z —sinz. (3.231)
Example 3.26
Solve the Volterra integral equation by using the Laplace transform method
x
u(x) =sinx + cosx + 2/ sin(x — t)u(t)dt. (3.232)
0

Recall that we should use the linear property of the Laplace transforms.
Taking Laplace transform of both sides (3.232) gives

L{u(z)} = L{sinx + cosx} + 2L{sin(z — ) * u(x)}, (3.233)
so that
)= .0+ 5+ 2 U (3.234)
241 s2+41 0 s2+1 ’ ’

or equivalently
1

s—1°
Taking the inverse Laplace transform of both sides of (3.235) gives the exact
solution

U(s) = (3.235)

u(z) = e”. (3.236)

Exercises 3.2.6
Use the Laplace transform method to solve the Volterra integral equations:
1 u(@) =z + /OZ (@ — tu(t)dt 2 u(z) =1 —z— /OZ (@ — tyu(t)dt
3. u(z) = 1 — ;:ﬂ + é /Om (@ — DPu(t)dt 4 u(z) =1+ 3/02(:6 — Du(t)dt
5. u(@) =@ — 1+ /O‘T'(x — Du(t)dt

@

6. u(x) = cosz — sinz + 2/ cos(z — t)u(t)dt
0

7. u(z) =e® —cosx — 2/ e tu(t)dt 8 wu(x)=1-— / (z—1t)? - 1) u(t)dt
0 0

9. u(z) = sinz + sinhx + coshx — 2/ cos (z — t)u(t)dt

10. u(z) = sinhz 4 coshx — cosz — 2/ (z — t)u(t)dt

11. u(xz) = sinz — cosx + coshx — 2/ cosh (z — t)u(t)dt
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x
12. u(z) = sinz + cosz + sinhz — 2/ cosh (z — t)u(t)dt
0

13. u(z) =2e* —2—z + /z (z — t)u(t)dt 14. u(xz) = 2coshz — 2 + /I(m — t)u(t)dt
0 0

15. u(z) =2 — 2cosx — /Oz(x —tu(t)dt 16. u(x) =1+ /OI sin(z — t)u(t)dt

3.2.7 The Series Solution Method

A real function u(z) is called analytic if it has derivatives of all orders such
that the Taylor series at any point b in its domain

n
f® (b
u(z) = Z k!( )(m —b)*, (3.237)
k=0
converges to f(z) in a neighborhood of b. For simplicity, the generic form of

Taylor series at = 0 can be written as

o0
= ana". (3.238)

In this section we will present a useful method, that stems mainly from the
Taylor series for analytic functions for solving Volterra integral equations.
We will assume that the solution u(z) of the Volterra integral equation

u(z) +A/‘th (3.239)

is analytic, and therefore possesses a Taylor series of the form given in (3.238),
where the coefficients a,, will be determined recurrently. Substituting (3.238)
into both sides of (3.239) gives

S e = T(f(@)) + A / " k(1) (i Wﬂ) dt, (3.240)
n=0 0 n=0

or for simplicity we use

a0+a1x+a2x2+...:T(f( +)\/ th)(a0+a1t+a2t2 )dt

(3.241)
where T'(f(x)) is the Taylor series for f(z). The integral equation (3.239) will
be converted to a traditional integral in (3.240) or (3.241) where instead of
integrating the unknown function u(z), terms of the form ¢, n > 0 will be
integrated. Notice that because we are seeking series solution, then if f(x)
includes elementary functions such as trigonometric functions, exponential
functions, etc., then Taylor expansions for functions involved in f(z) should
be used.

We first integrate the right side of the integral in (3.240) or (3.241), and
collect the coefficients of like powers of x. We next equate the coefficients of
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like powers of x in both sides of the resulting equation to obtain a recurrence
relation in a;,j > 0. Solving the recurrence relation will lead to a complete
determination of the coefficients a;, 7 > 0. Having determined the coefficients
a;,j = 0, the series solution follows immediately upon substituting the de-
rived coefficients into (3.238). The exact solution may be obtained if such an
exact solution exists. If an exact solution is not obtainable, then the obtained
series can be used for numerical purposes. In this case, the more terms we
evaluate, the higher accuracy level we achieve.

Example 3.27

Solve the Volterra integral equation by using the series solution method

u(z) =1 +/ u(t)dt. (3.242)
0
Substituting u(z) by the series
u(z) = Z anz”, (3.243)
n=0

into both sides of Eq. (3.242) leads to

oo x e3¢}
> apa" =1+ / (Z ant"> dt. (3.244)
n=0 0 n=0

Evaluating the integral at the right side gives

oo oo 1

anz” =1+ Azt 3.245
2 2ni 2]

that can be rewritten as

o oo 1
" =1 n—12", 3.246
ag + ; anx + nz::l , On—17 ( )
or equivalently
1 1

ap + a1z + agx® + asz® + - =1+ apx + 2(11902 + 3a2m2 +-o. (3.247)

In (3.245), the powers of x of both sides are different, therefore, we make
them the same by changing the index of the second sum to obtain (3.246).
Equating the coefficients of like powers of  in both sides of (3.246) gives the
recurrence relation

apg = 1,
(3.248)
Ap = QAp_1,n = 1.
n
where this result gives
1
p = 1570 > 0. (3.249)

Substituting this result into (3.243) gives the series solution:
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u(@) =Y 71! ", (3.250)
n=0
that converges to the exact solution u(z) = e*.
It is interesting to point out that this result can be obtained by equating
coefficients of like terms in both sides of (3.247), where we find

Cl():l, alza():l,

Qa l(l !
2 = 1= 1
22 (3.251)
1 1

Ap = Ap—1 = '
n n.

This leads to the same result obtained before by solving the recurrence rela-
tion.

Example 3.28

Solve the Volterra integral equation by using the series solution method

u(r) =+ / (z — t)u(t)dt. (3.252)
0
Substituting u(z) by the series
u(z) = Z anz", (3.253)
n=0

into both sides of Eq. (3.252) leads to

i anx’ =+ /T (i za,t" — i ant”+1> dt. (3.254)
n=0 0 n=0 n=0

Evaluating the right side leads to

oo oo 1
apz” =+ nx"”, 3.255
72 72(n+2)(n+1)a ( )

that can be rewritten as

o0 o0
1
ap + a1 + Z anz" =T + Z n(n —1) Ap_ox", (3.256)
n=2 n=2
or equivalently
2 3 1 5 1 5 1 4
ap+ a1x + asx” +agxr” + - =x + anz + 6a1:1: + 12a2:1: + -+ (3.257)

Equating the coefficients of like powers of = in both sides of (3.256) gives the
recurrence relation
ap =0, a; =1,

(3.258)
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This result can be combined to obtain

1

= on " (3:259)

Substituting this result into (3.253) gives the series solution

c- 1 2n+1
= n 3.260
WD =3 (3.260)
that converges to the exact solution

u(z) = sinh . (3.261)

It is interesting to point out that this result can also be obtained by equating
coefficients of like terms in both sides of (3.257), where we find

a0:O, CL1:1, a2:2a0:07
.262
R ) N (3.262)
BTN T gy MT 2T

This leads to the same result obtained before by solving the recurrence rela-
tion.

Example 3.29

Solve the Volterra integral equation by using the series solution method
x
u(z) =1—zsinx + / tu(t)dt. (3.263)
0
For simplicity reasons, we will use few terms of the Taylor series for sin x and
for the solution u(z) in (3.263) to find
ap + a1z + azx® + asr® + agxt + -

23 x (3.264)
:1—33(33— a1 +> +/ t(ag + art + apt® + ---)dt.

: 0
Integrating the right side and collecting the like terms of x we find

. 1 1 1 1
ap+ar1z+asx®+asrd+agxt+- - = 1+(2a071)x2+3a1x3+(6+4a2)x4+~ .
(3.265)
Equating the coefficients of like powers of z in (3.265) yields
apg = 1, ay = 0,
1 1 1
ay = 2a071:72!, asz = 3(11:0,
111 (3.266)
U6 T 4Ty
and generally
_1)»
aon+1 =0, ag, = (1) n > 0. (3.267)
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The solution in a series form is given by

1 1 1
24 et — b4 (3.268)

ulz) =1- 27+ 6!

that gives the exact solution by
u(x) = cos . (3.269)
Example 3.30

Solve the Volterra integral equation by using the series solution method
u(z) =2"—2—=z Jr/ (x — t)u(t)dt. (3.270)
0

Proceeding as before, we will use few terms of the Taylor series for e* and
for the solution u(z) in (3.270) to find

ao +a1x+a2x2 +a3x3 +a4x4+~~~

1 1 v
=z+a2?+ 2+ JU4—|—-~-—|—/(m—t)(ao+a1t—|—a2t2+~--)dt.
0

3 12
(3.271)
Integrating the right side and collecting the like terms of = we find

ap +a1x—+—a2x2 —|—a3x3 —|—a4m4 + -

=+ 1+1a x? + 1+1a 3+ 1+1a xt +
- 27" 376" 12 1277 '

(3.272)
Equating the coefficients of like powers of z in (3.272) yields
1 1
aon,alzl,agzl,a3:2!,a4:3!7... (3273)
and generally
1
an= ,, mn=1lay=0. (3.274)
nl
The solution in a series form is given by
1 1 1
u(x):x(1+x+2!x2+3!x3+4!x4+-~-), (3.275)
that converges to the exact solution
u(z) = ze®. (3.276)
Exercises 3.2.7
Use the series solution method to solve the Volterra integral equations:
1u(z)=1-— /I u(t)dt 2. u(z) =1-— /z(x — t)u(t)dt
0 0
3. u(z) =z + /x(:r: — Dut)dt 4 u(z) =1+ ;x + ; /x(x it Du(t)dt
0 0

5. u(z) =1+ xe® — /Oz tu(t)dt 6. u(z) =142z + 4/Oz(x — t)u(t)dt
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7. u(x) =34+ 2% — /Ox(x — t)u(t)dt 8. u(x) =1+ 2sinz — /Ox u(t)dt

9. u(z) =zcosx + / tu(t)dt 10. u(z) = zcoshz f/ tu(t)dt
Jo 0

11. u(z) = 2coshz — 2 + /z(a: — t)u(t)dt
0

12, u(z) =1 —a — /Oz(x ~ tyu(t)dt 13. u(z) = ¢ — eln(l + o) + /Om wu(t)dt

1 x
14. u(z) = 2% — 2:83 +23In(1 +z) — / 2zu(t)dt
0

15. u(x) = secx + tanx — /

sectu(t)dt 16. u(z) == +/ tan tu(t)dt
Jo 0

3.3 Volterra Integral Equations of the First Kind

The standard form of the Volterra integral equations of the first kind is given
by

f(z) = /Oﬂf K (z,t)u(t)dt, (3.277)

where the kernel K (z,t) and the function f(z) are given real-valued functions,
and u(x) is the function to be determined. Recall that the unknown function
u(x) appears inside and outside the integral sign for the Volterra integral
equations of the second kind, whereas it occurs only inside the integral sign
for the Volterra integral equations of the first kind. This equation of the first
kind motivated mathematicians to develop reliable methods for solving it. In
this section we will discuss three main methods that are commonly used for
handling the Volterra integral equations of the first kind. Other methods are
available in the literature but will not be presented in this text.

3.3.1 The Series Solution Method

As in the previous section, we will consider the solution u(x) to be analytic,
where it has derivatives of all orders, and it possesses Taylor series at = 0
of the form

u(az) = Z anxn7 (3278)
n=0

where the coefficients a,, will be determined recurrently. Substituting (3.278)
into (3.277) gives
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T(f(z)) = /O zK(ﬂc,t) (Z ant"> dt, (3.279)
n=0

or for simplicity we can use
T(f(x)) = / K(z,t) (ap + a1t + ast® + -+ ) dt, (3.280)
0

where T'(f(x)) is the Taylor series for f(z).

The integral equation (3.277) will be converted to a traditional integral in
(3.279) or (3.280) where instead of integrating the unknown function u(z),
terms of the form ¢, n > 0 will be integrated. Notice that because we are
seeking series solution, then if f(z) includes elementary functions such as
trigonometric functions, exponential functions, etc., then Taylor expansions
for functions involved in f(z) should be used.

The method is identical to that presented before for the Volterra integral
equations of the second kind. We first integrate the right side of the inte-
gral in (3.279) or (3.280), and collect the coefficients of like powers of x. We
next equate the coefficients of like powers of x in both sides of the resulting
equation to obtain a recurrence relation in aj,j > 0. Solving the recurrence
relation will lead to a complete determination of the coefficients a;,j > 0.
Having determined the coefficients a;,j > 0, the series solution follows im-
mediately upon substituting the derived coefficients into (3.278). The exact
solution may be obtained if such an exact solution exists. If an exact solution
is not obtainable, then the obtained series can be used for numerical pur-
poses. In this case, the more terms we evaluate, the higher accuracy level we
achieve. This method will be illustrated by discussing the following examples.

Example 3.31

Solve the Volterra integral equation by using the series solution method
x
sinx — xcosx = / tu(t)dt. (3.281)
0

Proceeding as before, only few terms of the Taylor series for sinx — x cosz
and for the solution u(x) in (3.281) will be used. Integrating the right side
we obtain

x
xd— x7+o~:/ t(ap 4+ art + ast?® + ast® + ---)dt,
0

1 1 1
= aox?+ a1z + asxt+ 5a3x5

2 3 4
1 1
—|—6a4x6 + 7a5x7 + -
(3.282)
Equating the coefficients of like powers of  in (3.282) yields
ap=0, ag=1, ax=0, a3=— as = 0,a5 = (3.283)

317 51

The solution in a series form is given by
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1 1
u(z) =z — 3!:103 + 5!:55 o (3.284)
that converges to the exact solution
u(z) = sinz. (3.285)

Example 3.32

Solve the Volterra integral equation by using the series solution method
€T
241 —2e" +xe” = / (x — t)u(t)dt. (3.286)
0

Using few terms of the Taylor series for 24z — 2e® + ze” and for the solution
u(zx) in (3.286), and by integrating the right side we find

1 1 1 ¢
6m3—|—12x4+40x5+... :/0 (x —t)(ap + a1t + agt® + - - - )dt

1 1 1 1
= 2a0$2 + 6&11'3 + 12@21'4 + 20@31'5 (3287)
+ Lt +
a x e
30"
Equating the coefficients of like powers of = in (3.287) yields
1 1
(10:0, 01:1, 02:1, a3 = 2‘, a4 = 3', (3288)
The solution in a series form is given by
1 1
u(:r:):x(l—i—x—l—2|x2+3'x3+---), (3.289)
that converges to the exact solution
u(z) = ze”. (3.290)

Example 3.33

Solve the Volterra integral equation by using the series solution method

2

Using the Taylor series for x —
as before we find

1 x
r— 2 —In(l+z)+2%n(l +2) = / 2tu(t)dt. (3.291)
0

1

522 —In(1+ z) + 2% In(1 + z) and proceeding

24 14 2 5 1 4
37 T T Tt
= / 2t(ag + art + ast® + ast® +---)dt (3.292)
0
2 1 2 1
= aon + 3a1x3 + 2a2x4 + 5a3x5 + 3a4x6 + -
Equating the coefficients of like powers of z in (3.292) yields
P R S T R (3.293)
ap =Y, a1 =1, a2 = 2’(13—3,&4— 4 .

