right by a cable at angle & with the horizontal. A package of mass 1, is
positioned on the beam at a distance x from the left end. The total
mass is 1, + m, = 61.22 kg. Figure 12-52b gives the tension 7 in the
cable as a function of the package’s position given as a fraction x/L of
the beam length. The scale of the T axis is set by 7, = 500 N and
T, = 700 N. Evaluate (a) angle 6, (b) mass n1,,and (c) mass 171,,.

ee41 A crate, in the form of a cube with edge lengths of 1.2 m,
contains a piece of machinery; the center of mass of the crate and
its contents is located 0.30 m above the crate’s geometrical center.
The crate rests on a ramp that makes an angle 6 with the horizon-
tal. As @ is increased from zero, an angle will be reached at which
the crate will either tip over or start to slide down the ramp. If the
coefficient of static friction u, between ramp and crate is 0.60, (a)
does the crate tip or slide and (b) at what angle 6 does this occur?
If p, = 0.70, (c) does the crate tip or slide and (d) at what angle 6
does this occur? (Hint: At the onset of tipping, where is the normal
force located?)

ee42 In Fig.12-5 and the associated sample problem, let the coef-
ficient of static friction u, between the ladder and the pavement be
0.53. How far (in percent) up the ladder must the firefighter go to
put the ladder on the verge of sliding?

sec. 12-7 Elasticity

°43 ssM ILW A horizontal aluminum rod 4.8 cm in diameter
projects 5.3 cm from a wall. A 1200 kg object is suspended from
the end of the rod. The shear modulus of aluminum is 3.0 X
10" N/m?. Neglecting the rod’s mass, find (a) the shear stress on the
rod and (b) the vertical deflection of the end of the rod.

°44  Figure 12-53 shows the
stress—strain curve for a material.
The scale of the stress axis is set by
s = 300, in units of 10° N/m2. What
are (a) the Young’s modulus and (b)
the approximate yield strength for
this material? 0

Stress (105 N/m?)

0.002
Strain

Fig. 12-53 Problem 44.

0.004

45 In Fig. 12-54, a lead brick
rests horizontally on cylinders A and
B. The areas of the top faces of the
cylinders are related by A, = 2Ap;
the Young’s moduli of the cylinders 1dy!

[

are related by £, = 2E. The cylin-
ders had identical lengths before
the brick was placed on them. What
fraction of the brick’s mass is sup-
ported (a) by cylinder A and (b) by
cylinder B? The horizontal dis-
tances between the center of mass
of the brick and the centerlines of
the cylinders are d, for cylinder
A and dj for cylinder B. (c) What is S
the ratio d 4/dg?

E
46 =¥ Figure 12-55 shows an >
approximate plot of stress versus <

@

strain for a spider-web thread, out
to the point of breaking at a strain
of 2.00. The vertical axis scale is set ||
by values a = 0.12 GN/m?, b = 0.30 0 1.0 1.4 20
GN/m% and ¢ =080 GN/m2 Strain

Assume that the thread has an ini- Fig. 12-55 Problem 46.
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tial length of 0.80 cm, an initial cross-sectional area of 8.0 X 10712
m?, and (during stretching) a constant volume. Assume also that
when the single thread snares a flying insect, the insect’s kinetic
energy is transferred to the stretching of the thread. (a) How
much kinetic energy would put the thread on the verge of break-
ing? What is the kinetic energy of (b) a fruit fly of mass 6.00 mg
and speed 1.70 m/s and (c) a bumble bee of mass 0.388 g and
speed 0.420 m/s? Would (d) the fruit fly and (e) the bumble bee
break the thread?

*47 A tunnel of length L = 150 m, height H = 7.2 m, and width
5.8 m (with a flat roof) is to be constructed at distance d = 60 m be-
neath the ground. (See Fig. 12-56.) The tunnel roof is to be sup-
ported entirely by square steel columns, each with a cross-sectional
area of 960 cm?. The mass of 1.0 cm? of the ground material is 2.8 g.
(a) What is the total weight of the ground material the columns must
support? (b) How many columns are needed to keep the compres-
sive stress on each column at one-half its ultimate strength?

| : |

Fig. 12-56 Problem 47.

*48 Figure 12-57 shows the
stress versus strain plot for an alu-
minum wire that is stretched by a
machine pulling in opposite direc-
tions at the two ends of the wire.
The scale of the stress axis is set by
s = 7.0, in units of 10’7 N/m? The |
wire has an initial length of 0.800 m 0 L0
and an initial cross-sectional area Strain (107)

of 2.00 X 10~° m?. How much work
does the force from the machine do
on the wire to produce a strain of
1.00 X 1073?

49 (@ InFig. 12-58,a 103 kg uni-
form log hangs by two steel wires, A |
and B, both of radius 1.20 mm. =
Initially, wire A was 2.50 m long
and 2.00 mm shorter than wire B.
The log is now horizontal. What are
the magnitudes of the forces on it
from (a) wire A and (b) wire B? (c)
What is the ratio d,/dgz?

eee50 =5 @ Figure 12-59 rep-
resents an insect caught at the mid-
point of a spider-web thread. The
thread breaks under a stress of
8.20 X 108 N/m? and a strain of 2.00.

N

Stress (107 N/m?)

Fig. 12-57 Problem 48.

Wire A Wire B

<~ dy—>1<dp—~|
\

Fig. 12-58 Problem 49.

il

Fig. 12-59 Problem 50.
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Initially, it was horizontal and had a length of 2.00 cm and a cross-
sectional area of 8.00 X 10712 m2. As the thread was stretched
under the weight of the insect, its volume remained constant. If
the weight of the insect puts the thread on the verge of breaking,
what is the insect’s mass? (A spider’s web is built to break if a po-
tentially harmful insect, such as a bumble bee, becomes snared in
the web.)

ee51 Figure 12-60 is an overhead view of a rigid rod that turns
about a vertical axle until the identical rubber stoppers A and B
are forced against rigid walls at distances r, = 7.0 cm and rz = 4.0 cm
from the axle. Initially the stoppers touch the walls without being
compressed. Then force F of magnitude 220 N is applied per-
pendicular to the rod at a distance R = 5.0 cm from the axle.
Find the magnitude of the force compressing (a) stopper A and
(b) stopper B.

D>

\
~  R— 13—
oo Stopper B

T\ Axle

Stopper A |
| "

Fig. 12-60 Problem 51.

Additional Problems

52 After a fall, a 95 kg rock climber finds himself dangling from
the end of a rope that had been 15 m long and 9.6 mm in diameter
but has stretched by 2.8 cm. For the rope, calculate (a) the strain,
(b) the stress, and (c) the Young’s modulus.

53 sswm In Fig. 12-61, a rectangular
slab of slate rests on a bedrock sur-
face inclined at angle 6 = 26°. The
slab has length L = 43 m, thickness
T =2.5m, and width W = 12 m, and
1.0 cm?® of it has a mass of 3.2 g. The
coefficient of static friction between
slab and bedrock is 0.39. (a)
Calculate the component of the
gravitational force on the slab parallel to the bedrock surface. (b)
Calculate the magnitude of the static frictional force on the slab.
By comparing (a) and (b), you can see that the slab is in danger of
sliding. This is prevented only by chance protrusions of bedrock.
(c) To stabilize the slab, bolts are to be driven perpendicular to the
bedrock surface (two bolts are shown). If each bolt has a cross-
sectional area of 6.4 cm? and will snap under a shearing stress of
3.6 X 10% N/m?, what is the minimum number of bolts needed?
Assume that the bolts do not affect the normal force.

Problem 53.

Fig. 12-61

54 A uniform ladder whose length is 5.0 m and whose weight is
400 N leans against a frictionless vertical wall. The coefficient of
static friction between the level ground and the foot of the ladder
is 0.46. What is the greatest distance the foot of the ladder can be
placed from the base of the wall without the ladder immediately
slipping?

55 ssm In Fig. 12-62, block A (mass 10 kg) is in equilibrium,
but it would slip if block B (mass 5.0 kg) were any heavier. For
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angle 6= 30°, what is the coeffi-
cient of static friction between
block A and the surface below it?

56 Figure 12-63a shows a uniform 0
ramp between two buildings that al-
lows for motion between the build-
ings due to strong winds. At its left
end, it is hinged to the building wall;
at its right end, it has a roller that
can roll along the building wall. B
There is no vertical force on the

roller from the building, only a
horizontal force with magnitude
F,. The horizontal distance be-
tween the buildings is D = 4.00 m.
The rise of the ramp is # = 0.490 m. A man walks across the ramp
from the left. Figure 12-63b gives F), as a function of the horizontal
distance x of the man from the building at the left. The scale of the
F,axis is set by @ = 20 kN and b = 25 kN. What are the masses of
(a) the ramp and (b) the man?

Fig. 12-62 Problem 55.

b —
z
=
=5
| | | |
“0 2 4
x (m)
(a) (b)
Fig. 12-63 Problem 56.

57 In Fig. 12-64, a 10 kg sphere is
supported on a frictionless plane in-
clined at angle 6= 45° from the
horizontal. Angle ¢ is 25°. Calculate
the tension in the cable.

58 In Fig. 12-654, a uniform 40.0 kg
beam is centered over two rollers.
Vertical lines across the beam mark
off equal lengths. Two of the lines are
centered over the rollers; a 10.0 kg
package of tamales is centered over
roller B. What are the magnitudes of
the forces on the beam from (a)
roller A and (b) roller B? The beam
is then rolled to the left until the
right-hand end is centered over
roller B (Fig. 12-65b). What now are
the magnitudes of the forces on the
beam from (c) roller A and (d)
roller B? Next, the beam is rolled
to the right. Assume that it has a
length of 0.800 m. (e) What hori-
zontal distance between the package and roller B puts the beam on
the verge of losing contact with roller A?

Fig. 12-64 Problem 57.

()
Fig. 12-65 Problem 58.



59 ssm In Fig. 12-66, an 817 kg
construction bucket is suspended by
a cable A that is attached at O to
two other cables B and C, making
angles 6, =51.0° and 6, = 66.0°
with the horizontal. Find the ten-
sions in (a) cable A, (b) cable B, and
(c) cable C. (Hint: To avoid solving
two equations in two unknowns,
position the axes as shown in the
figure.)

60 In Fig. 12-67, a package of mass
m hangs from a short cord that is
tied to the wall via cord 1 and to the
ceiling via cord 2. Cord 1 is at angle
¢ = 40° with the horizontal; cord 2 is
at angle 6. (a) For what value of 6 is
the tension in cord 2 minimized? (b)
In terms of mg, what is the minimum
tension in cord 2?

61 1w The force F in Fig. 12-68
keeps the 6.40 kg block and the
pulleys in equilibrium. The pulleys
have negligible mass and friction.
Calculate the tension 7 in the up-
per cable. (Hint: When a cable
wraps halfway around a pulley as here, the
magnitude of its net force on the pulley is
twice the tension in the cable.)

Fig. 12-66 Problem 59.

Fig. 12-67 Problem 60.

62 A mine elevator is supported by a single
steel cable 2.5 cm in diameter. The total mass
of the elevator cage and occupants is 670 kg.
By how much does the cable stretch when
the elevator hangs by (a) 12 m of cable and
(b) 362 m of cable? (Neglect the mass of the
cable.)

63 =% Four bricks of length L, identical
and uniform, are stacked on top of one an- F
other (Fig. 12-69) in such a way that part of
each extends beyond the one beneath. Find, in
terms of L, the maximum values of (a) a;, (b)
a,, (¢) as, (d) a4, and (e) A, such that the stack is in equilibrium.

Fig. 12-68
Problem 61.

Fig. 12-69 Problem 63.

64 In Fig. 12-70, two identical, uniform, and frictionless spheres,
each of mass m, rest in a rigid rectangular container. A line con-
necting their centers is at 45° to the horizontal. Find the magni-
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tudes of the forces on the spheres
from (a) the bottom of the container,
(b) the left side of the container,
(c) the right side of the container,
and (d) each other. (Hint: The force
of one sphere on the other is directed
along the center—center line.) 45°

65 In Fig. 12-71, a uniform beam
with a weight of 60 N and a length of
3.2 mis hinged at its lower end, and a
horizontal force F of magnitude 50
N acts at its upper end. The beam is
held vertical by a cable that makes
angle 6 = 25° with the ground and is
attached to the beam at height & =
2.0 m. What are (a) the tension in the bl
cable and (b) the force on the beam
from the hinge in unit-vector nota-
tion?

Fig. 12-70 Problem 64.

Vsl

66 A uniform beam is 5.0 m long

and has a mass of 53 kg. In Fig. 12-72, i
the beam is supported in a horizontal A l
position by a hinge and a cable, with
angle 6= 60°. In unit-vector notation, Fig. 12-71 Problem 65.
what is the force on the beam from the
hinge?

Cable ~/

/)

I— X
Ao
Beam

Fig. 12-72 Problem 66.

67 A solid copper cube has an edge length of 85.5 cm. How much
stress must be applied to the cube to reduce the edge length to 85.0
cm? The bulk modulus of copperis 1.4 X 10" N/m?.

68 A construction worker attempts to lift a uniform beam off the
floor and raise it to a vertical position. The beam is 2.50 m long and
weighs 500 N. At a certain instant the worker holds the beam mo-
mentarily at rest with one end at distance d = 1.50 m above the
floor, as shown in Fig. 12-73, by exerting a force P on the beam,
perpendicular to the beam. (a) What is the magnitude P? (b)
What is the magnitude of the (net) force of the floor on the
beam? (c) What is the minimum value the coefficient of static
friction between beam and floor can have in order for the beam
not to slip at this instant?

Fig. 12-73 Problem 68.
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69 sswm In Fig. 12-74, a uniform rod of mass
m is hinged to a building at its lower end, while
its upper end is held in place by a rope at-
tached to the wall. If angle 6, = 60°, what value
must angle 6, have so that the tension in the
rope is equal to mg/2?

70 A 73 kg man stands on a level bridge of
length L. He is at distance L/4 from one end. The
bridge is uniform and weighs 2.7 kN. What are
the magnitudes of the vertical forces on the
bridge from its supports at (a) the end farther from him and (b) the
nearer end?

Fig. 12-74
Problem 69.

71 ssm A uniform cube of side length 8.0 cm rests on a hori-
zontal floor. The coefficient of static friction between cube and
floor is u. A horizontal pull Pis applied perpendicular to one of
the vertical faces of the cube, at a distance 7.0 cm above the floor
on the vertical midline of the cube face. The magnitude of P is
gradually increased. During that increase, for what values of u will
the cube eventually (a) begin to slide and (b) begin to tip? (Hint:
At the onset of tipping, where is the normal force located?)

72 The system in Fig. 12-75 is in equilibrium. The angles are 6, = 60°
and 6, = 20°, and the ball has mass M = 2.0 kg. What is the tension
in (a) string ab and (b) string bc?

Fig. 12-75 Problem 72.

73 ssm A uniform ladder is 10 m long and weighs 200 N. In
Fig. 12-76, the ladder leans against a vertical, frictionless wall at
height # = 8.0 m above the ground. A horizontal force F is
applied to the ladder at distance d =2.0m from its base
(measured along the ladder). (a) If force magnitude F = 50 N,
what is the force of the ground on the ladder, in unit-vector nota-
tion? (b) If F = 150 N, what is the force of the ground on the lad-
der, also in unit-vector notation? (c) Suppose the coefficient of

y

L.

7
—
Kd

Fig. 12-76 Problem 73.
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static friction between the ladder and the ground is 0.38; for what
minimum value of the force magnitude F will the base of the lad-
der just barely start to move toward the wall?

74 A pan balance is made up of a rigid, massless rod with a hang-
ing pan attached at each end. The rod is supported at and free to
rotate about a point not at its center. It is balanced by unequal
masses placed in the two pans. When an unknown mass m is placed
in the left pan, it is balanced by a mass m; placed in the right pan;
when the mass m is placed in the right pan, it is balanced by a mass
m, in the left pan. Show that m = Vmm,.

75 The rigid square frame in Fig.

12-77 consists of the four side bars A G B
AB, BC, CD, and DA plus two di-
agonal bars AC and BD, which pass
each other freely at £. By means of
the turnbuckle G, bar AB is put un-
der tension, as if its ends were
subject to horizontal, outward
forces T of magnitude 535 N. (a)
Which of the other bars are in ten-
sion? What are the magnitudes of
(b) the forces causing the tension in those bars and (c) the forces
causing compression in the other bars? (Hint: Symmetry consider-
ations can lead to considerable simplification in this problem.)

=g
Sy

D C
Fig. 12-77 Problem 75.

76 A gymnast with mass 46.0 kg »
stands on the end of a uniform bal- y

ance beam as shown in Fig. 12-78. L 1
The beam is 5.00 m long and has a x

mass of 250 kg (excluding the mass

of the two supports). Each supportis | ; 5 I
0.540 m from its end of the beam. In ﬂl ﬂl

unit-vector notation, what are the
forces on the beam due to (a) sup-
port 1 and (b) support 2?

77 Figure 12-79 shows a 300 kg cylinder that is horizontal.
Three steel wires support the
cylinder from a ceiling. Wires 1
and 3 are attached at the ends of
the cylinder, and wire 2 is at- 1 2| 3
tached at the center. The wires
each have a cross-sectional area
of 2.00 X 10-°m?. Initially (be-
fore the cylinder was put in place)
wires 1 and 3 were 2.0000 m long
and wire 2 was 6.00 mm longer
than that. Now (with the cylinder
in place) all three wires have been
stretched. What is the tension in
(a) wire 1 and (b) wire 2?

78 In Fig. 12-80, a uniform beam
of length 12.0 m is supported by a
horizontal cable and a hinge at an-
gle 6 = 50.0°. The tension in the ca-
ble is 400 N. In unit-vector nota-
tion, what are (a) the gravitational
force on the beam and (b) the force
on the beam from the hinge?

Fig. 12-78 Problem 76.

/Ceiling

Fig. 12-79 Problem 77.

Cable

Fig. 12-80 Problem 78.



79 <%= Four bricks of length L, identical and uniform, are
stacked on a table in two ways, as shown in Fig. 12-81 (compare
with Problem 63). We seek to maximize the overhang distance % in
both arrangements. Find the optimum distances a,, a,, b;, and b,
and calculate /4 for the two arrangements.

i

~a

eaﬁz»‘

a—]

(a)
e bl—><—ll—-—><— b1*>‘

~—b—

«b2+‘

h—

(0)

Fig. 12-81 Problem 79.

80 A cylindrical aluminum rod, with an initial length of 0.8000
m and radius 1000.0 um, is clamped in place at one end and then
stretched by a machine pulling parallel to its length at its other
end. Assuming that the rod’s density (mass per unit volume)
does not change, find the force magnitude that is required of the
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machine to decrease the radius to 999.9 um. (The yield strength
is not exceeded.)

81 A beam of length L is carried by three men, one man at one
end and the other two supporting the beam between them on a
crosspiece placed so that the load of the beam is equally divided
among the three men. How far from the beam’s free end is the
crosspiece placed? (Neglect the mass of the crosspiece.)

82 If the (square) beam in Fig. 12-6a and the associated sample
problem is of Douglas fir, what must be its thickness to keep the
compressive stress on it to ; of its ultimate strength?

83 Figure 12-82 shows a stationary arrangement of two crayon
boxes and three cords. Box A has a mass of 11.0 kg and is on a
ramp at angle 6 = 30.0°; box B has a mass of 7.00 kg and hangs on
a cord. The cord connected to box A is parallel to the ramp, which
is frictionless. (a) What is the tension in the upper cord, and (b)
what angle does that cord make with the horizontal?

Fig. 12-82 Problem 83.



CHAPTER

GRAVITATION

WHAT IS PHYSICS?

One of the long-standing goals of physics is to understand the gravita-
tional force—the force that holds you to Earth, holds the Moon in orbit around
Earth, and holds Earth in orbit around the Sun. It also reaches out through the
whole of our Milky Way galaxy, holding together the billions and billions of stars
in the Galaxy and the countless molecules and dust particles between stars. We
are located somewhat near the edge of this disk-shaped collection of stars and
other matter, 2.6 X 10 light-years (2.5 X 10* m) from the galactic center, around
which we slowly revolve.

The gravitational force also reaches across intergalactic space, holding
together the Local Group of galaxies, which includes, in addition to the Milky
Way, the Andromeda Galaxy (Fig. 13-1) at a distance of 2.3 X 10° light-years
away from Earth, plus several closer dwarf galaxies, such as the Large Magellanic
Cloud. The Local Group is part of the Local Supercluster of galaxies that is being
drawn by the gravitational force toward an exceptionally massive region of space
called the Great Attractor. This region appears to be about 3.0 X 108 light-years
from Earth, on the opposite side of the Milky Way. And the gravitational force is
even more far-reaching because it attempts to hold together the entire universe,
which is expanding.

This force is also responsible for some of the most mysterious structures in
the universe: black holes. When a star considerably larger than our Sun burns out,
the gravitational force between all its particles can cause the star to collapse in on
itself and thereby to form a black hole. The gravitational force at the surface of
such a collapsed star is so strong that neither particles nor light can escape from
the surface (thus the term “black hole”). Any star coming too near a black hole
can be ripped apart by the strong gravitational force and pulled into the hole.
Enough captures like this yields a supermassive black hole. Such mysterious mon-
sters appear to be common in the universe.

Although the gravitational force is still not fully understood, the starting
point in our understanding of it lies in the law of gravitation of Isaac Newton.

13-2 Newton’s Law of Gravitation

Physicists like to study seemingly unrelated phenomena to show that a relation-
ship can be found if the phenomena are examined closely enough. This search for
unification has been going on for centuries. In 1665, the 23-year-old Isaac Newton
made a basic contribution to physics when he showed that the force that holds
the Moon in its orbit is the same force that makes an apple fall. We take this
knowledge so much for granted now that it is not easy for us to comprehend the
ancient belief that the motions of earthbound bodies and heavenly bodies were
different in kind and were governed by different laws.

Newton concluded not only that Earth attracts both apples and the Moon
but also that every body in the universe attracts every other body; this tendency
of bodies to move toward one another is called gravitation. Newton’s conclusion
takes a little getting used to, because the familiar attraction of Earth for earth-
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Fig. 13-1 The Andromeda
Galaxy. Located 2.3 X 10° light-
years from us, and faintly visible
to the naked eye, it is very similar
to our home galaxy, the Milky
Way. (Courtesy NASA)

bound bodies is so great that it overwhelms the attraction that earthbound bodies
have for each other. For example, Earth attracts an apple with a force magnitude
of about 0.8 N. You also attract a nearby apple (and it attracts you), but the force
of attraction has less magnitude than the weight of a speck of dust.

Newton proposed a force law that we call Newton’s law of gravitation: Every
particle attracts any other particle with a gravitational force of magnitude

nyni,

F=G T (Newton’s law of gravitation). (13-1)

Here m, and m, are the masses of the particles, r is the distance between them,
and G is the gravitational constant, with a value that is now known to be
G = 6.67 X 107" N-m?/kg?
= 6.67 X 107" m¥kg-s% (13-2)
In Fig. 13-2a, F is the gravitational force acting on particle 1 (mass m,) due to
particle 2 (mass m,). The force is directed toward particle 2 and is said to be an

attractive force because particle 1 is attracted toward particle 2. The magnitude
of the force is given by Eq. 13-1.