The solution in a series form is given by
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1 1 1
u(r) =z — 2x2+3x3— 4x4+~-~ (3.294)
that converges to the exact solution
u(z) =1In(1 + x). (3.295)

Exercises 3.3.1

Use the series solution method to solve the Volterra integral equations of the first
kind:

x x
l.e* —1—z= / (z —t+ Du(t)dt 2. zcoshz — sinhx = / u(t)dt
0 Jo

x 1 xT
3. 14 ze® —e” = / tu(t)dt 4.1+ 33:3 +ze” — e = / tu(t)dt
0 0

(S

1 x
. —1—1‘+6x3+ex:/ (z — t)u(t)dt
0

T T

6. —m+2sinm—mcosm:/ (z —t)u(t)dt 7. —1+coshm:/ (z — t)u(t)dt
0

0

8.z — 2sinhz + zcoshz = / (z — t)u(t)dt
0
9.14z —sinx — cosz :/ (z — t)u(t)dt 10.1—z—e™ " :/ (z — t)u(t)dt
0 0

1 x
11. —1’—1—2m2+ln(1+x)+x1n(1+x):/ u(t)dt
JO

1 x
12, z%e® = / e tu(t)dt
2 0

3.3.2 The Laplace Transform Method

The Laplace transform method is a powerful technique that we used before for
solving initial value problems and Volterra integral equations of the second
kind. In the convolution theorem for the Laplace transform method, it was
stated that if the kernel K (z,t) of the integral equation

/ K(x, Hu(t)dt, (3.206)

depends on the difference = — ¢, then it is called a difference kernel. The
Volterra integral equation of the first kind can thus be expressed as

= /x K (x — t)u(t)dt. (3.297)
0

Consider two functions fi(x) and f2(x) that possess the conditions needed
for the existence of Laplace transform for each. Let the Laplace transforms
for the functions fi(z) and f2(x) be given by
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L{f1(z)} = Fi(s),
L{f2(z)} = Fa(s).

The Laplace convolution product of these two functions is defined by

(3.298)

(fi* f2)(z / fi(z —1t) f2(t)dt (3.299)
or
(f2* fu)( / fa(z —t) f1(t)dt (3.300)
Recall that
(f1* f2)(z) = (f2* f1)(2). (3.301)

We can easily show that the Laplace transform of the convolution product
(f1* f2)(x) is given by

c«ﬁ*hﬂ@}-ﬁ{lfﬁ@—whma}—fw@a@y (3.302)

Based on this summary, we will examine specific Volterra integral equations
of the first kind where the kernel is a difference kernel. Recall that we will
apply the Laplace transform method and the inverse of the Laplace transform
using Table 1.1 in Section 1.5.

By taking Laplace transform of both sides of (3.297) we find

F(s) =K(s)U(s), (3.303)
where
U(s) = Llu@)}, K(s) = LK)}, Fs) = £{f(2)}.  (3304)
Solving (3.303) gives -
U(s) = Kgg (3.305)
where
K(s) # 0. (3.306)

The solution u(z) is obtained by taking the inverse Laplace transform of both
sides of (3.305) where we find

u(z) = £ {28 } . (3.307)

Recall that the right side of (3.307) can be evaluated by using Table 1.1 in
Section 1.5. The Laplace transform method for solving Volterra integral equa-
tions of the first kind will be illustrated by studying the following examples.

Example 3.34

Solve the Volterra integral equation of the first kind by using the Laplace
transform method

x
e’ —sinx — cosx = / 2e* " u(t)dt. (3.308)
0

Taking the Laplace transform of both sides of (3.308) yields
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1 1 5 2

5_1_32+1_52+1:S_1U(8)a (3.309)
or equivalently
2 2
= U(s)- 3.310
(s—1)(s2+1) s-—1 (s) ( )

This in turn gives
1

= . 311
U= 4y (3311)
Taking the inverse Laplace transform of both sides gives the exact solution
u(z) = sinz. (3.312)

Example 3.35

Solve the Volterra integral equation of the first kind by using the Laplace
transform method

l42—e = / "t = )t (3.313)

Notice that the kernel is (¢t — x) = —(z — t).
Taking the Laplace transform of both sides of (3.313) yields

1 1 1 1
- = — 314
s+52 s—1 SQU(S)’ (3.314)
so that ( 0 . ) .
s(s—1)+s—1—-s
=— _Ul(s). 3.315
s2(s—1) 52 (s) ( )
Solving for U(s) we find
1
U(s) = . 3.316
()=, (3:316)
Taking the inverse Laplace transform of both sides gives the exact solution
u(zx) = e”. (3.317)

Example 3.36

Solve the Volterra integral equation of the first kind by using the Laplace
transform method

1 x
—142%+ 6333 + 2sinhz + coshx = / (x —t + 2)u(t)dt. (3.318)
0
Taking the Laplace transform of both sides of (3.318) yields
s3 452 —1 1 2
= U 3.319
P G O (3:319)
or equivalently
1 s
= . . 2
U(s) s2+52—1 (3.320)

Taking the inverse Laplace transform of both sides gives the exact solution
u(x) = x + cosh z. (3.321)
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Exercises 3.3.2

Use the Laplace transform method to solve the Volterra integral equations of the first
kind:

1.z —sinz = / (z — t)u(t)dt 2. e* +sinz — cosx = / 2e” "ty (t)dt
Jo 0]

1 xT xT
3.1+ 3'w3 —cosx = / (x —t)u(t)dt 4. 1+x—sinz —cosx = / (z — t)u(t)dt
' 0 0
x x
5.z = / (14 2(x —t)u(t)dt 6. sinhz = / e tu(t)dt
0 Jo
T x= / (@ — t+ Du(t)dt 8.1—z—e "= / (t — 2)u(t)dt
0 0
1 x
9. 14— ad—e* = / (t — z)u(t)dt
3! 0
1, 1.4 @
10. 1+ + 0T +3'x —sinx —cosz = (z —t+ Du(t)dt
: 0

11. 377a:+a:2+sinhx73coshm:/l(wftf?))u(t)dt
0

12. 1 —cosz = / cos(z — t)u(t)dt
0

3.3.3 Conversion to a Volterra Equation of the Second
Kind

In this section we will present a method that will convert Volterra integral
equations of the first kind to Volterra integral equations of the second kind.
The conversion technique works effectively only if K (z,x) # 0. Differentiating
both sides of the Volterra integral equation of the first kind

fla) = / K (o, t)u(t)dt, (3.322)
0
with respect to z, and using Leibnitz rule, we find
xT
f(z) = K(z,z)u(x) —|—/ K, (z, t)u(t)dt. (3.323)
0

Solving for u(x), provided that K (z,x) # 0, we obtain the Volterra integral
equation of the second kind given by

f'(x) / col
= — K, (z, t)u(t)dt. 3.324
u(@) K(z,z) o K(z,z) (2, t)u(?) ( )
Notice that the non-homogeneous term and the kernel have changed to
f'(x)
= . 2
o@) = Lo (3:325)

and
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G(z,t) = — K, (z,t), (3.326)

K(xz,x)
respectively.

Having converted the Volterra integral equation of the first kind to the
Volterra integral equation of the second kind, we then can use any method
that was presented before. Because we solved the Volterra integral equations
of the second kind by many methods, we will select distinct methods for
solving the Volterra integral equation of the first kind after reducing it to a
second kind Volterra integral equation.

Example 3.37

Convert the Volterra integral equation of the first kind to the second kind
and solve the resulting equation

sinhz = /I e tu(t)dt. (3.327)
Differentiating both sides of (3.327) gnd using Leibnitz rule we obtain
coshz = u(x) + /x " tu(t)dt, (3.328)
that gives the Volterra integral equationoof the second kind
u(z) = cosha — /03c e tu(t)dt. (3.329)

We select the Laplace transform method for solving this problem. Taking
Laplace transform of both sides gives
] 1
U(s) = 21 s_ 1U(s), (3.330)
that leads to

1
U(s) = . 3.331
6)= ., (3331)
Taking the inverse Laplace transform of both sides gives the exact solution
u(x) =e". (3.332)

Example 3.38

Convert the Volterra integral equation of the first kind to the second kind
and solve the resulting equation

1+sinz —cosz = / (x —t+ Du(t)dt. (3.333)
0

Differentiating both sides of (3.333) and using Leibnitz rule we obtain the
Volterra integral equation of the second kind

u(r) = cosz +sinz — / u(t)dt. (3.334)
0

We select the modified decomposition method for solving this problem. There-
fore we set the modified recurrence relation
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uo(xz) = cosx,

(3.335)

win(e) = = [ un(tde =0,k > 1
0
This gives the exact solution by
u(z) = cos . (3.336)
Example 3.39

Convert the Volterra integral equation of the first kind to the second kind
and solve the resulting equation

922 + 52® = /m(mx — 10t + 6)u(t)dt. (3.337)
Differentiating both sides of (3.3307) and using Leibnitz rule we obtain
18z + 1522 = 6u(x) + / ' 10u(t)dt, (3.338)
that gives the Volterra integral equation of tohe second kind
u(z) = 32 + ng - g /O ")t (3.339)

We select the Adomian decomposition method combined with the noise terms
phenomenon for solving this problem. Therefore we set the recurrence relation

S 5 [°
uo(x) = 3z + 2352, Upt1 () = —g / ug(t)dt, k>0, (3.340)
0
that gives
5, 5, 254
_ _ 02 _ .8 341
uo(x) =3z + gL uy(x) 0% = 1g% (3.341)

Canceling the noise term 5z?, that appear in ug(z) and ui(z), from wug(x)
gives the exact solution by
u(z) = 3z. (3.342)

Remarks

1. Tt was stated before that if K (x,2) = 0, then the conversion of the first
kind to the second kind fails. However, if K(z,z) = 0 and K (z,x) # 0, then
by differentiating the Volterra integral equation of the first kind as many
times as needed, provided that K(z,t) is differentiable, then the equation
will be reduced to the Volterra integral equation of the second kind.

2. The function f(x) must satisfy specific conditions to guarantee a unique
continuous solution for u(z). The determination of these special conditions
will be left as an exercise.



3.3 Volterra Integral Equations of the First Kind 117

However, for the first remark, where K (z,x) = 0 but K, (z,x) # 0, we will
differentiate twice, by using Leibnitz rule, as will be shown by the following
illustrative example.

Example 3.40

Convert the Volterra integral equation of the first kind to the second kind
and solve the resulting equation

rsinhz = 2 / sinh(z — )u(t)dt. (3.343)
0
Differentiating both sides of (3.343) and using Leibnitz rule we obtain
x coshx + sinhz = 2/ cosh(z — t)u(t)dt, (3.344)
0

which is still a Volterra integral equation of the first kind. However, because
K, (z,x) # 0, we differentiate again to obtain the Volterra integral equation
of the second kind

1 €T
u(x) = coshx + 2:vsinhx - / sinh(z — t)u(t)dt. (3.345)
0

We select the modified decomposition method for solving this problem. There-
fore we set the modified recurrence relation
uo(x) = coshz,

1 xr
ui(z) = 2xsinhx — /0 sinh(z — t)uo(t)dt = 0, (3.346)

T
U1 (x) = f/ sinh(z — t)ug(t)dt =0, k> 1.
0

The exact solution is given by
u(z) = coshz. (3.347)

Exercises 3.3.3

In Exercises 1-12, use Leibnitz rule to convert the Volterra integral equation of the
first kind to a second kind and solve the resulting equation:

x xT

2e " ty(t)dt 2. e — cosx :/ e " tu(t)dt

1. e* +sin$fcosa::/
0

0
3.x= / (z —t+ Du(t)dt 4. e” +sinx — cosz = / 2 cos(xz — t)u(t)dt
0 0
x 1 x
5. e —x—1= / (z —t+ Du(t)dt 6. 23:26”” = / e tu(t)dt
0 0
7.e"—1= / (z —t+ Du(t)dt 8. sinx —cosz + 1= / (z —t+ Du(t)dt
0 0

x
9. 5zt 4 2% = / (z —t+ Du(t)dt
0
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x
10. 4 4+ = — 4e” + 3ze” = / (z —t+ 2)u(t)dt
0
1 "
11. —=3—z+2% + 3':53 + 3e” :/ (x —t+ 2)u(t)dt
: 0

12. tanz —Incosz = / (z —t+ Du(t)dt,x < g
0

In Exercises 13-16, use Leibnitz rule twice to convert the Volterra integral equation
of the first kind to the second kind and solve the resulting equation:

13. zsinz = / 2sin(z — t)u(t)dt 14. ¥ —sinz — cosx = / 2sin(x — t)u(t)dt
0 0
x
15. sinz —cosx + e~ % = / 2sin(z — t)u(t)dt
0

16. sinx — zcosx = / 2sinh(z — t)u(t)dt
0
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Chapter 4
Fredholm Integral Equations

4.1 Introduction

It was stated in Chapter 2 that Fredholm integral equations arise in many
scientific applications. It was also shown that Fredholm integral equations
can be derived from boundary value problems. Erik Ivar Fredholm (1866—
1927) is best remembered for his work on integral equations and spectral
theory. Fredholm was a Swedish mathematician who established the theory
of integral equations and his 1903 paper in Acta Mathematica played a major
role in the establishment of operator theory.

As stated before, in Fredholm integral equations, the integral containing
the unknown function u(z) is characterized by fixed limits of integration in
the form

b
(@) = F(@) + A / K (2, tyu(t)dt, (4.1)

where a and b are constants. For the first kind Fredholm integral equations,
the unknown function u(z) occurs only under the integral sign in the form

b
z) = / K (x, Hu(t)dt. (4.2)

However, Fredholm integral equations of the second kind, the unknown func-
tion w(z) occurs inside and outside the integral sign. The second kind is
represented by the form

u(x) —I-)\/Kmt (4.3)

The kernel K (x,t) and the function f(x) are given real-valued functions [9],
and A is a parameter. When f(z) = 0, the equation is said to be homogeneous.