- Draw the vector
This is the pull on with its tail on

particle 1 due to 9 - particle 1 to show 2 .r
particle 2. ¥ the pulling. @

(@) () (¢)

A unit vector
points along
the radial axis.

Fig. 13-2 (a) The gravi-
tational force F on parti-
cle 1 due to particle 2 is an
attractive force because

- particle 1 is attracted to

particle 2. (b) Force F is
directed along a radial
coordinate axis r extend-
ing from particle 1
through particle 2. (c) F is
in the direction of a unit
vector talong the r axis.
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(fk 0.80:N
TF= 0.80 N

Fig. 13-3 The apple pulls up on
Earth just as hard as Earth pulls
down on the apple.

We can describe F as being in the positive direction of an r axis extending
radially from particle 1 through particle 2 (Fig. 13-2b). We can also describe F by
using a radial unit vector T (a dimensionless vector of magnitude 1) that is
directed away from particle 1 along the r axis (Fig. 13-2¢). From Eq. 13-1, the
force on particle 1 is then

= nynm,
F=G ST

. (13-3)

The gravitational force on particle 2 due to particle 1 has the same magnitude
as the force on particle 1 but the opposite direction. These two forces form a
third-law force pair, and we can speak of the gravitational force between the two
particles as having a magnitude given by Eq. 13-1. This force between two parti-
cles is not altered by other objects, even if they are located between the particles.
Put another way, no object can shield either particle from the gravitational force
due to the other particle.

The strength of the gravitational force—that is, how strongly two particles
with given masses at a given separation attract each other—depends on the
value of the gravitational constant G. If G—by some miracle—were suddenly
multiplied by a factor of 10, you would be crushed to the floor by Earth’s attrac-
tion. If G were divided by this factor, Earth’s attraction would be so weak that
you could jump over a building.

Although Newton’s law of gravitation applies strictly to particles, we can also
apply it to real objects as long as the sizes of the objects are small relative to the dis-
tance between them. The Moon and Earth are far enough apart so that, to a good
approximation, we can treat them both as particles—but what about an apple and
Earth? From the point of view of the apple, the broad and level Earth, stretching
out to the horizon beneath the apple, certainly does not look like a particle.

Newton solved the apple—Earth problem by proving an important theorem
called the shell theorem:

W A uniform spherical shell of matter attracts a particle that is outside the shell as if all
the shell’s mass were concentrated at its center.

Earth can be thought of as a nest of such shells, one within another and each shell
attracting a particle outside Earth’s surface as if the mass of that shell were at the
center of the shell. Thus, from the apple’s point of view, Earth does behave like
a particle, one that is located at the center of Earth and has a mass equal to that
of Earth.

Suppose that, as in Fig. 13-3, Earth pulls down on an apple with a force of
magnitude 0.80 N. The apple must then pull up on Earth with a force of magni-
tude 0.80 N, which we take to act at the center of Earth. Although the forces are
matched in magnitude, they produce different accelerations when the apple is
released. The acceleration of the apple is about 9.8 m/s?, the familiar acceleration
of a falling body near Earth’s surface. The acceleration of Earth, however,
measured in a reference frame attached to the center of mass of the apple—Earth
system, is only about 1 X 1072 m/s?,

\' CHECKPOINT 1

A particle is to be placed, in turn, outside four objects, each of mass m: (1) a large uni-
form solid sphere, (2) a large uniform spherical shell, (3) a small uniform solid sphere,
and (4) a small uniform shell. In each situation, the distance between the particle and
the center of the object is d. Rank the objects according to the magnitude of the gravi-
tational force they exert on the particle, greatest first.
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13-3 Gravitation and the Principle of Superposition

Given a group of particles, we find the net (or resultant) gravitational force on
any one of them from the others by using the principle of superposition. This is a
general principle that says a net effect is the sum of the individual effects. Here,
the principle means that we first compute the individual gravitational forces that
act on our selected particle due to each of the other particles. We then find the net
force by adding these forces vectorially, as usual.

For n interacting particles, we can write the principle of superposition for the
gravitational forces on particle 1 as

ﬁl,net=F12+ﬁ13+ﬁl4+F15+'“+ﬁln' (13'4)

Here F 1net 18 the net force on particle 1 due to the other particles and, for exam-
ple, F5 is the force on particle 1 from particle 3. We can express this equation
more compactly as a vector sum:

ﬁl,net = Eﬁlz (13'5)
i=2

What about the gravitational force on a particle from a real (extended)
object? This force is found by dividing the object into parts small enough to
treat as particles and then using Eq. 13-5 to find the vector sum of the forces on
the particle from all the parts. In the limiting case, we can divide the extended
object into differential parts each of mass dm and each producing a differential
force dF on the particle. In this limit, the sum of Eq. 13-5 becomes an integral
and we have

F = J dF, (13-6)

in which the integral is taken over the entire extended object and we drop the
subscript “net.” If the extended object is a uniform sphere or a spherical shell, we
can avoid the integration of Eq. 13-6 by assuming that the object’s mass is
concentrated at the object’s center and using Eq. 13-1.

\' CHECKPOINT 2

The figure shows four arrangements of three particles of equal masses. (a) Rank the
arrangements according to the magnitude of the net gravitational force on the
particle labeled m, greatest first. (b) In arrangement 2, is the direction of the net force
closer to the line of length d or to the line of length D?

b D
-
*r——o—o d
m

1) (2)

(3) (4)
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Sample Problem

Net gravitational force, 2D, 3 particles

Figure 13-4a shows an arrangement of three particles, parti-
cle 1 of mass m; = 6.0 kg and particles 2 and 3 of mass m, =
m; = 4.0 kg, and distance a = 2.0 cm. What is the net gravi-
tational force F 1.net ON particle 1 due to the other particles?

KEY IDEAS

(1) Because we have particles, the magnitude of the gravita-
tional force on particle 1 due to either of the other particles is
given by Eq. 13-1 (F = Gm;m,/r?). (2) The direction of either
gravitational force on particle 1 is toward the particle responsi-
ble for it. (3) Because the forces are not along a single axis, we
cannot simply add or subtract their magnitudes or their compo-
nents to get the net force. Instead, we must add them as vectors.

Calculations: From Eq. 13-1, the magnitude of the force Fi
on particle 1 from particle 2 is

. Gm1m2

Fp = = (13-7)

a

~(6.67 X 107" m¥/kg-s?)(6.0 kg)(4.0 kg)
(0.020 m)?

=4.00 X 107°N.
Similarly, the magnitude of force F 13 on particle 1 from
particle 3 is

_ Gmymy,
F=——5-

(2a)°
(6.67 X 10~ m¥/kg-52)(6.0 kg)(4.0 kg)
(0.040 m)?

(13-8)

=1.00 X 107 N.
WILEY O

Force F, is directed in the positive direction of the y axis
(Fig. 13-4b) and has only the y component Fj,. Similarly, F;
is directed in the negative direction of the x axis and has
only the x component — Fy; (Fig. 13-4c).

To find the net force F 1.net ON particle 1, we must add the
two forces as vectors (Figs. 13-4d and e). We can do so on a
vector-capable calculator. However, here we note that —Fj;
and Fj, are actually the x and y components of F e
Therefore, we can use Eq. 3-6 to find first the magnitude and
then the direction of F 1net- The magnitude is

(Fo)* + (—Fs)
= V/(4.00 X 1075 N)> + (—=1.00 X 1076 N)?
= 41X 10N,

Fl,net =

(Answer)

Relative to the positive direction of the x axis, Eq. 3-6 gives
the direction of Fy . as

B _ . 400X 10°N

= —76°.
—Fs ~1.00 X 10 °N

0 = tan™
Is this a reasonable direction (Fig. 13-4f)? No, because the
<1i)recti0n of Fy,. must be between the directions of /', and
F 3. Recall from Chapter 3 that a calculator displays only
one of the two possible answers to a tan~! function. We find

the other answer by adding 180°:
—76° + 180° = 104°, (Answer)

which is a reasonable direction for F 1net (Fig. 13-49).

PLUS Additional examples, video, and practice available at WileyPLUS

Table 13-1

Variation of a, with Altitude

Altitude a, Altitude
(km)  (m/s?) Example
Mean Earth
0 9.83 surface
8.8 9.80 Mt. Everest
Highest crewed
36.6 9.71 balloon
Space shuttle
400 8.70 orbit
Communications
35700 0.225 satellite

13-4 Gravitation Near Earth’s Surface

Let us assume that Earth is a uniform sphere of mass M. The magnitude of the
gravitational force from Earth on a particle of mass m, located outside Earth a
distance r from Earth’s center, is then given by Eq. 13-1 as

Mm
2

F=G (13-9)

If the particle is released, it will fall toward the center of Earth, as a result of the
gravitational force F, with an acceleration we shall call the gravitational accelera-
tion @,. Newton’s second law tells us that magnitudes F and a, are related by

F = ma,. (13-10)

Now, substituting F from Eq. 13-9 into Eq. 13-10 and solving for a,, we find

GM
=—

; (13-11)

Table 13-1 shows values of a, computed for various altitudes above Earth’s
surface. Notice a, is significant even at 400 km.
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We want the forces y This is the force y This is the force y \Q)
(pulls) on particle 1, (pull) on particle 1 = (pull) on particle 1
not the forces on @ m, due to particle 2. " due to particle 3.
the other particles. "
o x x @
mg 2a my m Fg |™
(a) () (0)
B3y b] bl bl
\
— — \\
})l,net E? F12 _Fl,nat \\
| 104°
\
X X X X
\ \
\ \
(d) () ) (€3
This is one way to This is another way, A calculator's inverse But this is the
show the net force also a head-to-tail tangent can give this correct angle.
on particle 1. Note arrangement. for the angle.
the head-to-tail
arrangement.

Fig. 13-4 (a) Anarrangement of three particles. The force on particle 1 due to (b) particle 2 and (c)
particle 3. (d) — (g) Ways to combine the forces to get the net force magnitude and orientation.

Since Section 5-4, we have assumed that Earth is an inertial frame by neglect- 14 | | |
ing its rotation. This simplification has allowed us to assume that the free-fall 12 : :
acceleration g of a particle is the same as the particle’s gravitational acceleration 68\ 10 I Outer! |
(which we now call ag). Furthermore, we assumed that g has the constant value E’“ g : core : g
9.8 m/s? any place on Earth’s surface. However, any g value measured at a given N : :g
location will differ from the a, value calculated with Eq. 13-11 for that location i 6 | | :wz
for three reasons: (1) Earth’s mass is not distributed uniformly, (2) Earth is not a Z 4 | | |
perfect sphere, and (3) Earth rotates. Moreover, because g differs from a,, the s 2 : : i
same three reasons mean that the measured weight mg of a particle differs from 0 l l l

o 1 2 3 4 5 6 7

the magnitude of the gravitational force on the particle as given by Eq. 13-9. Let
Distance from center (10% m)

us now examine those reasons.
Fig. 13-5 The density of Earth as
a function of distance from the cen-

ter. The limits of the solid inner core,
the largely liquid outer core, and the

1. Earth’s mass is not uniformly distributed. The density (mass per unit volume)
of Earth varies radially as shown in Fig. 13-5, and the density of the crust
(outer section) varies from region to region over Earth’s surface. Thus, g varies

from region to region over the surface. solid mantle are shown, but the crust
2. Earth is not a sphere. Earth is approximately an ellipsoid, flattened at the of Earth is too thin to show clearly
poles and bulging at the equator. Its equatorial radius (from its center point on this plot.

out to the equater) is greater than its polar radius (from its center point out
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Two forces act
on this crate. Crate

The normal force ’ The net
is upward. o force is
Crate Iy toward
N the center.

a So, the
crate's

The gravitational acceleration

force is downward. mZg is too.

()

Fig. 13-6 (a) A crate sitting on a scale at
Earth’s equator, as seen by an observer
positioned on Earth’s rotation axis at some
point above the north pole. (b) A free-body
diagram for the crate, with a radial r axis ex-
tending from Earth’s center. The gravita-
tional force on the crate is represented with
its equivalent ma,. The jormal force on the
crate from the scale is Fy. Because of
Earth’s rotation, the crate has a centripetal
acceleration @ that is directed toward
Earth’s center.

to either north or south pole) by 21 km. Thus, a point at the poles is closer to
the dense core of Earth than is a point on the equator. This is one reason the
free-fall acceleration g increases if you were to measure it while moving at sea
level from the equator toward the north or south pole. As you move, you are
actually getting closer to the center of Earth and thus, by Newton’s law of
gravitation, g increases.

3. Earth is rotating. The rotation axis runs through the north and south poles
of Earth. An object located on Earth’s surface anywhere except at those
poles must rotate in a circle about the rotation axis and thus must have a
centripetal acceleration directed toward the center of the circle. This cen-
tripetal acceleration requires a centripetal net force that is also directed to-
ward that center.

To see how Earth’s rotation causes g to differ from a,, let us analyze a simple
situation in which a crate of mass m is on a scale at the equator. Figure 13-6a
shows this situation as viewed from a point in space above the north pole.

Figure 13-6b, a free-body diagram for the crate, shows the two forces on
the crate, both acting along a radial r axis that extends from Earth’s center. The
normal force FN on the crate from the scale is directed outward, in the positive
direction of the r axis. The gravitational force, represented with its equivalent
mﬁ’g, is directed inward. Because it travels in a circle about the center of Earth
as Earth turns, the crate has a centripetal acceleration @ directed toward
Earth’s center. From Eq. 10-23 (a, = «?*r), we know this acceleration is equal
to ’R, where w is Earth’s angular speed and R is the circle’s radius (approxi-
mately Earth’s radius). Thus, we can write Newton’s second law for forces
along the r axis (F,,, = ma,) as

Fy — ma, = m(—o’R). (13-12)

The magnitude Fy of the normal force is equal to the weight mg read on the scale.
With mg substituted for Fy, Eq. 13-12 gives us

mg = ma, — m(w’R), (13-13)
which says

measured) magnitude of _ mass times
weight / =~ \gravitational force centripetal acceleration )

Thus, the measured weight is less than the magnitude of the gravitational force
on the crate, because of Earth’s rotation.
To find a corresponding expression for g and a,, we cancel m from Eq. 13-13
to write
g =a,— R, (13-14)
which says

free-fall \ _ (gravitational\ [ centripetal
acceleration acceleration acceleration )’

Thus, the measured free-fall acceleration is less than the gravitational accelera-
tion because of Earth’s rotation.

The difference between accelerations g and a, is equal to @R and is greatest
on the equator (for one reason, the radius of the circle traveled by the crate is
greatest there). To find the difference, we can use Eq. 10-5 (w = A6/Ar) and
Earth’s radius R = 6.37 X 10° m. For one rotation of Earth, 6 is 27 rad and the
time period At is about 24 h. Using these values (and converting hours to sec-
onds), we find that g is less than a, by only about 0.034 m/s* (small compared to
9.8 m/s?). Therefore, neglecting the difference in accelerations g and a, is often
justified. Similarly, neglecting the difference between weight and the magnitude
of the gravitational force is also often justified.
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Sample Problem

Difference in acceleration at head and feet

(a) An astronaut whose height 4 is 1.70 m floats “feet down”
in an orbiting space shuttle at distance r = 6.77 X 10° m away
from the center of Earth. What is the difference between the
gravitational acceleration at her feet and at her head?

KEY IDEAS

We can approximate Earth as a uniform sphere of mass M.
Then, from Eq. 13-11, the gravitational acceleration at any dis-
tance r from the center of Earth is

(13-15)

We might simply apply this equation twice, first with r =
6.77 X 10°m for the location of the feet and then with
r=677x10°m + 1.70m for the location of the head.
However, a calculator may give us the same value for a, twice,
and thus a difference of zero, because 4 is so much smaller
than r. Here’s a more promising approach: Because we have
a differential change dr in r between the astronaut’s feet and
head, we should differentiate Eq. 13-15 with respect to r.

Calculations: The differentiation gives us
GMy
= 72 3

da dr, (13-16)

where da, is the differential change in the gravitational
acceleration due to the differential change dr in r. For the
astronaut, dr = h and r = 6.77 X 10° m. Substituting data
into Eq. 13-16, we find

da. = -2 (6.67 X 107" m¥/kg-s?)(5.98 X 10**kg)
¢ (6.77 X 10°m)?

= —437 X 10~° m/s?,

(1.70 m)

(Answer)

where the My value is taken from Appendix C. This result
means that the gravitational acceleration of the astronaut’s
feet toward Earth is slightly greater than the gravitational
acceleration of her head toward Earth. This difference in
acceleration (often called a fidal effect) tends to stretch her
body, but the difference is so small that she would never even
sense the stretching, much less suffer pain from it.

(b) If the astronaut is now “feet down” at the same or-
bital radius r = 6.77 X 10° m about a black hole of mass
M, = 1.99 X 10% kg (10 times our Sun’s mass), what is the
difference between the gravitational acceleration at her
feet and at her head? The black hole has a mathematical
surface (event horizon) of radius R, = 2.95 X 10* m.
Nothing, not even light, can escape from that surface or
anywhere inside it. Note that the astronaut is well outside
the surface (at r = 229R),).

Calculations: We again have a differential change dr in r
between the astronaut’s feet and head, so we can again use
Eq. 13-16. However, now we substitute M, = 1.99 X 10°! kg
for M. We find

o = o (667 X 107 mYkg s))(1.99 X 10° ke)
¢ (6.77 X 10°m)’

= —14.5 m/s%.

(1.70 m)

(Answer)

This means that the gravitational acceleration of the astro-
naut’s feet toward the black hole is noticeably larger than
that of her head. The resulting tendency to stretch her body
would be bearable but quite painful. If she drifted closer
to the black hole, the stretching tendency would increase
drastically.

PW'IL_EVU"S Additional examples, video, and practice available at WileyPLUS

13-5 Gravitation Inside Earth

Newton’s shell theorem can also be applied to a situation in which a particle is

located inside a uniform shell, to show the following:

W A uniform shell of matter exerts no net gravitational force on a particle located

inside it.

Caution: This statement does not mean that the gravitational forces on the parti-
cle from the various elements of the shell magically disappear. Rather, it means
that the sum of the force vectors on the particle from all the elements is zero.

If Earth’s mass were uniformly distributed, the gravitational force acting on a par-
ticle would be a maximum at Earth’s surface and would decrease as the particle
moved outward, away from the planet. If the particle were to move inward, perhaps
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down a deep mine shaft, the gravitational force would change for two reasons. (1) It
would tend to increase because the particle would be moving closer to the center of
Earth. (2) It would tend to decrease because the thickening shell of material lying out-
side the particle’s radial position would not exert any net force on the particle.

For a uniform Earth, the second influence would prevail and the force on the
particle would steadily decrease to zero as the particle approached the center of
Earth. However, for the real (nonuniform) Earth, the force on the particle actu-
ally increases as the particle begins to descend. The force reaches a maximum at
a certain depth and then decreases as the particle descends farther.

Sample Problem

Tunnel through Earth’s center, gravitation

In Pole to Pole, an early science fiction story by George
Griffith, three explorers attempt to travel by capsule
through a naturally formed (and, of course, fictional) tunnel
directly from the south pole to the north pole (Fig. 13-7).
According to the story, as the capsule approaches Earth’s
center, the gravitational force on the explorers becomes
alarmingly large and then, exactly at the center, it suddenly
but only momentarily disappears. Then the capsule travels
through the second half of the tunnel, to the north pole.
Check Griffith’s description by finding the gravitational
force on the capsule of mass m when it reaches a distance r
from Earth’s center. Assume that Earth is a sphere of uniform
density p (mass per unit volume). ==

KEY IDEAS

Newton’s shell theorem gives us three ideas:

1. When the capsule is at radius r from Earth’s center, the
portion of Earth that lies outside a sphere of radius r does
not produce a net gravitational force on the capsule.

2. The portion of Earth that lies inside that sphere does
produce a net gravitational force on the capsule.

3. We can treat the mass M, of that inside portion of Earth
as being the mass of a particle located at Earth’s center.

Calculations: All three ideas tell us that we can write Eq.
13-1, for the magnitude of the gravitational force on the
capsule, as

F =" (13-17)

To write the mass M, in terms of the radius r, we note
that the volume V;,, containing this mass is 377>. Also, be-
cause we're assuming an Earth of uniform density, the density
Pins = MindVins 1s Earth’s density p. Thus, we have

47r3
]‘/Iins = p‘/ins =P 3 (13'18)
Then, after substituting this expression into Eq. 13-17 and

WILEY ®

canceling, we have

P 47Gmp .

3

This equation tells us that the force magnitude F depends
linearly on the capsule’s distance r from Earth’s center.
Thus, as r decreases, F also decreases (opposite of Griffith’s
description), until it is zero at Earth’s center. At least
Griffith got the zero-at-the-center detail correct.

Equation 13-19 can also be written in terms of the force
vector F and the capsule’s position vector 7 along a radial
axis extending from Earth’s center. Let K represent the col-
lection of constants 477Gmp/3.Then, Eq. 13-19 becomes

(Answer) (13-19)

F=-K7, (13-20)
in which we have inserted a minus sign to indicate that F
and 7" have opposite directions. Equation 13-20 has the form
of Hooke’s law (Eq. 7-20, F = —kd). Thus, under the ideal-
ized conditions of the story, the capsule would oscillate like
a block on a spring, with the center of the oscillation at
Earth’s center. After the capsule had fallen from the south
pole to Earth’s center, it would travel from the center to the
north pole (as Griffith said) and then back again, repeating
the cycle forever.

Fig. 13-7 A capsule of mass m falls from rest through a tunnel
that connects Earth’s south and north poles. When the capsule is at
distance r from Earth’s center, the portion of Earth’s mass that is
contained in a sphere of that radius is M.

PLUS Additional examples, video, and practice available at WileyPLUS
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13-6 Gravitational Potential Energy

In Section 8-4, we discussed the gravitational potential energy of a particle—
Earth system. We were careful to keep the particle near Earth’s surface, so that
we could regard the gravitational force as constant. We then chose some reference
configuration of the system as having a gravitational potential energy of zero.
Often, in this configuration the particle was on Earth’s surface. For particles not
on Earth’s surface, the gravitational potential energy decreased when the separa-
tion between the particle and Earth decreased.

Here, we broaden our view and consider the gravitational potential energy U
of two particles, of masses m and M, separated by a distance r. We again choose a
reference configuration with U equal to zero. However, to simplify the equations,
the separation distance 7 in the reference configuration is now large enough to be
approximated as infinite. As before, the gravitational potential energy decreases
when the separation decreases. Since U = 0 for r = «, the potential energy is neg-
ative for any finite separation and becomes progressively more negative as the
particles move closer together.

With these facts in mind and as we shall justify next, we take the gravitational
potential energy of the two-particle system to be

_ GMm
r

U:

(13-21)

(gravitational potential energy).

Note that U(r) approaches zero as r approaches infinity and that for any finite
value of r, the value of U(r) is negative.

The potential energy given by Eq. 13-21 is a property of the system of two
particles rather than of either particle alone. There is no way to divide this energy
and say that so much belongs to one particle and so much to the other. However,
if M > m, as is true for Earth (mass M) and a baseball (mass m), we often speak
of “the potential energy of the baseball.” We can get away with this because,
when a baseball moves in the vicinity of Earth, changes in the potential energy of
the baseball-Earth system appear almost entirely as changes in the kinetic
energy of the baseball, since changes in the kinetic energy of Earth are too small
to be measured. Similarly, in Section 13-8 we shall speak of “the potential energy
of an artificial satellite” orbiting Earth, because the satellite’s mass is so much
smaller than Earth’s mass. When we speak of the potential energy of bodies of
comparable mass, however, we have to be careful to treat them as a system.