In this chapter, we will mostly use degenerate or separable kernels. A de-
generate or a separable kernel is a function that can be expressed as the sum
of the product of two functions each depends only on one variable. Such a
kernel can be expressed in the form

A-M. Wazwaz, Linear and Nonlinear Integral Equations
© Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg 2011



120 4 Fredholm Integral Equations

K(z,t) = Zfi(x)gi(t)- (4.4)

Examples of separable kernels are z — ¢, (z — t)?, 4xt, etc. In what follows we
state, without proof, the Fredholm alternative theorem.

Theorem 4.1 (Fredholm Alternative Theorem) If the homogeneous Fredholm
integral equation

b
u(z) = A / K (z, t)u(t)dt (4.5)

has only the trivial solution u(z) = 0, then the corresponding nonhomoge-
neous Fredholm equation

b
u(z) = f(x) + )\/ K(x,t)u(t)dt (4.6)

has always a unique solution. This theorem is known by the Fredholm alter-
native theorem [1].

Theorem 4.2 (Unique Solution) If the kernel K(x,t) in Fredholm integral
equation (4.1) is continuous, real valued function, bounded in the square a <
x<banda <t<b, and if f(x) is a continuous real valued function, then
a mecessary condition for the existence of a unique solution for Fredholm
integral equation (4.1) is given by
IAM(b—a) <1, (4.7)
where
|K(z,t)| < M € R. (4.8)

On the contrary, if the necessary condition (4.7) does not hold, then a
continuous solution may exist for Fredholm integral equation. To illustrate
this, we consider the Fredholm integral equation

1
u(z) =—-2—-3z+ / 3z + t)u(t)dt. (4.9)
0
It is clear that A = 1,|K(x,t)] < 4 and (b — a) = 1. This gives
AMb—a)=4 £ 1. (4.10)
However, the Fredholm equation (4.9) has an exact solution given by
u(z) = 6. (4.11)

A variety of analytic and numerical methods have been used to handle
Fredholm integral equations. The direct computation method, the successive
approximations method, and converting Fredholm equation to an equiva-
lent boundary value problem are among many traditional methods that were
commonly used. However, in this text we will apply the recently developed
methods, namely, the Adomian decomposition method (ADM), the modi-
fied decomposition method (mADM), and the variational iteration method
(VIM) to handle the Fredholm integral equations. Some of the traditional
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methods, namely, successive approximations method, and the direct compu-
tation method will be employed as well. The emphasis in this text will be on
the use of these methods rather than proving theoretical concepts of conver-
gence and existence. The theorems of uniqueness, existence, and convergence
are important and can be found in the literature. The concern will be on the
determination of the solution u(x) of the Fredholm integral equations of the
first kind and the second kind.

4.2 Fredholm Integral Equations of the Second Kind

We will first study Fredholm integral equations of the second kind given by
b
u(z) = f(z) + )\/ K (z, t)u(t)dt. (4.12)

The unknown function u(x), that will be determined, occurs inside and out-
side the integral sign. The kernel K (xz,t) and the function f(x) are given
real-valued functions, and A is a parameter. In what follows we will present
the methods, new and traditional, that will be used to handle the Fredholm
integral equations (4.12).

4.2.1 The Adomian Decomposition Method

The Adomian decomposition method (ADM) was introduced and developed
by George Adomian in [2-5] and was used before in Chapter 3. The Adomian
method will be briefly outlined.

The Adomian decomposition method consists of decomposing the un-
known function u(z) of any equation into a sum of an infinite number of
components defined by the decomposition series

u(z) = Z un (), (4.13)

or equivalently
u(x) = uo(x) + ur(r) +ug(x) + - - (4.14)

where the components u,(x),n > 0 will be determined recurrently. The
Adomian decomposition method concerns itself with finding the components
Ug, U1, Uz, . . . individually. As we have seen before, the determination of these
components can be achieved in an easy way through a recurrence relation
that usually involves simple integrals that can be easily evaluated.

To establish the recurrence relation, we substitute (4.13) into the Fredholm
integral equation (4.12) to obtain
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oo b oo
> un(z) = f(z) + )\/ K (x,t) (Z un(t)> dt, (4.15)
n=0 a n=0

or equivalently

b
uo(m)+u1(z)+uz(x)+~~:f(af)Jr)\/ K(x,t) [uo(t) +ug(t) + -] dt.

(4.16)
The zeroth component ug(z) is identified by all terms that are not included
under the integral sign. This means that the components u;(z),j > 0 of the
unknown function u(z) are completely determined by setting the recurrence
relation

b
wo(@) = f(@),  tnpt(x) = A / K(z, un(t)dt, n >0, (4.17)

or equivalently
uo(x)

= f(z),
b
up(z) = )\/ K (x,t)uo(t)dt,

b 4.18
ua(@) = A / Kz, )ur (t)dt, (4.18)

b
us(z) = )\/ K (x, t)us(t)dt,

and so on for other components.

In view of (4.18), the components ug(x), uy(x), us(x), uz(x),... are com-
pletely determined. As a result, the solution u(x) of the Fredholm integral
equation (4.12) is readily obtained in a series form by using the series as-
sumption in (4.13).

It is clearly seen that the decomposition method converted the integral
equation into an elegant determination of computable components. It was
formally shown that if an exact solution exists for the problem, then the ob-
tained series converges very rapidly to that exact solution. The convergence
concept of the decomposition series was thoroughly investigated by many
researchers to confirm the rapid convergence of the resulting series. How-
ever, for concrete problems, where a closed form solution is not obtainable, a
truncated number of terms is usually used for numerical purposes. The more
components we use the higher accuracy we obtain.

Example 4.1

Solve the following Fredholm integral equation
1
u(z) =€ —a+ x/ tu(t)dt. (4.19)
0

The Adomian decomposition method assumes that the solution u(x) has a
series form given in (4.13). Substituting the decomposition series (4.13) into
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both sides of (4.19) gives

'] 1 ]
S un(z)=e® —a+ x/ £y un(t)dt, (4.20)
n=0

n=0 0
or equivalently
1
uo(x) +ur(x) +ug(x)+--- =€ forx/ t{ug(t) + ui(t) + ua(t) + - - -] dt.
0

(4.21)
We identify the zeroth component by all terms that are not included under
the integral sign. Therefore, we obtain the following recurrence relation

1
up(x) =€* —x, upp1(z) = x/ tug(t)dt, k> 0. (4.22)
0

Consequently, we obtain

1 1
2
= tuy (t)dt = t*dt =
w(@) =o [ 0=z [ Jea- o o)
= tus(t)dt = t°dt =
uz(x) x/o uz(t) x/o 9 97
= tus(t)dt = t°dt =
ug(x) x/o us(t) x/o o7 g1
and so on. Using (4.13) gives the series solution
2 1 1 1
u(x):ew—x+3x(l+3+9+27+"')- (4.24)

Notice that the infinite geometric series at the right side has a; = 1, and the
ratio r = L,l,‘ The sum of the infinite series is therefore given by

1 3
S = e . 4.25
The series solution (4.24) converges to the closed form solution
u(z) =e”, (4.26)

obtained upon using (4.25) into (4.24).
Example 4.2

Solve the following Fredholm integral equation

™

u(z) =sinz —x + x/OZ u(t)dt. (4.27)

Proceeding as before, we substitute the decomposition series (4.13) into both
sides of (4.27) to find
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Z Uy(r) =sinz —z+ = / ’ Z un, (t)dt, (4.28)
n=0 0 n=o

or equivalently

™

2
uo(x)+uy () fug(z)+--- = sinx—x—i—x/ [uo(t) +uy(t) 4+ ---]dt. (4.29)
0
We identify the zeroth component by all terms that are not included under

the integral sign. Therefore, we obtain the following recurrence relation:

™

up(z) =sine —x, upt1(z) = 1’/2 ug(t)dt, k>0. (4.30)
0

Consequently, we obtain
uo(z) = sinx — x,

uy(x) = x/2 uo(t)dt = o — _ x,
0 8

2 ™ ™
= t)dt = —
w(@) =o [“ud =" 2= )
3 . 6
us(x) —33/0 uz(t)dt = 64% " 512%

2 p 76 i
ug(x) —x/o uz(t)dt = £12% ~ 10067

and so on. Using (4.13) gives the series solution

w2 2 gt
—sinzx — 1— _
u(x) = sinx x+( 8>x—|—<8 64)33

7T4 7T6 776 778
- - 4.32
+<64 512)“’(512 4096)”3+ (4-32)

We can easily observe the appearance of the noise terms, i.e the identical
terms with opposite signs. Canceling these noise terms in (4.32) gives the

exact solution
u(z) = sinz. (4.33)

Example 4.3

Solve the following Fredholm integral equation

4 1
u(z) =z +e" — 3 +/ tu(t)dt. (4.34)
0
Substituting the decomposition series (4.13) into both sides of (4.34) gives
[eS) 4 1 [eS)
S un(z) =z +et— o + / tS " unt)t, (4.35)
n=0 3 0 n=0

or equivalently
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1
uop(x)+uq(z)fuz(x)+--- = a:+ezf§+/ tuo(t) +ui(t) +---]dt. (4.36)
0

Proceeding as before, we set the following recurrence relation

4 1
up(z) =z +e” — 3 Upt1(z) = / tug(t)dt, k>0. (4.37)
0
Consequently, we obtain
4 ! 2
up(z) =z +e” — ur(z) = [ tup(t)dt =,
3 o 3
! 1 ! 1
uz(x) :/ tur(t)dt = _,  us(x) :/ tug(t)dt = (4.38)
0 3 0 6
! 1
’LL4((£) :/0 tu;>,(t)dt = 12,
and so on. Using (4.13) gives the series solution
u(x)—x+ef”—4+2 1+1+1+1+ (4.39)
B 33 2 48 ' ‘

Notice that the infinite geometric series at the right side has a; = 1, and the
ratio r = % The sum of the infinite series is therefore given by

1
S = 1 =2 (4.40)
1—
2
The series solution (4.39) converges to the closed form solution
u(x) =z + €. (4.41)

Example 4.4

Solve the following Fredholm integral equation
u(x) =2+ cosx + /Tr tu(t)dt. (4.42)
Proceeding as before we find '
oo x oo
Z Un(x) =24 cosx + /0 tz U (t)dt, (4.43)
or equivalently " "
wo(x) +uy(z) +ug(z)+--- = 2—}—(30896—1—/7r tlug(t) +ui(t) +---]dt. (4.44)
We next set the following recurrence relatioon
uo(x) =24 cosx, upyi(x)= /OTr tug(t)dt, k> 0. (4.45)

This in turn gives
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up(x) = 2+ cosx,

ui(z) = / uo(t)dt = =2 + 72,
0

i 1
us(z) = / up (t)dt = —72 + 271'47
0

(4.46)
@ = [ waod = —)xt+
uz(xr) = o us 271' 4
T 1 1
U4($) :/O U3(t)dt 47T6+ 8 8
and so on. Using (4.13) gives the series solution
1
u(z) =2+ cosx + (=2 + 72) + (—7r2 + 27r4)
1 1 1 1
+ <27T4 + 47T6> + (—47r6 + 87r8> + - (4.47)

We can easily observe the appearance of the noise terms, i.e the identical
terms with opposite signs. Canceling these noise terms in (4.47) gives the
exact solution

u(z) = cosx. (4.48)

Example 4.5

Solve the following Fredholm integral equation

u(z) =1+ ; /OW sec? zu(t)dt. (4.49)

Substituting the decomposition series (4.13) into both sides of (4.49) gives

Zun(x) =1+ ! sec x /4 Zun (4.50)
n=0

or equivalently

1 i
wo(x)+uy () fug(z)+--- =1+ ) sec’ x / [uo(t) 4wy (t) 4 ---]dt. (4.51)
0
Proceeding as before, we set the recurrence relation
1 i
uo(x) =1, upyi(z) = 5 sec2x/ ug(t)dt, Kk =0. (4.52)
0

Consequently, we obtain
up(z) =1,
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™

_ e ‘ _ T2
us(x) = o 5€C x/o up(t)dt = 16 5¢¢" %)
Lo 2 i T ne2
uz(z) = _ sec®x us(t)dt = __sec” x, (4.53)
o 32
1

i
ug(x) = 5 sec? x/ uz(t)dt = él sec? z,
0

and so on. Using (4.13) gives the series solution

1 1 1
u(a:)=1+gse02x<1+2+4+8+~-~>. (4.54)

The sum of the infinite series at the right side is S = 2. The series solution
(4.54) converges to the closed form solution

u(z) =1+ Z sec? . (4.55)

Example 4.6

Solve the following Fredholm integral equation

u(z) = mx + sin 2z + 3:/ tu(t)dt. (4.56)
Proceeding as before we find
Z Un(x) = 7o + sin 2z + x/ t Z un (t)dt. (4.57)
n=0 -7 n=0

To determine the components of u(z), we use the recurrence relation

up(x) = mx + sin 2z,  upsq(x) = x/ tug(t)dt, k >=0. (4.58)

This in turn gives

up(z) = mx + sin 2z,
T 2
up(z) = x/ uo(t)dt = —mwa + 371'43:,
0

T 2 4 4.59
ug(x) = 3:/ ui(t)dt = =" mtez + 7'a, (4.59)
0

i 4 8
us(x) = x/o uz(t)dt = —97r7m + 277r10x,

and so on. Using (4.13) gives the series solution

2 2 4
u(x) = mx + sin 2z + <—7r—|— 37r4> x+ <37r4 + 97T7> x

4 8
+ (—9777—|— 277710> T4 (4.60)
Canceling the noise terms in (4.60) gives the exact solution

u(x) = sin 2z. (4.61)
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Exercises 4.2.1

In Exercises 1-20, solve the following Fredholm integral equations by using the Ado-
mian decomposition method

1. u(z) =e+1— e+/01 u(t)dt 2. u(z) =e® +e ! /01 u(t)dt

ks

3. u(x) = cosz + 2z +/ tu(t)dt 4. u(z) =sinz —z + / * wtu(t)dt
0 0

_ z+2 ! x+t _x 6w+1 -1 _ ! xt
5. u(z)=e 2 e tu(t)dt 6. u(z) =e® + e u(t)dt
0 z+1 0

1
T.u(z) =z + (1 —x)e” +/ z2et@ =Dy (t)dt
0

8. u(z) =1 + sin m/2 u(t)dt
0

1 1 [t 1 1 (3
9. u(z) = ze® — _+ / u(t)dt 10. u(z) = zsinz — _ + /2 u(t)dt
27 2/, 2" 2/,
1 [T 2
11. u(xz) = zcosx + 1+ 5 / u(t)dt 12. u(z) =sinz + /2 sinz cos tu(t)dt
0 0
. 2 L ! 2,2
13. u(z) =z +sinz — zu(t)dt 14. u(z)=1-— 157 + (zt + x=t=)u(t)dt
Jo -1
19

1
15 u(z) =1— "2% + / (xt + x2t?)u(t)dt
—1

15

16. u(z) = —z +sinz + / ’ (142 —t)u(t)dt
0

e—(z+1) _q 1
17 u(z) =e % + +/ e~ Tty (t)dt
xT + 1 0
3 x 1 x+2 ! 4t
18. u(z) = _e® — _e + [ ST u(t)dt
2 2 o
1 = w
19. u(z) = o CO8T —i—/2 cos zsintu(t)dt 20. u(x) = Z —sec?x — /4 u(t)dt
0 0

4.2.2 The Modified Decomposition Method

As stated before, the Adomian decomposition method provides the solutions
in an infinite series of components. The components u;,j > 0 are easily
computed if the inhomogeneous term f(x) in the Fredholm integral equation

u(r) = +>\/th t)dt, (4.62)

consists of a polynomial of one or two terms. However, if the function f(z)
consists of a combination of two or more of polynomials, trigonometric func-
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tions, hyperbolic functions, and others, the evaluation of the components
uj,j = 0 requires more work. A reliable modification of the Adomian de-
composition method was presented and used in Chapter 3, and it was shown
that this modification facilitates the computational work and accelerates the
convergence of the series solution. As presented before, the modified decom-
position method depends mainly on splitting the function f(z) into two parts,
therefore it cannot be used if the f(x) consists of only one term. The modified
decomposition method will be briefly outlined here, but will be used in this
section and in other chapters as well.

The standard Adomian decomposition method employs the recurrence re-

lation
’U/O(iv) = f(x)a

b
U1 (x) = /\/ K (z, tup(t)dt, k>0, (4.63)

where the solution u(x) is expressed by an infinite sum of components defined
by

u(z) = Z U (). (4.64)
n=0

In view of (4.63), the components u,(z), n > 0 are readily obtained.

The modified decomposition method presents a slight variation to the re-
currence relation (4.63) to determine the components of u(x) in an easier and
faster manner. For many cases, the function f(z) can be set as the sum of
two partial functions, namely f1(z) and f2(x). In other words, we can set

f(z) = fi(z) + f2(). (4.65)
In view of (4.65), we introduce a qualitative change in the formation of the
recurrence relation (4.63). The modified decomposition method identifies the
zeroth component ug(z) by one part of f(x), namely fi(z) or fo(x). The
other part of f(z) can be added to the component u;(x) that exists in the
standard recurrence relation. The modified decomposition method admits the
use of the modified recurrence relation:

uo(z) = fi(w),

b
ui(z) = fo(x) + A/ Kie, uo(t)dt, (4.66)

b
Upt1(x) = )\/ K(x,t)ug(t)dt, k>1.
a

It is obvious that the difference between the standard recurrence relation
(4.63) and the modified recurrence relation (4.66) rests only in the formation
of the first two components ug(x) and wui(x) only. The other components
uj,j > 2 remain the same in the two recurrence relations. Although this
variation in the formation of ug(z) and uq(z) is slight, however it has been
shown that it accelerates the convergence of the solution and minimizes the
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size of calculations. Moreover, reducing the number of terms in f(z) affects
not only the component wu;(x), but also the other components as well.

We here emphasize on the two important remarks made in Chapter 3.
First, by proper selection of the functions fi(z) and fa(x), the exact solution
u(x) may be obtained by using very few iterations, and sometimes by eval-
uating only two components. The success of this modification depends only
on the proper choice of fi(z) and f2(z), and this can be made through trials
only. A rule that may help for the proper choice of fi(x) and fa(z) could
not be found yet. Second, if f(z) consists of one term only, the modified
decomposition method cannot be used in this case.

Example 4.7

Solve the Fredholm integral equation by using the modified decomposition
method

1 1
u(x)::3$—+e4m——16(17—%364)+:/1tu(ﬂdt. (4.67)
0
We first decompose f(z) given by
1
f(x) =3z + e — 16 (17 + 3e%), (4.68)

into two parts, namely
1
fi(z) =3z + €1 folz) = — 617+ 3et). (4.69)

We next use the modified recurrence formula (4.66) to obtain
uo(z) = fi(z) =3z + €',

1 1
up(r) = — (17 + 3e*) +/ tug(t)dt =0,
0

16 (4.70)

s () = / Kz, ux(t)dt = 0, k> 1.
0

It is obvious that each component of u;,j > 1 is zero. This in turn gives the
exact solution by
u(z) = 3z + e*. (4.71)

Example 4.8

Solve the Fredholm integral equation by using the modified decomposition
method

1 . @ ! arctant
u(z) = a2 2 sinh 4 + [1 e u(t)dt. (4.72)
Proceeding as before we split f(x) given by
1 LT
flz) = l4a2 2sinh N (4.73)

into two parts, namely



4.2 Fredholm Integral Equations of the Second Kind 131

1 LT
fi(z) = L4 a2 fa(x) = —2sinh 4 (4.74)
We next use the modified recurrence formula (4.66) to obtain
1
ug(z) = fi(x) = 1422’
- 1
up(z) = —2sinh . +/ eretantyq (t)dt = 0, (4.75)
—1

1
Upt1(x) = / edretanty, (ydt =0, k> 1.

-1
It is obvious that each component of u;,j > 1 is zero. This in turn gives the
exact solution by

1

u(x) = L4 g2

(4.76)

Example 4.9

Solve the Fredholm integral equation by using the modified decomposition
method

12— 1 !
u(x) =+ sin_l .’E;- + 9 71—93‘2 + 2562/ u(t)dt (477)
—1

We decompose f(z) given by
qarx+1 2—-7 4
+

f(x) =2 +sin ) 5 T (4.78)
into two parts given by
.1+ 1 2—m ,
fi(x) =z +sin 5 fo(z) = g T (4.79)
We next use the modified recurrence formula (4.66) to obtain
1
ug(z) = = +sin~* x;— ,
@) =224 1:52/1 up(t)dt = 0
ulr) =, 9 B 0 =0, (4.80)

1
Upt1(z) = —/ up(t)dt =0, k=>1.
—1

It is obvious that each component of u;,j > 1 is zero. The exact solution is
therefore given by
1 r+1

) (4.81)

u(z) = x4 sin~

Example 4.10

Solve the Fredholm integral equation by using the modified decomposition
method
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P4
u(r) =sec’z + 2% 4z — / ( z? + xu(t)) dt.
0 ™

(4.82)

The function f(z) consists of three terms. By trial we split f(z) given by

f(z) =sec? z + 2% + x,
into two parts
fi(x) =sec?z, folz) = 2% + 2.

Using the modified recurrence formula (4.66) gives

ug(z) = fi(x) = sec® z,

P4
up () :x2+x7/ ( x2+xu0(t)> dt =0,
0 m

Wi () = / K (o tun(t)dt = 0, k> 1.
0

As a result, the exact solution is given by

u(z) = sec’ z.

Exercises 4.2.2

(4.83)

(4.84)

(4.85)

(4.86)

Use the modified decomposition method to solve the following Fredholm integral equa-

tions:

1. u(z) =sinz — z +a:/2 tu(t)dt
0

2. u(z) = (4 2)x +sinz — cosz — x/ tu(t)dt
0

1
3.u(z) =e* + 1222 + 3+ e)z — 4 — / (z — t)u(t)dt
0
1 —1 1
4. u(z) = (mr — 2)x +sin™?! x;r —sin—1 " 5 / zu(t)dt
0

1
5. u(z) = —6 + 14z + 2122 + = — / (z* — tHu(t)dt
1

1
6. u(z) = o + z* + 9e* T — 23e* 7/ ety (t)dt
0

1
7T.u(x) =z +e® — 2% 4 2 —/ e tu(t)dt
0

re®tl 41 1
8. u(x) = ze” + —/ e“tu(t)dt
® e et

1
9. u(z) =t f e 4 (&2 + 1) ! f/ e " tu(t)dt
0

2 1
10. u(z) = 15 + 172x+x2 + a3 7/0 (14 z — t)u(t)dt
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1 1
11. u(z) = 2* — 4(62 + Dz +/ xtu(t)dt
0

1 1/t 5
12. u(z) = e (es — 1) + &2* — 3 / e® s tu(t)dt
0
1
13. u(z) =z + e® — ze” +/ z2e! @Dy (t)dt
0

14. u(z) = (712 4+ 27 — 4) — (7 + 2)z + x(sinxz — cosx) + /W(x — t)u(t)dt
0

15. u(z) = (m— 2)2(33 +1) +atan 'z — /1 14z — t)u(t)dt
1+e e® 1
16. u(m):ln( 9 >x+1+ez —/0 zu(t)dt

4.2.3 The Noise Terms Phenomenon

It was shown that a proper selection of fi(x) and fo(z) is essential to use the
modified decomposition method. However, the noise terms phenomenon, that
was introduced in Chapter 3, demonstrated a fast convergence of the solution.
This phenomenon was presented before, therefore we present here the main
steps for using this effect concept. The noise terms as defined before are the
identical terms with opposite signs that may appear between components
uo(x) and uq (). Other noise terms may appear between other components.
By canceling the noise terms between ug(z) and uy(z), even though wy(x)
contains further terms, the remaining non-canceled terms of ug(z) may give
the exact solution of the integral equation. The appearance of the noise terms
between ug(z) and wui(x) is not always sufficient to obtain the exact solution
by canceling these noise terms. Therefore, it is necessary to show that the
non-canceled terms of ug(x) satisfy the given integral equation.

It was formally proved in [6] that a necessary condition for the appearance
of the noise terms is required. The conclusion made in [6] is that the zeroth
component ug(z) must contain the exact solution u(x) among other terms.

The phenomenon of the useful noise terms will be explained by the follow-
ing illustrative examples.

Example 4.11

Solve the Fredholm integral equation by using the noise terms phenomenon:

ks

u(z) =xsine —x + /0 ’ au(t)dt. (4.87)

Following the standard Adomian method we set the recurrence relation
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up(z) = xsinx — z,

5 (4.88)
Up1(x) :/ zup(t)dt, k>0.
0
This gives
up(z) = xsinz — x,
B 2 (4.89)
up(z) = /2 xup(t)dt = x — 7r8 x.
0

The noise terms Fz appear in ug(x) and uq(z). Canceling this term from the
zeroth component ug(z) gives the exact solution

u(r) = rsinz, (4.90)
that justifies the integral equation. The other terms of uq(z) vanish in the
limit with other terms of the other components.

Example 4.12
Solve the Fredholm integral equation by using the noise terms phenomenon:
5
u(x) =sinz + cosx — ;Tx + / xtu(t)dt. (4.91)
0
The standard Adomian method gives the recurrence relation
up(z) = sinx + cosx — ;Tx,
. (4.92)
Ugt1(x) = / xtug(t)dt, k> 0.
0
This gives
. T
ug(z) = sinz + cosx — oL

(4.93)

H 4
ui(x) = / xtug(t)dt = ;rx — st
0

The noise terms F 732 appear in ug(x) and u;(z). Canceling this term from
the zeroth component ug(x) gives the exact solution

u(x) = sinz + cos z, (4.94)
that justifies the integral equation. It is to be noted that the other terms of
w1 (z) vanish in the limit with other terms of the other components.
Example 4.13

Solve the Fredholm integral equation by using the noise terms phenomenon:
. 3 -
9 sin x T 2

= In2— t)dt. 4.95

u(z) =x +1+cosx+24x+xn x/o u(t) (4.95)

The standard Adomian method gives the recurrence relation:
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: 3
up(z) = 22 1j_1nx +72T4m—|—x1n2,
: cos (4.96)
g1 (z) = —a:/ u(t)dt, k>=0.
0
This gives
- 3
up(z) = 22 + SIE —i-ﬂ-gc—i—scln27
1+cosz 24
. (4.97)
() = — * zu (t)dt*fﬂgx—xln2—7r2ln2x— i x
B A V1 8 192"

The noise terms :I:gz:r, +21n2 appear in uo(x) and wu;(z). Canceling these
terms from the zeroth component ug(z) gives the exact solution

9 sin x

u(x) = z° + (4.98)

1+ cosz’
that justifies the integral equation. The other terms of wj(x) vanish in the
limit with other terms of the other components.

Example 4.14

Solve the Fredholm integral equation by using the noise terms phenomenon
3 T
u(z) = 2> + xcosw + 7; T —2x — x/ u(t)dt. (4.99)
0

Proceeding as before, we set the recurrence relation
3
uo(z) = 2% + xcosw + 7; xr — 2w,
(4.100)

upt1(z) = —x/ ug(t)dt, k> 0.
0
This gives
3
ug(x) = 2% + xcosx + g T~ 2z,

™ 3 5
ur(x) = —x/ uo(t)dt = —x (—2 - > .
0 3 6

The noise terms + 7;)3 x, F2x appear in ug(x) and u (z). Canceling these terms
from the zeroth component wug(x) gives the exact solution

u(z) = 2% + zcos z, (4.102)
that justifies the integral equation (4.99).

(4.101)

Exercises 4.2.3

Use the noise terms phenomenon to solve the following Fredholm integral equations:

1.u(x):1+(72r+ln2)a:+ cos® f/zxu(t)dt
0

1+ sinx
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2 ™
2. u(x):x(l—l—w—i—l)—ﬁ—xsinx—/ zu(t)dt
0

3 x
Bouz)=z(1+ " +x2+seczx—/4xu(t)dt
192 o

4. u(z) = z(mr — 2+ sinz + cosx) — / zu(t)dt
0

sinx 5

7'I'2 2
5. = 1 In2 — t)dt
u(z) ac( + S +In )+1+cosm /0 zu(t)

6. u(z) =2(14+1In2) +sinz + COS,x - /2 zu(t)dt
1+ sinx 0

E

sinac(Z—ljsinm) _ /2 su(t)dt
1+ sinx Jo

E

T
2

T sinz 2

8. = -1 — t)dt

u(@) (2 )m+1+sinx /0 zu(t)

— /3 T

(7‘{' \/>:c+ cosx f/sl‘u(t)dt
0

1+ sinx

2 .
10. u(z) = (4 — 7; ) x4+ 2 (sinz + cosx) + /2 zu(t)dt

1. u(z) = (1 n sin(2m)) - /Of‘ su(t)dt

b

12, u(z) = (“ N 2) 2 +  cos(2x) — /0 su(t)dt

1 2

13. u(z) = 1422 32

1
x—l—/ xtan "1 tu(t)dt
0
1
14. u(z) = mx +cos "t a — / zu(t)dt
-1

1
15. u(z) = —Zm—i—mcos*lm —/ u(t)dt
—1

=2 1
16. u(z) = ( 5 )w—l—wtan_lx—/ zu(t)dt
—1

4.2.4 The Variational Iteration Method

In Chapter 3, the variational iteration method was used to handle Volterra
integral equations, where the Volterra integral equation was converted to an
initial value problem or to an equivalent integro-differential equation. The
method provides rapidly convergent successive approximations to the exact
solution if such a closed form solution exists.