If our system contains more than two particles, we consider each pair of
particles in turn, calculate the gravitational potential energy of that pair with
Eq. 13-21 as if the other particles were not there, and then algebraically sum the
results. Applying Eq. 13-21 to each of the three pairs of Fig. 13-8, for example,
gives the potential energy of the system as

Gmm
ims

U= —( Gmym, Grmams ) (13-22)

T2 I3 I3

Proof of Equation 13-21

Let us shoot a baseball directly away from Earth along the path in Fig. 13-9. We
want to find an expression for the gravitational potential energy U of the ball at
point P along its path, at radial distance R from Earth’s center. To do so, we first
find the work W done on the ball by the gravitational force as the ball travels
from point P to a great (infinite) distance from Earth. Because the gravitational
force F(r) is a variable force (its magnitude depends on r), we must use the tech-
niques of Section 7-8 to find the work. In vector notation, we can write

W= f ) F(r)-dT. (13-23)

339
This pair has s
potential energy./’ \
/rlg r%\ Here too.
m N2 my
Here too.

Fig. 13-8 A system consisting of three
particles. The gravitational potential energy
of the system is the sum of the gravitational
potential energies of all three pairs of
particles.

Work is done
as the baseball
moves upward.

|
l

Fig. 13-9 A baseball is shot directly
away from Earth, through point P at radial
distance R from Earth’s center. The gravi-
tational force F on the ball and a differen-
tial displacement vector d7 are shown, both
directed along a radial r axis.

PART 2
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Actual path
from Ato G
is irrelevant.

/~ Earth

o
Fig. 13-10 Near Earth, a baseball is
moved from point A to point G along a
path consisting of radial lengths and circu-
lar arcs.

The integral contains the scalar (or dot) product of the force F (r) and the differential
displacement vector d7 along the ball’s path. We can expand that product as

F(r)-d7 = F(r) dr cos ¢, (13-24)
where ¢ is the angle between the directions of F (r) and d7. When we substitute
180° for ¢ and Eq. 13-1 for F(r), Eq. 13-24 becomes

GMm
2

F(r)-d7 = — dr,

where M is Earth’s mass and m is the mass of the ball.
Substituting this into Eq. 13-23 and integrating give us

W= —GMmf L= [GM’"}
R r r R
GMm GMm

=0- = — 13-25
- o (13-25)
where W is the work required to move the ball from point P (at distance R) to
infinity. Equation 8-1 (AU = —W) tells us that we can also write that work in terms

of potential energies as U -U=-w

Because the potential energy U., at infinity is zero, U is the potential energy at P,

and Wis given by Eq. 13-25, this equation becomes
GMm
=W=— :
v R

Switching R to r gives us Eq. 13-21, which we set out to prove.

Path Independence

In Fig. 13-10, we move a baseball from point A to point G along a path consisting
of three radial lengths and three circular arcs (centered on Earth). We are inter-
ested in the total work W done by Earth’s gravitational force F on the ball as it
moves from A to G. The work done along each circular arc is zero, because the
direction of F is perpendicular to the arc at every point. Thus, W is the sum of
only the works done by F along the three radial lengths.

Now, suppose we mentally shrink the arcs to zero. We would then be moving
the ball directly from A to G along a single radial length. Does that change W?
No. Because no work was done along the arcs, eliminating them does not change
the work. The path taken from A to G now is clearly different, but the work done
by F is the same.

We discussed such a result in a general way in Section 8-3. Here is the point:
The gravitational force is a conservative force. Thus, the work done by the grav-
itational force on a particle moving from an initial point i to a final point f is
independent of the path taken between the points. From Eq. 8-1, the change AU
in the gravitational potential energy from point i to point f is given by

AU=U; - U;=-W. (13-26)

Since the work W done by a conservative force is independent of the actual path
taken, the change AU in gravitational potential energy is also independent of the
path taken.

Potential Energy and Force

In the proof of Eq. 13-21, we derived the potential energy function U(r) from the
force function F(r). We should be able to go the other way—that is, to start from
the potential energy function and derive the force function. Guided by Eq. 8-22
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(F(x) = —dU(x)/dx), we can write

__4auv _ _i<_ GMm)
dr dr r
GMm
= — o (13-27)

This is Newton’s law of gravitation (Eq. 13-1). The minus sign indicates that the
force on mass m points radially inward, toward mass M.

Escape Speed

If you fire a projectile upward, usually it will slow, stop momentarily, and return
to Earth. There is, however, a certain minimum initial speed that will cause it to
move upward forever, theoretically coming to rest only at infinity. This minimum
initial speed is called the (Earth) escape speed.

Consider a projectile of mass m, leaving the surface of a planet (or some
other astronomical body or system) with escape speed v. The projectile has a
kinetic energy K given by %mv2 and a potential energy U given by Eq. 13-21:

GMm
R
in which M is the mass of the planet and R is its radius.

When the projectile reaches infinity, it stops and thus has no kinetic energy. It
also has no potential energy because an infinite separation between two bodies is
our zero-potential-energy configuration. Its total energy at infinity is therefore
zero. From the principle of conservation of energy, its total energy at the planet’s
surface must also have been zero, and so

U= —

GM
K+ U:;mv2+(— Rm>:0.

2GM

R

Note that v does not depend on the direction in which a projectile is fired
from a planet. However, attaining that speed is easier if the projectile is fired in
the direction the launch site is moving as the planet rotates about its axis. For
example, rockets are launched eastward at Cape Canaveral to take advantage of
the Cape’s eastward speed of 1500 km/h due to Earth’s rotation.

Equation 13-28 can be applied to find the escape speed of a projectile from
any astronomical body, provided we substitute the mass of the body for M and
the radius of the body for R.Table 13-2 shows some escape speeds.

This yields v =

(13-28)

Table 13-2
Some Escape Speeds
Body Mass (kg) Radius (m) Escape Speed (km/s)
Ceres” 1.17 x 10? 3.8 X 10° 0.64
Earth’s moon® 7.36 X 10% 1.74 X 10° 2.38
Earth 5.98 X 10* 6.37 X 10° 11.2
Jupiter 1.90 x 1077 7.15 X 107 59.5
Sun 1.99 X 10%° 6.96 X 108 618
Sirius B? 2 X 103 1 %107 5200
Neutron star® 2 X 10% 1 x 10* 2 X 10°

“The most massive of the asteroids.
YA white dwarf (a star in a final stage of evolution) that is a companion of the bright star Sirius.
“The collapsed core of a star that remains after that star has exploded in a supernova event.
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You move a ball of mass m away from a
sphere of mass M. (a) Does the gravita-
tional potential energy of the system of
ball and sphere increase or decrease?
(b) Is positive work or negative work
done by the gravitational force between
the ball and the sphere?

PART 2
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Sample Problem

Asteroid falling from space, mechanical energy

An asteroid, headed directly toward Earth, has a speed of
12 km/s relative to the planet when the asteroid is 10 Earth
radii from Earth’s center. Neglecting the effects of Earth’s
atmosphere on the asteroid, find the asteroid’s speed v,
when it reaches Earth’s surface.

KEY IDEAS

Because we are to neglect the effects of the atmosphere on
the asteroid, the mechanical energy of the asteroid—Earth
system is conserved during the fall. Thus, the final mechani-
cal energy (when the asteroid reaches Earth’s surface) is
equal to the initial mechanical energy. With kinetic energy K
and gravitational potential energy U, we can write this as

Also, if we assume the system is isolated, the system’s
linear momentum must be conserved during the fall.
Therefore, the momentum change of the asteroid and that of
Earth must be equal in magnitude and opposite in sign.
However, because Earth’s mass is so much greater than the
asteroid’s mass, the change in Earth’s speed is negligible
relative to the change in the asteroid’s speed. So, the change
in Earth’s kinetic energy is also negligible. Thus, we can
assume that the kinetic energies in Eq. 13-29 are those of the
asteroid alone.

Calculations: Let m represent the asteroid’s mass and M
represent Earth’s mass (5.98 X 10 kg). The asteroid is ini-
tially at distance 10R; and finally at distance Ry, where Ry is

Earth’s radius (6.37 X 10° m). Substituting Eq. 13-21 for U
and 3mv? for K, we rewrite Eq. 13-29 as

15 GMm 1,9 GMm
smvs R, SMV; 10R, "
Rearranging and substituting known values, we find
2GM 1

7= ) e 1 o
PT Vi T TR, ( 10)
= (12 X 10° m/s)?

N 2(6.67 X 10~ m*kg-s?)(5.98 X 10* kg) 0.9

6.37 X 10°m )

= 2.567 X 108 m?%/s?,

and

vy =1.60 X 10* m/s = 16 km/s. (Answer)

At this speed, the asteroid would not have to be par-
ticularly large to do considerable damage at impact. If it
were only 5 m across, the impact could release about as
much energy as the nuclear explosion at Hiroshima.
Alarmingly, about 500 million asteroids of this size are
near Earth’s orbit, and in 1994 one of them apparently
penetrated Earth’s atmosphere and exploded 20 km
above the South Pacific (setting off nuclear-explosion
warnings on six military satellites). The impact of an aster-
oid 500 m across (there may be a million of them
near Earth’s orbit) could end modern civilization and
almost eliminate humans worldwide.

PW‘LLEYU"S Additional examples, video, and practice available at WileyPLUS
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Fig. 13-11 The path seen from Earth for
the planet Mars as it moved against a back-
ground of the constellation Capricorn dur-
ing 1971. The planet’s position on four days
is marked. Both Mars and Earth are moving
in orbits around the Sun so that we see the
position of Mars relative to us; this relative
motion sometimes results in an apparent
loop in the path of Mars.

13-7 Planets and Satellites: Kepler’s Laws

The motions of the planets, as they seemingly wander against the background of the
stars, have been a puzzle since the dawn of history. The “loop-the-loop” motion of
Mars, shown in Fig. 13-11, was particularly baffling. Johannes Kepler (1571-1630), af-
ter a lifetime of study, worked out the empirical laws that govern these motions.
Tycho Brahe (1546—1601), the last of the great astronomers to make observations
without the help of a telescope, compiled the extensive data from which Kepler was
able to derive the three laws of planetary motion that now bear Kepler’s name. Later,
Newton (1642-1727) showed that his law of gravitation leads to Kepler’s laws.

In this section we discuss each of Kepler’s three laws. Although here we
apply the laws to planets orbiting the Sun, they hold equally well for satellites,
either natural or artificial, orbiting Earth or any other massive central body.

Y
% 1. THE LAW OF ORBITS: All planets move in elliptical orbits, with the Sun at one focus.
Figure 13-12 shows a planet of mass m moving in such an orbit around the Sun,

whose mass is M. We assume that M > m, so that the center of mass of the
planet—Sun system is approximately at the center of the Sun.
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The orbit in Fig. 13-12 is described by giving its semimajor axis a and its
eccentricity e, the latter defined so that ea is the distance from the center of the
ellipse to either focus F or F'. An eccentricity of zero corresponds to a circle, in
which the two foci merge to a single central point. The eccentricities of the plane-
tary orbits are not large; so if the orbits are drawn to scale, they look circular. The
eccentricity of the ellipse of Fig. 13-12, which has been exaggerated for clarity, is
0.74.The eccentricity of Earth’s orbit is only 0.0167.

-y
W 2. THE LAW OF AREAS: A line that connects a planet to the Sun sweeps out equal

areas in the plane of the planet’s orbit in equal time intervals; that is, the rate dA/dt at
which it sweeps out area Ais constant.