In this section, we will apply the variational iteration method to han-
dle Fredholm integral equation. The method works effectively if the kernel
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K (x,t) is separable and can be written in the form K (x,t) = g(z)h(t). The
approach to be used here is identical to the approach used in the previous
chapter. This means that we should differentiate both sides of the Fredholm
integral equation to convert it to an identical Fredholm integro-differential
equation. It is important to note that integro-differential equation needs an
initial condition that should be defined. In view of this fact, we will study
only the cases where g(z) = 2™, n > 1. Solving Fredholm integro-differential
equation by the variational iteration method will be studied again in details
in Chapter 6.
The standard Fredholm integral equation is of the form

b
u(z) = f(z) —|—/ K (x,t)u(t)dt, (4.103)

or equivalently
b

u(z) = f(x) +g(m)/ h(t)u(t)dt. (4.104)

a

Recall that the integral at the right side represents a constant value. Differ-
entiating both sides of (4.104) with respect to = gives
b

o' (z) = /() +g’(:z:)/ h(t)u(t)dt. (4.105)
The correction functional for the integro-differential equation (4.105) is
T b
nia (@) = n(a) + [ 2@ <u'n<s> ~ro-ge© [ h(r)an<r>dr> .
0 a
(4.106)

As presented before, the variational iteration method is used by applying
two essential steps. It is required first to determine the Lagrange multiplier
A(€) that can be identified optimally via integration by parts and by using
a restricted variation. However, A(§) = —1 for first order integro-differential
equations. Having determined )\, an iteration formula, without restricted vari-
ation, given by

T b
1 (z) = (1) — / <u;,<§> — 1) - d© / h(r)un<r>dr> de, (4.107)

is used for the determination of the successive approximations wu,y1(x),n >
0 of the solution w(z). The zeroth approximation ug can be any selective
function. However, using the given initial value «(0) is preferably used for
the selective zeroth approximation ug as will be seen later. Consequently, the
solution is given by

u(z) = lim w,(x). (4.108)

n—oo
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The variational iteration method will be illustrated by studying the following
Fredholm integral equations.

Example 4.15

Use the variational iteration method to solve the Fredholm integral equation
u(z) =€ — o+ x/l tu(t)dt. (4.109)
Differentiating both sides of this equation vovith respect to x yields
u(x)=€e" —1+ /1 tu(t)dt. (4.110)
The correction functional for this equationois given by

Un i1 () :un(x)—/ox (u;(g)—efﬂ—/ol run(r)dr) de,  (4.111)

where we used A\ = —1 for first-order integro-differential equations. Notice
that the initial condition u(0) = 1 is obtained by substituting x = 0 into
(4.109).

We can use the initial condition to select ug(z) = u(0) = 1. Using this
selection into the correction functional gives the following successive approx-
imations

up(z) =1,

ur(x) = uo(x) —

=¥ — > 0. .
Untl = €7 = o 0, TN 2 0 (4.112)
The VIM admits the use of
u(z) = lim uy,(z) = e”. (4.113)

n—oo

Example 4.16

Use the variational iteration method to solve the Fredholm integral equation

™

u(z) =sinz —xz 42 /0 ’ u(t)dt. (4.114)

Differentiating both sides of this equation with respect to = gives
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™

u'(x) = cosx — 1+ /2 u(t)dt. (4.115)
0

The correction functional for this equation is given by

g1 () = un () — /0 ’ <u;(5) ~cosE 41— /0 ’ un(r)dr> e, (4.116)

where we used A = —1 for first-order integro-differential equations. The initial
condition u(0) = 0 is obtained by substituting = 0 into (4.114).

We can use the initial condition to select ug(z) = u(0) = 0. Using this
selection into the correction functional gives the following successive approx-
imations

uo(x) =0,
u1(z) = up(x) — /0 (ug(f) —cosé+1— /02 uo(r)dr> d¢

uz(x)

ul(x)—/ow (u’l(g)—Qcosf—l—l—/ogul(r)dr) de -
= (sinz —x) + (x— 7T8 x),
ug(z) = ua(x) — /Ow (ué(g) —cosé+1— /g uz(r)dr> d¢

0

2 72 m
= (sinz — ) + <a: 81) + < g ¥~ 641’),
and so on. Canceling the noise terms, the exact solution is given by
u(zr) = sinz. (4.118)
Example 4.17

Use the variational iteration method to solve the Fredholm integral equation

u(x) = —2x + sinz + cosx + / xu(t)dt. (4.119)
0
Differentiating both sides of this equation with respect to = gives

s
u'(r) = =2+ cosz —sinx + / u(t)dt. (4.120)
0
The correction functional for this equation is given by

Unt1(2) = up(x) — /Ow (u;(é“) +2 —cos{ +sin — /07r un(r)dr> dg.

(4.121)
The initial condition u(0) = 1 is obtained by substituting 2 = 0 into (4.119).
Using this selection into the correction functional gives the following succes-
sive approximations
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uop (ZE) = 1,

we) = uoe) — [ (w6 +2 - cosg-+sine — [ ualriar ) ae

=sinx + cosz + (mx — 2z),
ug(z) = uy(z) — /I <u’1(§) +2—cosé +siné — -/7r ul(r)dr) d¢
0 0

3
=sinz + cosx + (7 — 2x) + <—7m: + 2z — w2z + 7; x) . (4.122)

T

ugz(x) = uz(z) — /Om <ul2(£) +2—cos&+sin — U2(’1")d’l”> d¢

0

3
= sinzx + cosz + (mx — 2x) + <—7rx+2x—7r2x—|— 7; x)

+(7r233—7r3x+~~~)
2 )

and so on. Canceling the noise terms, the exact solution is given by
u(z) = sinx + cosx. (4.123)
Example 4.18

Use the variational iteration method to solve the Fredholm integral equation

™

u(z) = —2® + cosz + /2 a3u(t)dt. (4.124)
0

Differentiating both sides of this equation with respect to = gives

™

() = —32% — sine + 3332/2 u(t)dt. (4.125)
0

The correction functional for this equation is given by

Unt1(x) = un(x)—/om (u;(ﬁ) + 3¢ +sin — 352/02 un(r)dr> d¢. (4.126)

The initial condition is u(0) = 1. Using this selection into the correction
functional gives the following successive approximations
Uuop (l’) = 1,

uy () = uo(x) — /Ox (%(5) +3¢% +siné — 352/02 uO(T)dr> dg

=coszT + (7T:173 — x?’) ,
2 (4.127)

z 3
uz () = uy(x) — / <u’1 (&) + 3% +sin¢ — 352/ ul(r)dr> d¢
0 0
—cosx—k(ﬂm?’—x?’)—&— —7r333+x3—7r4333+ i 3
B 2 2 64 1287 )7
and so on. Canceling the noise terms, the exact solution is given by
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u(x) = cos . (4.128)

Exercises 4.2.4

Solve the following Fredholm integral equations by using the the variational iteration
method

T

1. u(z) = cosz + 2z +/ xtu(t)dt 2. u(z) =sinx —x + /2 xtu(t)dt
0 0
1 1
3. u(x) =1-— 153:2 +/ (xt + 22t u(t)dt
—1
19 5 ! 2,2
4. u(z)=1-— 15% + (zt + x“t=)u(t)dt
—1

5. u(z) = (7 + 2)x +sinz — cosz — m/ tu(t)dt
0

1 1
6. u(z) = e2® — 4(62 + 1z +/ ztu(t)dt
0

1
7. u(x) =14 9z + 222 + 25 — / (20zt + 1022 t%)u(t)dt
0

8. u(z) = ;r:v +sinz — cosx + / x cos tu(t)dt
0

2 1 1
9. u(z) =14z +e* — 3 / xtu(t)dt 10. u(z) = 2z +€* — i / ztu(t)dt
0 0

11. u(z) == (i + sin(2x)) - /0Z zu(t)dt  12. u(z) = e® +2ze” ! — /_11 xtu(t)dt

E

3 ™ 3 .
13. u(z) = (T; + 3) T —cosx —/0 ztu(t)dt 14. u(z) = 2433 —sinz — /02 xtu(t)dt

b

15. u(x) = V2 + secx + tanx — /4 x sectu(t)dt
0
16. u(z) = ;ra: +sinz + cosx — /4 x sin tu(t)dt
Jo

4.2.5 The Direct Computation Method

In this section, the direct computation method will be applied to solve the
Fredholm integral equations. The method approaches Fredholm integral equa-
tions in a direct manner and gives the solution in an exact form and not in
a series form. It is important to point out that this method will be applied
for the degenerate or separable kernels of the form

K(z,t) =Y gr(z)hi(t). (4.129)
k=1
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Examples of separable kernels are x — ¢, t, 22 — t2, xt? + 2t, etc.
The direct computation method can be applied as follows:

1. We first substitute (4.129) into the Fredholm integral equation the form

b
(@) = f(@) + / K (2, t) u(t)dt. (4.130)

2. This substitution gives

u(z) = f(z) + g1(x /h1 (t)dt + ga(z /h2 t)dt + -
(4.131)

+gn(z) / R (t)u(t)dt.

3. Each integral at the right side depends only on the variable ¢t with
constant limits of integration for ¢. This means that each integral is equivalent
to a constant. Based on this, Equation (4.131) becomes

u(z) = f(z) + Aa1gi(z) + Aazga () + - + Aangn (), (4.132)

where .
;= / hi(@u(t)dt, 1<i<n. (4.133)
4. Substituting (4.132) into (4.133) gives a system of n algebraic equations
that can be solved to determine the constants «;,1 < ¢ < n. Using the

obtained numerical values of «; into (4.132), the solution u(x) of the Fredholm
integral equation (4.130) is readily obtained.

Example 4.19

Solve the Fredholm integral equation by using the direct computation method

1 1
u(z) = 32 + 322 + 5 / o2 tu(t)dt. (4.134)
0
The kernel K (z,t) = 2t is separable. Consequently, we rewrite (4.134) as
1 1
u(z) = 3z + 322 + 2332/ tu(t)dt. (4.135)
0

The integral at the right side is equivalent to a constant because it depends
only on functions of the variable ¢ with constant limits of integration. Con-
sequently, Equation (4.135) can be rewritten as
1
u(z) = 3z + 322 + 2ozx2, (4.136)

where

a= /1 tu(t)dt. (4.137)

0
To determine «, we substitute (4.136) into (4.137) to obtain

1
1
a= / t (3t +3t2 + 2at2> dt. (4.138)
0
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Integrating the right side of (4.138) yields

7 1
= 4.139
CT T (4.139)
that gives
a=2. (4.140)
Substituting (4.140) into (4.136) leads to the exact solution
u(z) = 3z + 422, (4.141)

obtained by substituting o = 2 in (4.136).
Example 4.20

Solve the Fredholm integral equation by using the direct computation method

1 1 3
u(z) = 3% +secxtanz — 396/0 u(t)dt. (4.142)

The integral at the right side is equivalent to a constant because it depends
only on functions of the variable ¢ with constant limits of integration. Con-
sequently, Equation (4.142) can be rewritten as

1 1
u(z) = 3% +secxtanz — 39T (4.143)
where .
3
a= / u(t)dt. (4.144)
0
To determine «, we substitute (4.143) into (4.144) to obtain
51 1
o= / ( t+secttant — at) dt. (4.145)
0o \3 3
Integrating the right side of (4.145) yields
1 1
=1 2 - 2 4.146
o' + 5™ T 5 O ( )
that gives
a=1. (4.147)
Substituting (4.147) into (4.143) gives the exact solution
u(z) = secx tan x. (4.148)

Example 4.21

Solve the Fredholm integral equation by using the direct computation method
1
w(z) =11z + 102° + 2° — / (302t* + 202°t)u(t)dt. (4.149)
0

The kernel K (x,t) = 30xt? + 2022t is separable. Consequently, we rewrite
(4.149) as

1 1
u(z) = 11z + 102% + 2% — 30x/ t2u(t)dt — 20> / tu(t)dt.  (4.150)
0 0
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Each integral at the right side is equivalent to a constant because it depends
only on functions of the variable ¢ with constant limits of integration. Con-
sequently, Equation (4.150) can be rewritten as

u(z) = (11 — 30a)z + (10 — 208)2? + 23, (4.151)
where

a= /1 t2u(t)dt,
0 (4.152)

1
B = /O tu(t)dt.

To determine the constants « and 3, we substitute (4.151) into (4.152) to
obtain

1
59 15
a= / t2((11 — 300)x + (10 — 208)x? + 23)dt = o 9O 44,
0 (4.153)
! 191
6= / t((11 — 300)t + (10 — 206)t? + 23)dt = 5 ~ 10a - 53.
0
Solving this system of algebraic equations gives
11 9
= = . 4.154
a=.0 B= (4.154)
Substituting (4.154) into (4.151) gives the exact solution
u(z) = 2% + 2. (4.155)

Example 4.22

Solve the Fredholm integral equation by using the direct computation method
1
u(z) = 4 + 452 + 262 — / (1 + 302t + 1222t )u(t)dt. (4.156)
0

The kernel K (z,t) = 1+ 30xt?+ 1222t is separable. Consequently, we rewrite

(4.156) as

1 1 1
u(z) = 4 + 452 + 262 — / u(t)dt — 30x/ t2u(t)dt — 12x2/ tu(t)dt.
0 0

(4.157)
Each integral at the right side is equivalent to a constant because it depends
only on functions of the variable ¢ with constant limits of integration. Con-
sequently, Equation (4.157) can be rewritten as

uw(z) = (4 — ) + (45 — 308)z + (26 — 127)z?, (4.158)

where

1 1 1
o= /0 w(t)dt, B = /0 Pu()dt, = /0 tu(t)dt. (4.159)

To determine the constants a, 3 and 7, we substitute (4.158) into each equa-
tion of (4.159) to obtain



4.2 Fredholm Integral Equations of the Second Kind 145

o= /1 ((4 — @) + (45 — 308)t + (26 — 12)t?) dt
0

211
6

B = /1 2 (4 — ) + (45 — 30B)t + (26 — 129)¢%) dt
0

06T 1 15 12
“ 60 3% 2 57

vy = /1 t((4— )+ (45— 3083)t + (26 — 127)t?) dt
0

—a— 158 —4~,

(4.160)