Qualitatively, this second law tells us that the planet will move most slowly when
it is farthest from the Sun and most rapidly when it is nearest to the Sun. As it
turns out, Kepler’s second law is totally equivalent to the law of conservation of
angular momentum. Let us prove it.

The area of the shaded wedge in Fig. 13-13a closely approximates the area swept
out in time At by a line connecting the Sun and the planet, which are separated by dis-
tance r. The area AA of the wedge is approximately the area of a triangle with base
rA@ and height r. Since the area of a triangle is one-half of the base times the height,
AA = % r? A6. This expression for AA becomes more exact as Ar (hence A6) ap-
proaches zero. The instantaneous rate at which area is being swept out is then

dA | ,do

dr 27’2 E = 572(,0, (13-30)

in which wis the angular speed of the rotating line connecting Sun and planet.

Figure 13-13b shows the linear momentum p’ of the planet, along with the radial
and perpendicular components of p’. From Eq. 11-20 (L = rp ), the magnitude of
the angular momentum L of the planet about the Sun is given by the product of r
and p |, the component of p’ perpendicular to r. Here, for a planet of mass m,

L=rp. = (rmv,) = (r)(mor)

= mrzw,

(13-31)

where we have replaced v, with its equivalent wr (Eq. 10-18). Eliminating r*w
between Eqs. 13-30 and 13-31 leads to
L

dA

—_— = 13-32
dt 2m ( )

If dA/dt is constant, as Kepler said it is, then Eq. 13-32 means that L must also be

constant—angular momentum is conserved. Kepler’s second law is indeed

equivalent to the law of conservation of angular momentum.

The planet sweeps
out this area.

Fig. 13-13 (a) In time At, the line r con-
necting the planet to the Sun moves through
an angle Af, sweeping out an area AA
(shaded). (b) The linear momentum p’ of the
planet and the components of p'.
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The Sun is at
one of the two
focal points.

Fig. 13-12 A planet of mass m moving
in an elliptical orbit around the Sun.The
Sun, of mass M, is at one focus F of the el-
lipse. The other focus is F', which is located
in empty space. Each focus is a distance ea
from the ellipse’s center, with e being the
eccentricity of the ellipse. The semimajor
axis a of the ellipse, the perihelion (nearest
the Sun) distance R, and the aphelion (far-
thest from the Sun) distance R, are also

shown.

These are the two

momentum components.

PART 2
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T :
s N 3. THE LAW OF PERIODS: The square of the period of any planet is proportional
L, o\m to the cube of the semimajor axis of its orbit.
/ r \
/
\
! / ! To see this, consider the circular orbit of Fig. 13-14, with radius r (the radius of
\ M / a circle is equivalent to the semimajor axis of an ellipse). Applying Newton’s
B J/ second law (F = ma) to the orbiting planet in Fig. 13-14 yields
\\ s
S~o e GMm
S - 2 ;
Fig. 13-14 A planet of mass m moving r2 (m)(@7r). (13-33)

around the Sun in a circular orbit of radius . . .
Here we have substituted from Eq. 13-1 for the force magnitude F and used Eq. 10-

23 to substitute w?r for the centripetal acceleration. If we now use Eq. 10-20 to re-
place wwith 27/T, where T is the period of the motion, we obtain Kepler’s third law:

4 2
72 =( T )r3 (law of periods). (13-34)

GM

The quantity in parentheses is a constant that depends only on the mass M of the
central body about which the planet orbits.

Equation 13-34 holds also for elliptical orbits, provided we replace r with a,
the semimajor axis of the ellipse. This law predicts that the ratio 7%/a> has essen-
tially the same value for every planetary orbit around a given massive body. Table
13-3 shows how well it holds for the orbits of the planets of the solar system.

Satellite 1 is in a certain circular orbit around a planet, while satellite 2 is in a larger

Table 13-3
Kepler's Law of Periods for the Solar
System

Semimajor T’la

Axis Period (1073
Planet a (101 m) T(y) y2/m?)
Mercury 5.79 0.241 2.99
Venus 10.8 0.615 3.00
Earth 15.0 1.00 2.96
Mars 22.8 1.88 2.98
Jupiter 77.8 11.9 3.01
Saturn 143 29.5 2.98 \'
Uranus 287 84.0 2.98 CHECKPOINT 4
Neptune 450 165 2.99
Pluto 590 248 2.99

circular orbit. Which satellite has (a) the longer period and (b) the greater speed?

Sample Problem

Kepler’s law of periods, Comet Halley

Comet Halley orbits the Sun with a period of 76 years and, in
1986, had a distance of closest approach to the Sun, its peri-
helion distance R, of 8.9 X 10'° m. Table 13-3 shows that this
is between the orbits of Mercury and Venus.

(a) What is the comet’s farthest distance from the Sun,
which is called its aphelion distance R,?

KEY IDEAS

From Fig. 13-12, we see that R, + R, = 2a,where a is the semi-
major axis of the orbit. Thus, we can find R, if we first find a.
We can relate a to the given period via the law of periods (Eq.
13-34) if we simply substitute the semimajor axis a for r.

Calculations: Making that substitution and then solving

for a, we have
GMTZ 1/3
a = W .
If we substitute the mass M of the Sun, 1.99 X 10*° kg, and

the period T of the comet, 76 years or 2.4 X 10° s, into Eq.
13-35, we find that a = 2.7 X 10> m. Now we have

(13-35)

R,=2a— R,
= (2)(2.7 X 102 m) — 8.9 X 10°m

=5.3 X 10”m. (Answer)

Table 13-3 shows that this is a little less than the semimajor
axis of the orbit of Pluto. Thus, the comet does not get far-
ther from the Sun than Pluto.

(b) What is the eccentricity e of the orbit of comet Halley?

KEY IDEA

We can relate e, a, and R, via Fig. 13-12,in which we see that
ea =a— R,

Calculation: We have

— R R
e=21"Tr 12 (13-36)
a a
8.9 X 10m
- m = 0.97. (AHSWCI‘)

This tells us that, with an eccentricity approaching unity, this
orbit must be a long thin ellipse.

ﬁV'IL_EYU"s Additional examples, video, and practice available at WileyPLUS
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13-8 Satellites: Orbits and Energy

As a satellite orbits Earth in an elliptical path, both its speed, which fixes its
kinetic energy K, and its distance from the center of Earth, which fixes its gravita-
tional potential energy U, fluctuate with fixed periods. However, the mechanical
energy E of the satellite remains constant. (Since the satellite’s mass is so much
smaller than Earth’s mass, we assign U and E for the Earth—satellite system to
the satellite alone.)

The potential energy of the system is given by Eq. 13-21:

_ GMm
r

U:

(with U = 0 for infinite separation). Here r is the radius of the satellite’s orbit,
assumed for the time being to be circular, and M and m are the masses of Earth
and the satellite, respectively.
To find the kinetic energy of a satellite in a circular orbit, we write Newton’s
second law (F = ma) as
GMm v2

= m—, (13-37)
r r

where v?/r is the centripetal acceleration of the satellite. Then, from Eq. 13-37, the
kinetic energy is

GMm
K =1m? = 13-38
va 2 > ( )
which shows us that for a satellite in a circular orbit,
U
K= 5 (circular orbit). (13-39)
The total mechanical energy of the orbiting satellite is
M M
E—K+U-= GMm — GMm
2r r
GM,
or E=- ) m (circular orbit). (13-40)
r

This tells us that for a satellite in a circular orbit, the total energy E is the negative of
the kinetic energy K:
E=-K (circular orbit). (13-41)

For a satellite in an elliptical orbit of semimajor axis a, we can substitute a for 7 in
Eq. 13-40 to find the mechanical energy:

GM,
E=— > n (elliptical orbit). (13-42)
a

Equation 13-42 tells us that the total energy of an orbiting satellite depends
only on the semimajor axis of its orbit and not on its eccentricity e. For example,
four orbits with the same semimajor axis are shown in Fig. 13-15; the same satel-
lite would have the same total mechanical energy E in all four orbits. Figure 13-16
shows the variation of K, U, and E with r for a satellite moving in a circular orbit
about a massive central body.

Fig. 13-16 The variation of kinetic energy K, potential energy U, and total energy E
with radius 7 for a satellite in a circular orbit. For any value of r, the values of U and E are
negative, the value of K is positive,and £ = —K. As r — =, all three energy curves
approach a value of zero.

Fig. 13-15 Four orbits with different ec-
centricities e about an object of mass M. All
four orbits have the same semimajor axis a
and thus correspond to the same total me-
chanical energy E.

This is a plot of a
satellite's energies
versus orbit radius.

Energy

The kinetic energy
is positive.

Ul
© The potential energy

and total energy
are negative.
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Jl cHECKPOINT 5

In the figure here, a space shuttle is initially in a circular orbit of radius r about Earth.
At point P, the pilot briefly fires a forward-pointing thruster to decrease the shuttle’s
kinetic energy K and mechanical energy E. (a) Which of the dashed elliptical orbits
shown in the figure will the shuttle then take? (b) Is the orbital period T of the shut-
tle (the time to return to P) then greater than, less than, or the same as in the circular

orbit?

= =

Sample Problem

Mechanical energy of orbiting bowling ball

A playful astronaut releases a bowling ball, of mass m =
7.20 kg, into circular orbit about Earth at an altitude 4 of
350 km.

(a) What is the mechanical energy E of the ball in its
orbit?

KEY IDEA

We can get E from the orbital energy, given by Eq. 13-40
(E = —GMm/2r), if we first find the orbital radius . (It is
not simply the given altitude.)

Calculations: The orbital radius must be
r=R+h=6370km + 350 km = 6.72 X 10° m,

in which R is the radius of Earth. Then, from Eq. 13-40, the
mechanical energy is

GMm
E=—
2r

_ (667 X 107" N-m%/kg?)(5.98 X 10> kg)(7.20 kg)
(2)(6.72 X 106 m)
= —2.14 x 108 = —214 MJ.

(Answer)

(b) What is the mechanical energy E, of the ball on the
launchpad at Cape Canaveral (before it, the astronaut, and
the spacecraft are launched)? From there to the orbit, what
is the change AE in the ball’s mechanical energy?

e
PLUS

KEY IDEA

On the launchpad, the ball is not in orbit and thus Eq. 13-40
does not apply. Instead, we must find £, = K, + U,, where
K, is the ball’s kinetic energy and U, is the gravitational po-
tential energy of the ball-Earth system.

Calculations: To find U, we use Eq. 13-21 to write

_ GMm
R
_(6.67 X 107" N-m%kg?)(5.98 X 10 kg)(7.20 kg)
6.37 X 10°m
= —4.51 X 10%J = —451 M.
The kinetic energy K, of the ball is due to the ball’s motion
with Earth’s rotation. You can show that K|, is less than 1 MJ,

which is negligible relative to U,. Thus, the mechanical en-
ergy of the ball on the launchpad is

U0:

(Answer)

The increase in the mechanical energy of the ball from
launchpad to orbit is

AE = E — E, = (—214 MJ) — (—451 MI)

=237 M. (Answer)

This is worth a few dollars at your utility company.
Obviously the high cost of placing objects into orbit is not
due to their required mechanical energy.

Additional examples, video, and practice available at WileyPLUS
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13-9 Einstein and Gravitation
Principle of Equivalence

Albert Einstein once said: “I was . . . in the patent office at Bern when all of a
sudden a thought occurred to me: ‘If a person falls freely, he will not feel his
own weight.” I was startled. This simple thought made a deep impression on me.
It impelled me toward a theory of gravitation.”

Thus Einstein tells us how he began to form his general theory of relativity.
The fundamental postulate of this theory about gravitation (the gravitating of
objects toward each other) is called the principle of equivalence, which says that
gravitation and acceleration are equivalent. If a physicist were locked up in a
small box as in Fig. 13-17, he would not be able to tell whether the box was at
rest on Earth (and subject only to Earth’s gravitational force), as in Fig. 13-17a,
or accelerating through interstellar space at 9.8 m/s> (and subject only to the
force producing that acceleration), as in Fig. 13-17b. In both situations he would
feel the same and would read the same value for his weight on a scale. Moreover,
if he watched an object fall past him, the object would have the same acceleration
relative to him in both situations.

Curvature of Space

We have thus far explained gravitation as due to a force between masses. Einstein
showed that, instead, gravitation is due to a curvature of space that is caused by
the masses. (As is discussed later in this book, space and time are entangled, so
the curvature of which Einstein spoke is really a curvature of spacetime, the
combined four dimensions of our universe.)

Picturing how space (such as vacuum) can have curvature is difficult. An
analogy might help: Suppose that from orbit we watch a race in which two boats
begin on Earth’s equator with a separation of 20 km and head due south (Fig.
13-18a). To the sailors, the boats travel along flat, parallel paths. However, with
time the boats draw together until, nearer the south pole, they touch. The sailors
in the boats can interpret this drawing together in terms of a force acting on the
boats. Looking on from space, however, we can see that the boats draw together
simply because of the curvature of Earth’s surface. We can see this because we
are viewing the race from “outside” that surface.

(a)

Fig. 13-17 (a) A physicist in a box resting
on Earth sees a cantaloupe falling with
acceleration @ = 9.8 m/s% (b) If he and the
box accelerate in deep space at 9.8 m/s?, the
cantaloupe has the same acceleration rela-
tive to him. It is not possible, by doing
experiments within the box, for the physicist
to tell which situation he is in. For example,
the platform scale on which he stands reads
the same weight in both situations.

Curved space
near Earth

Parallel paths

" »
N
Flat space e —
far from =<
: Earth
‘-’ Converging
paths
() S (b) S (0

Fig. 13-18 (a) Two objects moving along lines of longitude toward the south pole
converge because of the curvature of Earth’s surface. (b) Two objects falling freely near
Earth move along lines that converge toward the center of Earth because of the curvature
of space near Earth. (c) Far from Earth (and other masses), space is flat and parallel paths
remain parallel. Close to Earth, the parallel paths begin to converge because space is
curved by Earth’s mass.
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] from quasar

I
/
\ I Galaxy or
‘ ’/ large black hole

Figure 13-18b shows a similar race: Two horizontally separated apples are
dropped from the same height above Earth. Although the apples may appear to
travel along parallel paths, they actually move toward each other because they
both fall toward Earth’s center. We can interpret the motion of the apples in
terms of the gravitational force on the apples from Earth. We can also interpret
the motion in terms of a curvature of the space near Earth, a curvature due to the
presence of Earth’s mass. This time we cannot see the curvature because we
cannot get “outside” the curved space, as we got “outside” the curved Earth in
the boat example. However, we can depict the curvature with a drawing like Fig.
13-18c; there the apples would move along a surface that curves toward Earth
because of Earth’s mass.

When light passes near Earth, the path of the light bends slightly because of
the curvature of space there, an effect called gravitational lensing. When light
passes a more massive structure, like a galaxy or a black hole having large mass,
its path can be bent more. If such a massive structure is between us and a quasar
(an extremely bright, extremely distant source of light), the light from the quasar
can bend around the massive structure and toward us (Fig. 13-194). Then, because
the light seems to be coming to us from a number of slightly different directions
in the sky, we see the same quasar in all those different directions. In some situa-
tions, the quasars we see blend together to form a giant luminous arc, which is
called an Einstein ring (Fig. 13-19b).

Should we attribute gravitation to the curvature of spacetime due to the
presence of masses or to a force between masses? Or should we attribute it to
the actions of a type of fundamental particle called a graviton, as conjectured in
some modern physics theories? Although our theories about gravitation have
been enormously successful in describing everything from falling apples to plane-
tary and stellar motions, we still do not fully understand it on either the cosmo-
logical scale or the quantum physics scale.

Paths of light

f Apparent
/ quasar directions

!

Final paths

Earth detector
(@) (b)

Fig. 13-19 (a) Light from a distant quasar follows curved paths around a galaxy or

a large black hole because the mass of the galaxy or black hole has curved the adjacent
space. If the light is detected, it appears to have originated along the backward extensions
of the final paths (dashed lines). (b) The Einstein ring known as MG1131+0456 on the
computer screen of a telescope. The source of the light (actually, radio waves, which are

a form of invisible light) is far behind the large, unseen galaxy that produces the ring;

a portion of the source appears as the two bright spots seen along the ring. (Courtesy
National Radio Astronomy Observatory)




The Law of Gravitation Any particle in the universe attracts
any other particle with a gravitational force whose magnitude is

mym

F=G # (Newton’s law of gravitation), (13-1)
r

where m, and m, are the masses of the particles, r is their separation,

and G (= 6.67 X 107" N - m%kg?) is the gravitational constant.

Gravitational Behavior of Uniform Spherical Shells
The gravitational force between extended bodies is found by
adding (integrating) the individual forces on individual particles
within the bodies. However, if either of the bodies is a uniform
spherical shell or a spherically symmetric solid, the net gravita-
tional force it exerts on an external object may be computed as if
all the mass of the shell or body were located at its center.

Superposition Gravitational forces obey the principle of su-
perposition; that is, if n particles interact, the net force E,.m on a
particle labeled particle 1 is the sum of the forces on it from all the
other particles taken one at a time:
Fl,net = %FIi’ (13'5)
in which the sum is a vector sum of the forces fli on particle
1 from particles 2, 3, ..., n. The gravitational force fl on a
particle from an extended body is found by dividing the body into
units of differential mass dm, each of which produces a differential
force dF on the particle, and then integrating to find the sum of

those forces:
A - f JF

Gravitational Acceleration The gravitational acceleration a,
of a particle (of mass m) is due solely to the gravitational force acting
on it. When the particle is at distance r from the center of a uniform,
spherical body of mass M, the magnitude F of the gravitational force
on the particle is given by Eq. 13-1. Thus, by Newton’s second law,

(13-10)

(13-6)

F= ma,,
which gives
GM
o

ag = — (13-11)
Free-Fall Acceleration and Weight Because Earth’s mass
is not distributed uniformly, because the planet is not perfectly
spherical, and because it rotates, the actual free-fall acceleration g
of a particle near Earth differs slightly from the gravitational accel-
eration d,, and the particle’s weight (equal to mg) differs from the

magnitude of the gravitational force on it (Eq. 13-1).

Gravitation Within a Spherical Shell A uniform shell of
matter exerts no net gravitational force on a particle located inside
it. This means that if a particle is located inside a uniform solid
sphere at distance r from its center, the gravitational force exerted
on the particle is due only to the mass M, that lies inside a sphere
of radius r. This mass is given by

4arr3
3 b

My = p (13-18)

where pis the density of the sphere.
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Gravitational Potential Energy The gravitational potential
energy U(r) of a system of two particles, with masses M and m and
separated by a distance r, is the negative of the work that would be
done by the gravitational force of either particle acting on the other
if the separation between the particles were changed from infinite
(very large) to r. This energy is

GMm
r

U=_

(gravitational potential energy). (13-21)
Potential Energy of a System If a system contains more
than two particles, its total gravitational potential energy U is the
sum of terms representing the potential energies of all the pairs. As
an example, for three particles, of masses m1,, m,, and m;,

Gmm Gm,m
U= _( "y 23 )
T2 3 I3

Gmm
ims

(13-22)

Escape Speed An object will escape the gravitational pull of
an astronomical body of mass M and radius R (that is, it will reach
an infinite distance) if the object’s speed near the body’s surface is
at least equal to the escape speed, given by

_ [2GM
V= 7R .

Kepler's Laws The motion of satellites, both natural and artifi-
cial, is governed by these laws:

(13-28)

1. The law of orbits. All planets move in elliptical orbits with the
Sun at one focus.

2. The law of areas. A line joining any planet to the Sun sweeps
out equal areas in equal time intervals. (This statement is equiv-
alent to conservation of angular momentum.)

3. The law of periods. The square of the period 7 of any planet is
proportional to the cube of the semimajor axis a of its orbit. For
circular orbits with radius r,

4 2
T? = <L> r? (law of periods), (13-34)

GM
where M is the mass of the attracting body —the Sun in the case
of the solar system. For elliptical planetary orbits, the semi-
major axis a is substituted for r.

Energy in Planetary Motion When a planet or satellite with
mass 1 moves in a circular orbit with radius r, its potential energy
U and kinetic energy K are given by

GMm

GMm

U= -
2r

and K = (13-21,13-38)

The mechanical energy £ = K + Uis then
GMm

E=— 13-40
2r ( )
For an elliptical orbit of semimajor axis a,
GMm
E=- . 13-42
2a ( )

Einstein’s View of Gravitation Einstein pointed out that gravi-
tation and acceleration are equivalent. This principle of equivalence
led him to a theory of gravitation (the general theory of relativity) that
explains gravitational effects in terms of a curvature of space.
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L NN/ N oquesTions || | [[[W]]]]

1 In Fig. 13-20, a central particle of 9p ® 4M
mass M is surrounded by a square ar- M

ray of other particles, separated by ei- 7M$ ®5M
ther distance d or distance d/2 along

the perimeter of the square. What are 3Me 1?4

the magnitude and direction of the g, 4 &7M
net gravitational force on the central M

particle due to the other particles? aM ° oM

2 Figure 13-21 shows three
arrangements of the same identical
particles, with three of them placed
on a circle of radius 0.20 m and the
fourth one placed at the center of the
circle. (a) Rank the arrangements ac-
cording to the magnitude of the net
gravitational force on the central par-
ticle due to the other three particles,
greatest first. (b) Rank them accord-
ing to the gravitational potential en-
ergy of the four-particle system, least
negative first.

Fig. 13-20 Question 1.

CCC
(@) ®) (©)

Fig. 13-21 Question 2.

3 In Fig. 13-22, a central particle is N
surrounded by two circular rings of N
particles, at radii » and R, with R > r.
All the particles have mass m. What PARN
are the magnitude and direction of 7
the net gravitational force on the ’ |
central particle due to the particles :
in the rings? ¢
4 In Fig. 13-23, two particles, of ~Fig.- 13-22 Question 3.
masses m and 2m, are fixed in place

on an axis. (a) Where on the axis can

a third particle of mass 3m be placed

(other than at infinity) so that the net m om
gravitational force on it from the first
two particles is zero: to the left of the
first two particles, to their right, be-
tween them but closer to the more massive particle, or between
them but closer to the less massive particle? (b) Does the answer
change if the third particle has, instead, a mass of 16m? (c) Is there a
point off the axis (other than infinity) at which the net force on the
third particle would be zero?

Fig. 13-23 Question 4.

5 Figure 13-24 shows three situations involving a point particle P
with mass m and a spherical shell with a uniformly distributed
mass M. The radii of the shells are given. Rank the situations ac-

(a) (b) (¢)

Fig. 13-24 Question 5.

cording to the magnitude of the gravitational force on particle P
due to the shell, greatest first.

6 In Fig. 13-25, three particles are 7

fixed in place. The mass of B is
greater than the mass of C. Can a
fourth particle (particle D) be placed A Ly
somewhere so that the net gravita- T - *{
tional force on particle A from parti- d

cles B, C, and D is zero? If so, in L
which quadrant should it be placed

and which axis should it be near?

Fig. 13-25 Question 6.
7 Rank the four systems of equal-

mass particles shown in Checkpoint 2
according to the absolute value of the gravitational potential energy
of the system, greatest first.

& TFigure 13-26 gives the gravitational acceleration a, for four planets
as a function of the radial distance r from the center of the planet, start-
ing at the surface of the planet (at radius R;, R,, R;, or R;). Plots 1 and 2
coincide for r = R,; plots 3 and 4 coincide for r = R,. Rank the four plan-
ets according to (a) mass and (b) mass per unit volume, greatest first.

g

4

I
I
I
1
R R Ry
Ry

Fig. 13-26 Question 8.