47 1
= — a—108 - 3.
9 T 9 B — 3y
Unlike the previous examples, we obtain a system of three equations in three

unknowns «, 3, and 7. Solving this system of algebraic equations gives

43 23
a=3, B=g5 1=y (4.161)
Substituting (4.161) into (4.158), the exact solution is given by
u(z) = 1+ 2z + 32°. (4.162)

Exercises 4.2.5

Use the direct computation method to solve the following Fredholm integral equations:
1
1ou(x) =1+ 9z + 222 + 23 — / (202t + 1022t )u(t)dt
0
1
2. u(x) = =8+ 1l — 2% + 23 — / (122 — 20t)u(t)dt
0
1
3. u(z) = —11+ 9z + 23 + 2% — / (202 — 30t)u(t)dt
0
1
4. u(z) = =15+ 102> + z* — / (202 — 56t%)u(t)dt
0
1
5. u(z) =14 7z + 2022 + 2% — / (10zt? + 2022 t)u(t)dt
o
6. u(x) (2 1>+ t /Z (t)dt
cu(x) = — 1)z +secxtanz — Tu
V3 0
2 3
7. u(z) = ( 37r —In(2 + \/3)) x +secrtanx — / " ztu(t)dt
0
1
8. u(z) =1 +/ In(zt)u(t)dt,0 < z < 1
o+

1
9. u(z)=14+Inz — /0+ In(xt?)u(t)dt,0 < z < 1
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Loz

10. u(x):l—l—lnm—/ lnt2u(t)dt,0<x<1
o+

11. u(z) =sinz + (m — 1) cosx — cosa:/ tu(t)dt
0
12. u(z) = ;Tx +sinz — cosx +/ x cos tu(t)dt
0

L

13. u(;t):l—l—;rsecQaL‘f/4

sec? zu(t)dt 14. u(z) =1 — /4 sec? zu(t)dt
0 0

2 (1 3 1
15. u(z)=14+z+e” — 3 / xtu(t)dt 16. u(z) =2z + * — 4 / xtu(t)dt
0 0

4.2.6 The Successive Approximations Method

The successive approximations method, or the Picard iteration method was
introduced before in Chapter 3. The method provides a scheme that can be
used for solving initial value problems or integral equations. This method
solves any problem by finding successive approximations to the solution by
starting with an initial guess as ug(z), called the zeroth approximation. As
will be seen, the zeroth approximation is any selective real-valued function
that will be used in a recurrence relation to determine the other approxi-
mations. The most commonly used values for the zeroth approximations are
0,1, or z. Of course, other real values can be selected as well.
Given Fredholm integral equation of the second kind

b
u(@) = F(@) + A / Kz, Hu(t)dt, (4.163)

where u(z) is the unknown function to be determined, K (z,t) is the kernel,
and A is a parameter. The successive approximations method introduces the
recurrence relation

up(xz) = any selective real valued function,

b
Uni(z) = f(x) +)\/ Ko tyun(t)dt, 1> 0. (4.164)

The question of convergence of w,(x) is justified by Theorem 3.1. At the
limit, the solution is determined by using the limit

u(x) = 7}1—I>r<>lo Un41(T). (4.165)

It is interesting to point out that the Adomian decomposition method
admits the use of an iteration formula of the form
ug(x) = all terms not included inside the integral sign,

b
wn(x) = A / K (x, o (t)dt,
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ua(x) = A / " Kty (1) (4.166)

b
Unt1 () = upn(z) + /\/ K (x, t)un(t)dt.

The difference between the two formulas (4.164) and (4.166) can be summa-
rized as follows:

1. The successive approximations method gives successive approximations
of the solution u(z), whereas the Adomian method gives successive compo-
nents of the solution u(x).

2. The successive approximations method admits the use of a selective
real-valued function for the zeroth approximation ug, whereas the Adomian
decomposition method assigns all terms that are not inside the integral sign
for the zeroth component ug(z). Recall that this assignment was modified
when using the modified decomposition method.

3. The successive approximations method gives the exact solution, if it
exists, by

u(z) = lIm upq1(x). (4.167)
n—oo

However, the Adomian decomposition method gives the solution as infinite
series of components by

u(z) = Z Un (). (4.168)

This series solution converges rapidly to the exact solution if such a solution
exists.

The successive approximations method, or the iteration method will be
illustrated by studying the following examples.

Example 4.23

Solve the Fredholm integral equation by using the successive approximations
method

u(z) =x+e* — /01 xtu(t)dt. (4.169)

For the zeroth approximation ug(x), we can select
uo(z) = 0. (4.170)

The method of successive approximations admits the use of the iteration
formula

1
Upt1(x) = +€® — / xtun (t)dt,n > 0. (4.171)
0

Substituting (4.170) into (4.171) we obtain
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1
1
ug(x) =z +e* — / xtuy (t)dt = e* — 3%
0
L 1 (4.172)
uz(x) =z +e* — / xtug(t)dt = e* + 9%
0
: (1
Upt1 = T+ €* — xtuy, (t)dt = e + gn T.
0
Consequently, the solution u(x) of (4.169) is given by
u(z) = Im wpqqi(x) = €®. (4.173)

Example 4.24

Solve the Fredholm integral equation by using the successive approximations

method 1

u(z) =z + )\/ xtu(t)dt. (4.174)

-1

For the zeroth approximation ug(x), we can select
uo(x) = . (4.175)
The method of successive approximations admits the use of the iteration

formula |

Unt1(z) =2 + )\/ xtuy (t)dt,n > 0. (4.176)

—1
Substituting (4.175) into (4.176) we obtain

2
ui(z) = x + 3)\:107
2 2\°
us(x) = x + 3)\90—1— 5 Nz,
2 2
uz(z) ==+ 3 5

2
Upt1(z) =z + 3)\x +
The solution u(x) of (4.17

ule) = lim () =

3—2)\
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obtained upon using the infinite geometric series for the right side of (4.177).
Example 4.25

Solve the Fredholm integral equation by using the successive approximations
method .
2
u(z) =sinz + sinx/ cos tu(t)dt. (4.179)
0
For the zeroth approximation wug(x), we select
uo(x) = 0. (4.180)

We next use the iteration formula

™

2
Unt1(x) =sinz + sinx/ costuy(t)dt, n >0. (4.181)
0
Substituting (4.180) into (4.181) we obtain
3
ui(x) = sinz, ug(z) = 5 sin z,
us(x) = sinz, wug(x)= _ sinz,
4 8 (4.182)
ntl 1
Upt1(x) = on sinx = (2 - 2n) sin .
The solution u(z) of (4.179) is given by
u(z) = lim upyq(z) = 2sinz. (4.183)

Example 4.26

Solve the Fredholm integral equation by using the successive approximations
method .
4
u(z) = x4 sec® x — / au(t)dt. (4.184)
0
For the zeroth approximation wug(x), we may select
uo(x) = 0. (4.185)

We next use the iteration formula

Uny1(z) = x4+ sec® x — /4 Uy (t)dt, n>0. (4.186)
This in turn gives '
uy(x) = sec® x + , ug(x) = sec? x — ;r; x,
U ) 70 (4.187)

us(r) = sec? x + ug(x) = sec® x —

10247
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w2\"
Upy1(7) = sec? x + (—1)" (32> x.
Notice that 2y
lim (32> = 0. (4.188)

n—oo

Consequently, the solution u(x) of (4.184) is given by
u(z) = lim u,y1(z) = sec? z. (4.189)

Exercises 4.2.6

Use the successive approzimations method to solve the following Fredholm integral
equations:

1 1
1. u(z) =z + )\/ ztu(t)dt 2. u(z) =142+ )\/ tu(t)dt
—1 —1

1 1
3. u(z) = e* + 2ze~ ! — / xtu(t)dt 4. u(x) =242z +€” —/ xtu(t)dt
—1 0
5. u(z) = 2z +sec® z — /4 zu(t)dt

4

6. u(z) =1+ <1+ Z)a:—i—secQJU—/4 zu(t)dt
0

7. u(z) = (;r - 1) ©+cosx — /O ctu(t)dt

L

8. u(z) = (7;3 + 3) T —cosx — /(: xtu(t)dt
9. u(z) = )

3 -
e sinz — /2 xtu(t)dt 10. u(z) =z +sinz — /2 xtu(t)dt
0 0
11. u(z) = (1 + 7;) T +secxtanz — /3 (1 + u(t))dt
0
3 3
12. u(z) = ¥ + secxtanx — x sectu(t)dt
0
13. u(z) = V2 + secx + tanz — /4 x sectu(t)dt
0
14. u(z) = gx +sinx + cosz —/4 x sintu(t)dt
0

15. u(x) = (7 + 2)x +sinz — cosz — /07T (14 u(t))dt

1
16. u(z) = = + In(at) — /o+ (3 + u(t))dt
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4.2.7 The Series Solution Method

A real function u(x) is called analytic if it has derivatives of all orders such
that the Taylor series at any point b in its domain
k

) (b

u n

u(z) = Z ol )(ac —-b)", (4.190)
n=0

converges to f(x) in a neighborhood of b. For simplicity, the generic form of

Taylor series at = 0 can be written as
u(w) = anz". (4.191)
n=0

Following the discussion presented before in Chapter 3, the series solution
method that stems mainly from the Taylor series for analytic functions, will
be used for solving Fredholm integral equations. We will assume that the
solution u(z) of the Fredholm integral equations

b
u(z) = f(z) + A / K (2, tyu(t)dt (4.192)

is analytic, and therefore possesses a Taylor series of the form given in (4.191),
where the coefficients a,, will be determined recurrently. Substituting (4.191)
into both sides of (4.192) gives

3 e = (/@) + A / 'K (f: Wm) dt, (4.193)
n=0 a n=0

or for simplicity we use

b
a0+a1x+a2:172+"':T(f(x))Jf)‘/ K(x’t) (a0+a1t+a2t2+‘..)dt,
a

(4.194)
where T'(f(x)) is the Taylor series for f(z). The integral equation (4.192) will
be converted to a traditional integral in (4.193) or (4.194) where instead of
integrating the unknown function u(z), terms of the form ¢, n > 0 will be
integrated. Notice that because we are seeking series solution, then if f(x)
includes elementary functions such as trigonometric functions, exponential
functions, etc., then Taylor expansions for functions involved in f(z) should
be used.

We first integrate the right side of the integral in (4.193) or (4.194), and
collect the coefficients of like powers of x. We next equate the coefficients of
like powers of x in both sides of the resulting equation to obtain a recurrence
relation in aj,j > 0. Solving the recurrence relation will lead to a complete
determination of the coefficients a;, j > 0. Having determined the coeflicients
aj,j = 0, the series solution follows immediately upon substituting the de-
rived coefficients into (4.191). The exact solution may be obtained if such an
exact solution exists. If an exact solution is not obtainable, then the obtained
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series can be used for numerical purposes. In this case, the more terms we
evaluate, the higher accuracy level we achieve.

It is worth noting that using the series solution method for solving Fred-
holm integral equations gives exact solutions if the solution u(z) is a poly-
nomial. However, if the solution is any other elementary function such as
sinz, e”, etc, the series method gives the exact solution after rounding few of
the coefficients a;,j > 0. This will be illustrated by studying the following
examples.

Example 4.27

Solve the Fredholm integral equation by using the series solution method
1

u(z) = (z +1)2 +/ (wt + 22t u(t)dt. (4.195)

—1
Substituting u(z) by the series

u(z) = Z anx” (4.196)
n=0

into both sides of Eq. (4.195) leads to

i anz™ = (x+1)% + /11 ((wt + 2%t%) i(a,ﬁ")) dt. (4.197)

- n=0

Evaluating the integral at the right side gives

5 3 2 2 2 2
ap+ a1x + asx® +azr’+--- =14+ |2+ 3a1+ 5a3+ 7a5+ 9(17 x
(14 200+ Zant Zaat Pt 2
30,0 5@2 7(14 9a6 11a8 xT~.
(4.198)
Equating the coefficients of like powers of = in both sides of (4.198) gives
25
ap=1, a3 =6, (12:97 a, =0, n=>=3. (4.199)
The exact solution is given by
25
u(z) =1+ 62 + 0 2, (4.200)

obtained upon substituting (4.199) into (4.196).
Example 4.28
Solve the Fredholm integral equation by using the series solution method
1
u(r) =% — 23 + / (14 at)u(t)dt. (4.201)
0

Substituting u(x) by the series

o0
u() =Y apa”, (4.202)
n=0
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into both sides of Eq. (4.201) leads to

i anz" = x? — 23 + /1 <(1 + at) i(aﬂ”)) dt. (4.203)
n=0 0

n=0
Evaluating the integral at the right side, and equating the coefficients of like
powers of x in both sides of the resulting equation we find

29 1
a0=—60, CL1=—67 az=1, az=-1, a,=0, n>4.  (4.204)
Consequently, the exact solution is given by
29 1
u(z) = ~o0 65T x? — 23, (4.205)

Example 4.29

Solve the Fredholm integral equation by using the series solution method

u(z) = —o* + /1 (wt? — 2%t)u(t)dt. (4.206)

-1
Substituting w(z) by the series

o0
u(@) = ana”, (4.207)
n=0
into both sides of Eq. (4.206) leads to

(e} 1 [e's)
> ana" = —a? +/ ((xt2 — 2%ty ant”) dt. (4.208)
n=0 -1 n=0

Evaluating the integral at the right side, and equating the coefficients of like
powers of = in both sides of the resulting equation we find

0 30 20 0 1
ap = ay = — ag = ag = ay = —
R S £ S (4.209)
apn =0, n=5.
Consequently, the exact solution is given by
30 20
ulz)=—___z+ z? — 2t (4.210)

133 133
Example 4.30
Solve the Fredholm integral equation by using the series solution method
u(x) = =1+ cosx + /2 u(t)dt. (4.211)
Substituting u(z) by the series i
u(zx) = i anx”, (4.212)
n=0

into both sides of Eq. (4.211) gives
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3 ana" = —1+cosa + /2 (Z(ant")> dt. (4.213)
n=0 0

n=0
Evaluating the integral at the right side, using the Taylor series of cosx, and
proceeding as before we find

(=1

ag = 1, agj+1 = 0, ag; = (2])' ,j 2 0. (4214)
Consequently, the exact solution is given by
u(zx) = cosz. (4.215)

Exercises 4.2.7

Use the series solution method to solve the following Fredholm integral equations:
1 1
1. u(z) =1 +/ (1 — 3zt)u(t)dt 2. u(z) = 6z + 4x2 +/ (xt? — 2%t)u(t)dt
0 -1

1
3. u(z) = b — 22> +/ (23 — 232 )u(t)dt

-1

1
4. u(x) = bx +/ (1 — at)u(t)dt
-1
1
5. u(z) = 2+ 5z — 32 +/ (1 — zt)u(t)dt
-1

1
6. u(x) = 3z — 5z° +/ (1 — at)u(t)dt

-1

1
7. u(z) = 2 — 2z + 5a* + 725 + / (z — t)u(t)dt
-1
1

8. u(z) = 322 — 523 +/ xhtu(t)dt

-1

™ E

9. u(z) = -2 +sinzx +/2 tu(t)dt 10. u(z) = —2 + 22 4+ sinx + /2 tu(t)dt

2

SERNCE]

11 u(w) = sec®z — 1 + / w®dt 12, u(z) = —1+In(1 +2) + /571 u(t)dt
JO 0

4.3 Homogeneous Fredholm Integral Equation

Substituting f(z) = 0 into the Fredholm integral equation of the second kind

b
(@) = F(@) + A / Kz, Hu(t)dt, (4.216)

the homogeneous Fredholm integral equation of the second kind is given by
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() = A / " K (e tyu(t)dr. (4.217)

In this section we will focus our study on the homogeneous Fredholm integral
equation (4.217) for separable kernel K (x,t) only. The main goal for studying
the homogeneous Fredholm equation is to find nontrivial solution, because
the trivial solution u(z) = 0 is a solution of this equation. Moreover, the
Adomian decomposition method is not applicable here because it depends
mainly on assigning a non-zero value for the zeroth component wug(z), and
in this kind of equations f(z) = 0. Based on this, the direct computation
method will be employed here to handle this kind of equations.

4.3.1 The Direct Computation Method

The direct computation method was used before in this chapter. This method
replaces the homogeneous Fredholm integral equations by a single algebraic
equation or by a system of simultaneous algebraic equations depending on
the number of terms of the separable kernel K (z,t).

As stated before, the direct computation method handles Fredholm inte-
gral equations in a direct manner and gives the solution in an exact form but
not in a series form as Adomian method or the successive approximations
method. It is important to point out that this method will be applied for the
degenerate or separable kernels of the form

K(z,t) = igk(x)hk(t)~ (4.218)
k=1

The direct computation method can be applied as follows:

1. We first substitute (4.218) into the homogeneous Fredholm integral
equation the form:

b
w(z) = A / K(x,t) u(t)dt. (4.219)
2. This substitution leads to
b

b
u(w) = 21(0) [ b (@u(t)dt + Agala) [ ha(ude -+

a a
b

+Agn(x) / b (t)u(t)dt.

3. Each integral at the right side depends only on the variable ¢ with
constant limits of integration for ¢. This means that each integral is equivalent
to a constant. Based on this, Equation (4.220) becomes

u(z) = Aa1gi(z) + Aaoga(z) + -+ Aangn(z), (4.221)

(4.220)

where
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b
o = / he(t) u(®)dt, 1 < i < n. (4.222)

4. Substituting (4.221) into (4.222) gives a system of n simultaneous alge-
braic equations that can be solved to determine the constants «;, 1 <7 < n.
Using the obtained numerical values of «; into (4.221), the solution u(z) of
the homogeneous Fredholm integral equation (4.217) follows immediately.

Example 4.31

Solve the homogeneous Fredholm integral equation by using the direct com-
putation method

™

u(x) = )\/2 cosxsint u(t)dt. (4.223)
0
This equation can be rewritten as
u(x) = alcosz, (4.224)
where _
2
! :/ sin ¢ u(t)dt. (4.225)
0
Substituting (4.224) into (4.225) gives
5
o= a)\/ costsin tdt, (4.226)
0
that gives
1
o= 204)\. (4.227)

Recall that « = 0 gives the trivial solution. For a # 0, we find that the
eigenvalue \ is given by
A=2. (4.228)

This in turn gives the eigenfunction u(z) by

u(x) = Acosw, (4.229)
where A is a non zero arbitrary constant, with A = 2a.
Example 4.32

Solve the homogeneous Fredholm integral equation by using the direct com-
putation method

1
u(z) = A / 2e" Ty (t)dt. (4.230)
0
This equation can be rewritten as

u(z) = 2are”, (4.231)

where .
az/ el u(t)dt. (4.232)
0
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Substituting (4.231) into (4.232) gives
1
a=2a\ / etdt, (4.233)
0

that gives
a=a\e® —1). (4.234)

Recall that @ = 0 gives the trivial solution. For a # 0, we find that the
eigenvalue A is given by

1
A= . 4.2
2 (4.235)
This in turn gives the eigenfunction u(z) by
A x
u(z) = 21 (4.236)

where A is a non zero arbitrary constant, with A = 2a.
Example 4.33

Solve the homogeneous Fredholm integral equation by using the direct com-
putation method

u(z) = A /07T sin(x + t) u(t)dt. (4.237)

Notice that the kernel sin(x+t) = sin x cos t+cos  sin ¢ is separable. Equation
(4.237) can be rewritten as

u(z) = aisinz 4+ fAcosz, (4.238)

where

a= / costu(t)dt, (= / sin tu(t)dt. (4.239)
0 0
Substituting (4.238) into (4.239) gives

o= / cost(aAsint + BAcost)dt,
0

. (4.240)
8= / sint(aAsint + S\ cost)dt,
0
that gives
1 1
a= 26)\7r, 8= 2aA7r. (4.241)
For a # 0, 8 # 0, we find that the eigenvalue \ is given by
2
A=+".a=4 (4.242)
T

This in turn gives the eigenfunction u(z) by

A
u(z) =+ (sinx + cosx), (4.243)
T
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where A = 2.
Example 4.34

Solve the homogeneous Fredholm integral equation by using the direct com-
putation method

1
) = A / (12 + 26) u(t)dt. (4.244)
Equation (4.244) can be rewritten as
u(z) = 120z + 26, (4.245)
where
1 1
o= / w(t)dt, §= / tut)dt, (4.246)
—1 —1

Substituting (4.245) into (4.246) gives

1
a = / (12aAt 4 26X)dt = 46,
o (4.247)
8= / t(12aAt + 26N)dt = 8a.
—1

Recall that & = 0 and 8 = 0 give the trivial solution. For o # 0,3 # 0, we
find that the eigenvalue A is given by

1
A==+ . f=12a. 4.248
2 B (4.248)
This in turn gives the eigenfunction u(z) by
a
u(z) =+ 6z + V2). 4.249
(@) = %, G2+ V2 (4.249)

Example 4.35

Solve the homogeneous Fredholm integral equation by using the direct com-
putation method

1
u(z) = A/ 10(x? — 22t — %) u(t)dt. (4.250)
0

Equation (4.250) can be rewritten as

u(z) = 10aXz? — 208z — 107\, (4.251)
where
1 1
a= / u(t)dt, B= tu = / t2u(t)dt. (4.252)
0 0

Substituting (4.251) into (4. 252 ) gives

a= / (10aXt? — 208\t — 107)\)dt = goa)\ — 106X\ — 10\,
0

1
2
B = / t(10aXt? — 203t — 107 \)dt = ZaA — 30m —5\y, (4.253)
0
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1
1
v = / t2(10aAt? — 208Xt — 109\ dt = 2\ — 56\ — 30/\7.
0

Recall that « = 0,3 = 0 and v = 0 give the trivial solution. For o # 0, 8 # 0
and v # 0, and by solving the system of equations we find

3 20 7
A=— = = 4.254
o o= g% =47 (4.254)
and ~ is left as a free parameter. This in turn gives the eigenfunction u(x) by
u(z) = v(—4022% 4 28z + 6), (4.255)

where v is a non-zero arbitrary constant.

Exercises 4.3

Use the direct computation method to solve the homogeneous Fredholm integral
equations:

1 u(@) = A /0 " sin? wu(t)dt 2. u(z) = A /0 * tan . sec tu(t)dt
3. u(z) = A /O * 10sec® zu(t)dt 4. u(z) = A /0 " sin wu(t)dt

5. u(z) = A/: xtu(t)dt 6. u(z) = A/Ol zelu(t)dt

7. u(z) = ,\/01 8sin~ ! wtu(t)dt 8. u(z) = A./Ol 8cos~ wtu(t)dt
9. u(z) = )\/jl (z + t)u(t)dt 10. u(z) = A/jl (x — 10t?)u(t)dt

1. u(z) = )\/OW jr cos(z — Du(®)dt  12. u(z) = /\/01(3 6w + 9t)u(t)dt

13. u(z) = A /_11(2 — 3z — 3t)u(t)dt 14. u(z) = X /01(712902 + 24zt + 18t%)u(t)dt

4.4 Fredholm Integral Equations of the First Kind

We close this chapter by studying Fredholm integral equations of the first
kind given by

b
F@) = A / K(z, yult)dt,z € D, (4.256)

where D is a closed and bounded set in real numbers, and f(x) is the data.
The range of x does not necessarily coincide with the range of integration
[7]. The unknown function w(z), that will be determined, occurs only inside
the integral sign and this causes special difficulties. The kernel K (z,t) and
the function f(z) are given real-valued functions, and \ is a parameter that
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is often omitted. However, the parameter A plays an important role in the
singular cases and in the bifurcation points as will be seen later in the text.
An important remark has been reported in [7] and other references con-
cerning the data function f(z). The function f(z) must lie in the range of
the kernel K (z,t) [7]. For example, if we set the kernel by
K(z,t) = sinxsint. (4.257)
Then if we substitute any integrable function u(x) in (4.256), and we evaluate
the integral, the resulting f(z) must clearly be a multiple of sinz [7]. This
means that if f(z) is not a multiple of the z component of the kernel, then a
solution for (4.256) does not exist. This necessary condition on f(x) can be
generalized. In other words, the data function f(z) must contain components
which are matched by the corresponding x components of the kernel K (z,t)
Fredholm integral equation of the first kind is considered ill-posed problem.
Hadamard [8] postulated the following three properties:

1. Existence of a solution.

2. Uniqueness of a solution.

3. Continuous dependence of the solution u(z) on the data f(x). This
property means that small errors in the data f(z) should cause small errors
[9] in the solution u(x).

A problem is called a well-posed problem if it satisfies the three afore-
mentioned properties. Problems that are not well-posed are called ill-posed
problems such as inverse problems. Inverse problems are ill-posed problems
that might not have a solution in the true sense, if a solution exists it may
not be unique, and the obtained solution might not depend continuously on
the observed data. If the kernel K (x,t) is smooth, then the Fredholm integral
equation (4.256) is very often ill-posed and the solution u(z) is very sensitive
to any change in the data f(x). In other words, a very small change on the
data f(z) can give a large change in the solution u(z). For all these rea-
sons, the Fredholm integral equations of the first kind is ill-posed that may
have no solution, or if a solution exists it is not unique and may not depend
continuously on the data.

The Fredholm integral equations of the first kind (4.256) appear in many
physical models such as radiography, stereology, spectroscopy, cosmic radi-
ation, image processing and electromagnetic fields. Fredholm integral equa-
tions of the first kind arise naturally in the theory of signal processing. Many
inverse problems in science and engineering lead to the Fredholm integral
equations of the first kind. An inverse problem is a process where the solu-
tion u(x) can be obtained by solving (4.256) from the observed data f(z) at
various values of x. Most inverse problems are ill-posed problems. This means
that the Fredholm integral equations of the first kind is aill-posed problem,
and solving this equation may lead to a lot of difficulties.

Several methods have been used to handle the Fredholm integral equations
of the first kind. The Legendre wavelets, the augmented Galerkin method,
and the collocation method are examples of the methods used to handle this
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equation. The methods that we used so far in this text cannot handle this
kind of equations independently if it is expressed in its standard form (4.256).

However, in this text, we will first apply the method of regularization that
received a considerable amount of interest, especially in solving first order
integral equations. The method transforms first kind equation to second kind
equation. We will second apply the homotopy perturbation method [10] to
handle specific cases of the Fredholm integral equations where the kernel
K(x,t) is separable.

In what follows we will present a brief summary of the method of regular-
ization and the homotopy perturbation method that will be used to handle
the Fredholm integral equations of the first kind.

4.4.1 The Method of Regularization

The method of regularization was established independently by Phillips [11]
and Tikhonov [12]. The method of regularization consists of replacing ill-
posed problem by well-posed problem. The method of regularization trans-
forms the linear Fredholm integral equation of the first kind

flx) = /b K(z,t)u(t)dt,z € D, (4.258)

to the approximation Fredholm integral equation

b
iy () = f() — / K (x, t)u, (t)dt,x € D, (4.259)

where p is a small positive parameter. It is clear that (4.259) is a Fredholm
integral equation of the second kind that can be rewritten

1 I

uy(x) = Mf(:r) - M/ K(z,t)u,(t)dt,z € D. (4.260)
Moreover, it was proved in [7,13] that the solution wu, of equation (4.260)
converges to the solution u(z) of (4.258) as u — 0 according to the following
lemma [14]:

Lemma 4.1

Suppose that the integral operator of (4.258) is continuous and coercive in the
Hilbert space where f(x),u(x), and u,(x) are defined, then:

1. |u,| is bounded independently of 1, and
2. lup(z) —u(x)] — 0 when p — 0.

The proof of this lemma can be found in [7,13].
In summary, by combining the method of regulariztion with any of the
methods used before for solving Fredholm integral equation of the second
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kind, we can solve Fredholm integral equation of the first kind (4.258). The
method of regulariztion transforms the first kind to a second kind. The re-
sulting integral equation (4.260) can be solved by any of the methods that
were presented before in this chapter. The exact solution u(z) of (4.258) can
thus be obtained by

u(z) = ,L{li{%) uy, (). (4.261)
In what follows we will present five illustrative examples where we will use the
method of regulariztion to transform the first kind equation to a second kind
equation. The resulting equation will be solved by any appropriate method
that we used before.

Example 4.36

Combine the method of regulariztion and the direct computation method to
solve the Fredholm integral equation of the first kind

1
1 4
e’ = / e tu(t)dt. (4.262)
4 0
Using the method of regularization, Equation (4.262) can be transformed to
u,(x) = ! e’ — ! /411 ety (t)dt (4.263)
g A o e ’

The resulting Fredholm integral equation of the second kind will be solved
by the direct computation method. Equation (4.263) can be written as

1
() = ( o Z) e, (4.264)
where )

a= / " etu,(t)dt. (4.265)
0

To determine o, we substitute (4.264) into (4.265), integrate the resulting
integral and solve to find that

1
= . 4.266
RS (4.266)
This in turn gives
el)
= . 4.2
wia) = (4.267)
The exact solution u(x) of (4.262) can be obtained by
u(x) = lin%) uy(z) = e®. (4.268)
n—

Example 4.37

Combine the method of regulariztion and the direct computation method to
solve the Fredholm integral equation of the first kind
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1
e+ 1= / (4te” + 3) u(t)dt. (4.269)
0

Notice that the data function f(x) = e” 4+ 1 contains components which are
matched by the corresponding x components of the kernel K (z,t) = 4te* + 3.
This is a necessary condition to guarantee a solution.

Using the method of regularization, Equation (4.269) can be transformed

to

1 1 1/1
u,(z) = e*+ — 4te” + 3)u,, (t)dt. 4.270
() " v 0( Jup(t) ( )

The resulting Fredholm integral equation of the second kind will be solved
by the direct computation method. Equation (4.270) can be written as

ol L e

1
a:/ tu, (t)dt, (= / uy,(t (4.272)
0

To determine o and (3, we substitute (4.271) into (4.272), integrate the re-
sulting integrals and solve to find that

where

3 92
o 3(e—3—p) Cp=_ (e 46+ pe) . (4.273)
2(6e — 18 — Tu — p?) 6e — 18 — T — p?
Substituting this result into (4.271) gives the approximate solution
(1+p)e® 4+ (7—3e+p)
u,(x) = 4.274
n() 6(3—e)+ (T + p?) ( )
The exact solution u(x) of (4.269) can be obtained by
1 7—3e
— lim u,(z) = @ . 4.275
ul@) = (@) = g0~ ¢ T (4.275)

It is interesting to point out that another solution to this equation is given
by
u(r) = 2°. (4.276)

As stated before, the Fredholm integral equation of the first kind is ill-posed
problem. For ill-posed problems, the solution might not exist, and if it exists,
the solution may not be unique.

Example 4.38

Combine the method of regulariztion and the direct computation method to
solve the Fredholm integral equation of the first kind

;Tsinx = / sin(z — t) u(t)dt. (4.277)
0

Notice that the data function f(x) = 7 sinz contains component which is
matched by the corresponding « component of the kernel K (x,t). This is a
necessary condition to guarantee a solution.
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Using the method of regularization, Equation (4.277) can be transformed

to
T 1/7r .
u,(zr) = _ sinz — sin(x — t)u,(t)dt, 4.278
o) = g sina— [ sina = u 1) (4.278)
that can be written as
T« I}
u,(r) = - sinx + ' cosz, 4.279
u(2) <2u u) p (4.279)
where .
a z/ costu,(t)dt, (= smtuu (4.280)
0

To determine o and 3, we substitute (4.279) into (4.280), integrate the re-
sulting integrals and solve to find that

73 2pn

. B , 4.281
2(m2 4+ 4p?) p w2 + 42 ( )

Substituting this result into (4.279) gives the approximate solution

2 . w2
uu(x) = 2 4 g sing + W cos . (4.282)
The exact solution u(x) of (4.277) can be obtained by
u(x) = lir% uy(x) = cos . (4.283)
n—

Example 4.39

Combine the method of regulariztion and the Adomian decomposition method
to solve the Fredholm integral equation of the first kind

1

1 q
e~ = / Y et (t)dt. (4.284)
3 0
Using the method of regularization, Equation (4.284) can be transformed to
u,(z) = ! e’ — ! /i e T, (t)dt (4.285)
: 3p 1 Jo S '

The Adomian decomposition method admits the use of

x) = Zu#n (z), (4.286)
n=0

and the recurrence relation

UHO(IL’) = 3/16717
1 (4.287)
3
uuk+1(m) = _U/ et—xuuk (t)dt, k=>=0.
0

This in turn gives the components
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1 1
Upg (‘T) - e, Upy (x) - 26717
3“1 9“1 (4.288)
Uy (‘T) - 27“3 6717 Ups (IZ’) - 781//62 6713
and so on. Substituting this result into (4.286) gives the approximate solution
1 —x
uy(x) = - 3,ue (4.289)
The exact solution u(x) of (4.284) can be obtained by
u(x) = lirr}J uy(z) =e " (4.290)
=

Example 4.40

Combine the method of regulariztion and the successive approximations
method to solve the Fredholm integral equation of the first kind

1 1
T = / atu(t)dt.
4 0

Using the method of regularization, Equation (4.291) can be transformed to

1 1 [t
/ xtu,, (t)dt.
0

x—
o p

To use the successive approximations method, we first select w,,(z) = 0.

Consequently, we obtain the following approximations

(4.291)

uy () = (4.292)

Upig (x) =0,
1
Upy (JJ) = 4N$7
1 1
Uiy (.’E) = 4MI - 12/12 z, (4293)
1 1 1
Uy (T) = 4’ux - 12”255 + 363 Z,
1 1 1 1
Ui () = T 192 F 36,87 T 108,
and so on. Based on this we obtain the approximate solution
uy () = i _:f_ 3#)33. (4.294)
The exact solution u(x) of (4.291) can be obtained by
u(z) = lim u,(z) = 31. (4.295)
pn—0 4

It is interesting to point out that another solution to this equation is given
by

u(r) = z°. (4.296)

As stated before, the Fredholm integral equation of the first kind is ill-posed
problem and the solution may not be unique.
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Exercises 4.4.1

Combine the regularization method with any other method to solve the Fredholm
integral equations of the first kind

1 1 1 2
1. (1—e )3 = / 37~y (t)dt 2. €3 = /2 3T =3ty (t)dt
2 0 2 0
3 1 6 1
3.z :/ xt?u(t)dt 4. " z? :/ 22 t2u(t)dt
4 0 5 0
2 o oo 1 !
5. _x° = 2t u(t)dt 6. == xtu(t)dt
5 1 5 Jo
1 Yoo 2 5 Yoo
7. xt = x t u(t)dt 8. xz°= x t u(t)dt
6 Jo 3 J_1
1 1 1 1
9. — = :/ tu(t)dt 10. =z :/ xtu(t)dt
4 0 4 0
1 1 7 1
11. =z :/ xtu(t)dt 12. =z :/ ztu(t)dt
12 0 12 0
™ 7' ™ 4
13. 9 sinx = / cos(z — t)u(t)dt 14. o COST = / cos(x — t)u(t)dt
0 0
15.2 -4 2z = / (z — t)u(t)dt 16. 2+ 7 — 2z = / (z — t)u(t)dt
0 0

4.4.2 The Homotopy Perturbation Method

The homotopy perturbation method was introduced and developed by Ji-
Huan He in [10] and was used recently in the literature for solving linear
and nonlinear problems. The homotopy perturbation method couples a ho-
motopy technique of topology and a perturbation technique. A homotopy
with an embedding parameter p € [0,1] is constructed, and the impeding
parameter p is considered a small parameter. The method was derived and
illustrated in [10], and several differential equations were examined. The cou-
pling of the perturbation method and the homotopy method has eliminated
the limitations of the traditional perturbation technique [10]. In what follows
we illustrate the homotopy perturbation method to handle Fredholm integral
equations of the second kind and the first kind.

The HPM for Fredholm Integral Equation of the Second Kind

In what follows we present the homotopy perturbation method for handling
the Fredholm integral equations of the second kind. We first consider the
Fredholm integral equation of the second kind
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b
v(z) = f(x) —|—/ K(x,t)v(t)dt. (4.297)
We now define the operator
b
L(u) =u(z) — f(z) — / K(x,t)u(t)dt =0, (4.298)
where u(z) = v(z). Next we define the homotopy H (u,p),p € [0, 1] by
H(u,0)= F(u), H(u,1)= L(u), (4.299)

where F'(u) is a functional operator. We construct a convex homotopy of the
form
H(u,p)=(1—p)F(u)+pL(u) =0. (4.300)

This homotopy satisfies (4.299) for p = 0 and p = 1 respectively. The embed-
ding parameter p monotonically increases from 0 to 1 as the trivial problem
F(u) = 0 continuously deformed [10] to the original problem L(u) = 0. The
homotopy perturbation method admits the use of the expansion

uw=> p"un, (4.301)
n=0
and consequently
v = lim ZO P (4.302)
n=

The series (4.302) converges to the exact solution if such a solution exists.

Substituting (4.301) into (4.300), using F(x) = u(z) — f(z), and equating
the terms with like powers of the embedding parameter p we obtain the
recurrence relation

b
P rug(z) = flx), P iung = / K(x,t)un(t)dt,n > 0. (4.303)

Notice that the recurrence relation (4.303) is the same standard Adomian
decomposition method as presented before in this chapter. This proves the
following theorem:

Theorem 4.3 The Adomian decomposition method is a homotopy perturba-
tion method with a convex homotopy given by

b
H(u,p) = u(z) — f(z) —p / Kz, )un(t)dt = 0. (4.304)

HPM for Fredholm Integral Equation of the First Kind

In what follows we present the homotopy perturbation method for handling
the Fredholm integral equations of the first kind of the form

b
o) = / K (z, )o(t)dt. (4.305)
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We now define the operator

b
L(u) = () — / Kz, t)u(t)dt = 0, (4.306)
We construct a convex homotopy ofathe form
H(u,p) = (1= p)u(x) + pL(u)(x) = 0. (4.307)

The embedding parameter p monotonically increases from 0 to 1. The homo-
topy perturbation method admits the use of the expansion

uw=> pun, (4.308)
n=0
and consequently
oo
=1l "y (). 4.309
v() pgnl; P un () (4.309)

The series (4.309) converges to the exact solution if such a solution exists.
Substituting (4.308) into (4.307), and proceeding as before we obtain the
recurrence relation
)

ug(x) =0, wui(x) = f(z),
b 4.310
Unt1(2) = up(x) —/ K(x,t)un(t)dt, n>1. ( )

If the kernel is separable, i.e. K(x,t) = g(z)h(t), then the following condition

b
- / Kt t)dt

must be justified for convergence. The proof of this condition is left to the
reader.

We will concern ourselves only on the case where K (z,t) = g(z)h(t). The
HPM will be used to solve the following Fredholm integral equations of the
first kind.

Example 4.41

<1, (4.311)

Use the homotopy perturbation method to solve the Fredholm integral equa-
tion of the first kind

1

1 E
3e$ = /3 e” P u(t)dt. (4.312)
0

Notice that

5 2
1_/ Kt )t = - <1 (4.313)
0

Using the recurrence relation (4.310) we find



4.4 Fredholm Integral Equations of the First Kind 169

1
wl@) =0, wi(e) = e,
1 (4.314)
Un+1(T) = up () —/ e tun (t)dt, n>1.
0
This in turn gives
1
uo(x) =0, wui(z) = 3¢5
s 2
ug(x) = u1(x) 7/ " tuy (t)dt = 96I,
0
! 4 (4.315)
wa(o) = uala) = [ ualt)dt = e
0 27
1
3 8
wi(w) = ualae) = [ uslo)d = e
0 81
and so on. Consequently, the approximate solution is given by
1 2 4 8
=% 4.31
u(x) 6(3+9+27+81+ ), (4.316)
that converges to the exact solution
u(z) = e”. (4.317)

Example 4.42

Use the homotopy perturbation method to solve the Fredholm integral equa-
tion of the first kind

1

1
e — /4 et~ u(t)dt. (4.318)
4 0

Notice that
3
=4 < 1. (4.319)

1—- / K(t,)dt
0

Using the recurrence relation (4.310) we find

—T

1
Uo(x) = Oa ul(x) = 46 )

! (4.320)
Unt1(T) = up(7) —/ e Tu, (t)dt, n>1
0
This in turn gives
1

uo(x) =0, wui(z) = 46_9”,

i . 3
uz(r) = uy(x) — / e Fuy (t)dt = 166_9”, (4.321)

0
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‘11 t—x 27 —x
ug(z) = ug(w) — [ e Tug(t)dt = e,
0

256
and so on. Consequently, the approximate solution is given by
1 3 9 27
=e 7 4.322
u(z) =e (4+16+64+256+ >7 (4.322)

that converges to the exact solution
u(zr) =e7", (4.323)
obtained by evaluating the sum of the infinite geometric series.

Example 4.43

Use the homotopy perturbation method to solve the Fredholm integral equa-
tion of the first kind

1
mz/ xtu(t)dt. (4.324)
0
Notice that .
2
’1 _/ K(t,t)dt' - o<1 (4.325)
0

Using the recurrence relation (4.310) we find

UO(x) = 07 ul(m) =,

1 (4.326)
Un41(2) = up(x) —/ xtun (t)dt, n > 1.
0
This in turn gives
uo(x) =0, wui(z) =z,
! 2
us(z) = uq(z) —/ xtuq (t)dt = 3%
0
1 4 (4.327)
uz(z) = us(x) —/ xtug(t)dt = 0%
0
! 8
ug(z) = uz(x) — / xtug(t)dt = __x,
0 27
and so on. Consequently, the approximate solution is given by
2 4 8
= 1 e 4.328
u(z) m(+3+9+27+ ), ( )
that converges to the exact solution
u(z) = 3. (4.329)

Example 4.44

Use the homotopy perturbation method to solve the Fredholm integral equa-
tion of the first kind

1
5m:/ xtu(t)dt. (4.330)
6 0
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Notice that

’1 —/ K(t,t dt' 3 (4.331)
Using the recurrence relation (4.310) we find
5
UO(x) = Oa ’Z,Ll(l') = 6x7
1 (4.332)
Un+1(2) = up(x) —/ xtuy (t)dt, n > 1.
0
This in turn gives
5
Uo(x) = Oa Ul(x) = Gma
! 5
ug(x) = uy(x) —/ xtus (t)dt = o
0
L 10 (4.333)
uz(x) = ua(x) — / xtug(t)dt = __x,
0 27
! 20
ug(z) = uz(x) — / xtug(t)dt = __x,
0 81
and so on. Consequently, the approximate solution is given by
5 5 2 4 8
= 1 e 4.334
u(x) 6x+9x(+3+9+27+ >, ( )
that converges to the exact solution
5
u(z) = o (4.335)

obtained by evaluating the sum of the infinite geometric series.
It is interesting to point out that another solution to this equation is given
by
u(z) =1+z. (4.336)

As stated before, the Fredholm integral equation of the first kind is ill-posed
problem. For ill-posed problems, the solution might not exist, and if it exists,
the solution may not be unique.

Example 4.45

Use the homotopy perturbation method to solve the Fredholm integral equa-
tion of the first kind

1 1
x = / atu(t)dt. (4.337)
4 0

Notice that
’1—/ Kttdt' (4.338)

Using the recurrence relation (4.310) we find
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1
uo(e) =0, wi(@) =z,

1 (4.339)
Un41(x) = upn(2) —/ xtuy (t)dt, n > 1.
0
This in turn gives
1
wole) =0, w(@) =,z
! 1
us () = up(x) —/ xtuy (£)dt = 6%
0
1 1 (4.340)
ug(x) = ug(x) —/ xtug(t)dt = o
0
! 2
ug(x) = us(x) — / xtus(t)dt = __x,
0 27
and so on. Consequently, the approximate solution is given by
1 2 4 8
= 1 e 4.341
u