9 Figure 13-27 shows three parti- y

cles initially fixed in place, with B

and C identical and positioned sym- Bq oC
metrically about the y axis, at dis-
tance d from A. (a) In what direction
is the net gravitational force F)net on / x
A? (b) If we move C directly away AW

from the origin, does Fne‘ change in

direction? If so, how and what is the
limit of the change?

10 Figure 13-28 shows six paths by
which a rocket orbiting a moon might
move from point a to point b. Rank the
paths according to (a) the correspond-
ing change in the gravitational poten-
tial energy of the rocket—moon system
and (b) the net work done on the
rocket by the gravitational force from
the moon, greatest first.

Fig. 13-28 Question 10.

11 Figure 13-29 shows three uni-
form spherical planets that are identical in size and mass. The peri-
ods of rotation 7 for the planets are given, and six lettered points




are indicated—three points are on the equators of the planets and
three points are on the north poles. Rank the points according to
the value of the free-fall acceleration g at them, greatest first.

16 h 24 h 48 h
aé cé eé

Fig. 13-29 Question 11.
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12 In Fig. 13-30, a particle of mass m (which is not shown) is to
be moved from an infinite distance to one of the three possible
locations a, b, and c. Two other particles, of masses m and 2m, are
already fixed in place on the axis, as shown. Rank the three pos-
sible locations according to the work done by the net gravita-
tional force on the moving particle due to the fixed particles,
greatest first.

1 d

U
U

YO+
s OF

b
Fig. 13-30 Question 12.

Tutoring problem available (at instructor’s discretion) in WileyPLUS and WebAssign

SSM

Worked-out solution available in Student Solutions Manual

Number of dots indicates level of problem difficulty

WWW Worked-out solution is at

http://www.wiley.com/college/halliday

ILW Interactive solution is at

—%L.~ Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com

sec. 13-2 Newton’s Law of Gravitation

°1 1ILW A mass M is split into two parts, m and M — m, which are
then separated by a certain distance. What ratio m/M maximizes
the magnitude of the gravitational force between the parts?

*2 =¥= Moon effect. Some people believe that the Moon con-
trols their activities. If the Moon moves from being directly on the
opposite side of Earth from you to being directly overhead, by
what percent does (a) the Moon’s gravitational pull on you
increase and (b) your weight (as measured on a scale) decrease?
Assume that the Earth—Moon (center-to-center) distance is
3.82 X 108 m and Earth’s radius is 6.37 X 10°m

°3 ssm What must the separation be between a 5.2 kg particle
and a 2.4 kg particle for their gravitational attraction to have
amagnitude of 2.3 X 10712 N?

*4 The Sun and Earth each exert a gravitational force on the
Moon. What is the ratio Fg,,/Fgam of these two forces? (The aver-
age Sun—Moon distance is equal to the Sun—Earth distance.)

sec. 13-3 Gravitation and the Principle of Superposition

*5 Miniature black holes. Left over from the big-bang beginning
of the universe, tiny black holes might still wander through the uni-
verse. If one with amass of 1 X 10" kg (and me
a radius of only 1 X 107! m) reached (O—M (0

Earth, at what distance from your head y

would its gravitational pull on you match |

that of Earth’s?

*6 (@ InFig. 13-31,asquare of edge length
20.0 cm is formed by four spheres of masses o o
m; =5.00g, m,=3.00g, my=1.00g, and
my, = 5.00 g. In unit-vector notation, what is
the net gravitational force from them on a
central sphere with mass ms = 2.50 g?

Fig. 13-31
Problem 6.

°7  One dimension. In Fig. 13-32, two point particles are fixed on
an x axis separated by distance d. Particle A has mass m, and par-

ticle B has mass 3.00m,. A third particle C,of
mass 75.0m, is to be placed on the x axis and d‘ﬁ
near particles A and B. In terms of distance d, x

at what x coordinate should C be placed so 4 B
;hat the n.e{ graVltEglor}al forie on particle A Fig. 13-32
rom particles B and Cis zero? Problem 7.

*8 In Fig. 13-33, three 5.00 kg spheres are lo-

cated at distances d; = 0.300 m and d, = 0.400 m. What are the (a)
magnitude and (b) direction (relative to the positive direction of the
x axis) of the net gravitational force on sphere B due to spheres A
and C?

\
Fig. 13-33 Problem 8.

)

°9 ssmMm  www We want to position a space probe along a line
that extends directly toward the Sun in order to monitor solar flares.
How far from Earth’s center is the point on the line where the Sun’s
gravitational pull on the probe balances Earth’s pull?

10 & Two dimensions. In Fig. 13- b
34, three point particles are fixed in

place in an xy plane. Particle A has Bo

mass my, particle B has mass 2.00m,, d

and particle C has mass 3.00m,. A 1.5d

fourth particle D, with mass 4.00m,, is (';" N X

to be placed near the other three par-
ticles. In terms of distance d, at what

(a) x coordinate and (b) y coordinate Fig. 13-34 Problem 10.
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should particle D be placed so that the net gravitational force on
particle A from particles B, C,and D is zero?

11 As seen in Fig. 13-35, two M
spheres of mass m and a third sphere Q
of mass M form an equilateral trian-
gle, and a fourth sphere of mass my is
at the center of the triangle. The net
gravitational force on that central

sphere from the three other spheres is %

zero. (a) What is M in terms of m? (b)

If we double the value of m,, what

then is the magnitude of the net gravi- " "

tational force on the central sphere? Fig. 13-35
Problem 11.

*e12 In Fig. 13-36a, particle A is fixed

in place at x =—0.20 m on the x axis and particle B, with a mass
of 1.0 kg, is fixed in place at the origin. Particle C (not shown)
can be moved along the x axis, between particle B and x = .
Figure 13-36b shows the x component F, , of the net gravita-
tional force on particle B due to particles A and C, as a function
of position x of particle C. The plot actually extends to the right,
approaching an asymptote of —4.17 X 1071 N as x — o. What
are the masses of (a) particle A and (b) particle C?

K net,x

° x 0 } } {
A B[ ‘o 02 048608
x (m)
(a) )
Fig. 13-36 Problem 12.

*13 Figure 13-37 shows a spheri- 1 d ‘
cal hollow inside a lead sphere of
radius R = 4.00 cm; the surface of
the hollow passes through the cen-
ter of the sphere and “touches” the
right side of the sphere. The mass
of the sphere before hollowing
was M = 2.95 kg. With what gravi-
tational force does the hollowed-out lead sphere attract a small
sphere of mass m = 0.431 kg that lies at a distance d = 9.00 cm
from the center of the lead sphere, on the straight line connect-
ing the centers of the spheres and of the hollow?

Fig. 13-37 Problem 13.

*14 @ Three point particles are y
fixed in position in an xy plane. Two

of them, particle A of mass 6.00 g B
and particle B of mass 12.0 g, are

shown in Fig. 13-38, with a separation 0

of dyp=0.500m at angle 6= 30°. b x
Particle C, with mass 8.00 g, is not
shown. The net gravitational force
acting on particle A due to particles
B and Cis 2.77 X 107N at an an-
gle of —163.8° from the positive direction of the x axis. What are
(a) the x coordinate and (b) the y coordinate of particle C?

Fig. 13-38 Problem 14.

ee15 Three dimensions. Three point particles are fixed in place in
an xyz coordinate system. Particle A, at the origin, has mass n.
Particle B, at xyz coordinates (2.00d, 1.00d, 2.00d), has mass
2.00my, and particle C, at coordinates (—1.00d,2.00d, —3.00d), has
mass 3.00m4. A fourth particle D, with mass 4.00m 4, is to be placed
near the other particles. In terms of distance d, at what (a) x, (b) y,
and (c) z coordinate should D be placed so that the net gravita-
tional force on A from B, C,and D is zero?

eee16 In Fig. 13-39, a particle of mass m; = 0.67 kg is a distance
d = 23 cm from one end of a uniform rod with length L = 3.0 m
and mass M = 5.0 kg. What is the magnitude of the gravitational
force F on the particle from the rod?

L ‘&rﬁydm ~
my o

ﬂ‘ ‘<— dr

—a— L |

Fig. 13-39 Problem 16.

sec. 13-4 Gravitation Near Earth’s Surface

*17 (a) What will an object weigh on the Moon’s surface if it
weighs 100 N on Earth’s surface? (b) How many Earth radii must
this same object be from the center of Earth if it is to weigh the
same as it does on the Moon?

*18 =% Mountain pull. A large mountain can slightly affect
the direction of “down” as determined by a plumb line. Assume
that we can model a mountain as a sphere of radius R = 2.00 km
and density (mass per unit volume) 2.6 X 10° kg/m?. Assume also
that we hang a 0.50 m plumb line at a distance of 3R from the
sphere’s center and such that the sphere pulls horizontally on the
lower end. How far would the lower end move toward the sphere?

°19 ssm At what altitude above Earth’s surface would the
gravitational acceleration be 4.9 m/s??

°20 Mile-high building. In 1956, Frank Lloyd Wright proposed
the construction of a mile-high building in Chicago. Suppose the
building had been constructed. Ignoring Earth’s rotation, find the
change in your weight if you were to ride an elevator from the
street level, where you weigh 600 N, to the top of the building.

21 1w Certain neutron stars (extremely dense stars) are
believed to be rotating at about 1 rev/s. If such a star has a radius of
20 km, what must be its minimum mass so that material on its sur-
face remains in place during the rapid rotation?

*22 The radius R, and mass M, of a black hole are related by
R, = 2GM,/c?, where c is the speed of light. Assume that the gravi-
tational acceleration a, of an object at a distance r, = 1.001R,, from
the center of a black hole is given by Eq. 13-11 (it is, for large black
holes). (a) In terms of M, find a, at r,. (b) Does a, at r,, increase or de-
crease as M), increases? (c) What is a, at r, for a very large black hole
whose mass is 1.55 X 10'? times the solar mass of 1.99 X 10**kg? (d)
If an astronaut of height 1.70 m is at r, with her feet down, what is the
difference in gravitational acceleration between her head and feet?
(e) Is the tendency to stretch the astronaut severe?

*23 One model for a certain planet has a core of radius R and
mass M surrounded by an outer shell of inner radius R, outer ra-
dius 2R, and mass 4M. If M = 4.1 X 10* kg and R = 6.0 X 10° m,
what is the gravitational acceleration of a particle at points (a) R
and (b) 3R from the center of the planet?




sec. 13-5 Gravitation Inside Earth

°24 Two concentric spherical shells

with uniformly distributed masses

M, and M, are situated as shown in a
Fig. 13-40. Find the magnitude of the

net gravitational force on a particle M,

of mass m, due to the shells, when the b
particle is located at radial distance

(a)a,(b) b,and (c) c.

*25 A solid uniform sphere has a
mass of 1.0 X 10* kg and a radius of
1.0 m. What is the magnitude of the
gravitational force due to the sphere on a particle of mass m lo-
cated at a distance of (a) 1.5 m and (b) 0.50 m from the center of
the sphere? (c) Write a general expression for the magnitude of
the gravitational force on the particle at a distance » = 1.0 m from
the center of the sphere.

Fig. 13-40 Problem 24.

*26 Consider a pulsar, a collapsed star of extremely high density,
with a mass M equal to that of the Sun (1.98 X 10°° kg), a radius R
of only 12 km, and a rotational period 7 of 0.041 s. By what per-
centage does the free-fall acceleration g differ from the gravita-
tional acceleration a, at the equator of this spherical star?

*27 Figure 13-41 shows, not to scale, a cross section through the
interior of Earth. Rather than being uniform throughout, Earth is
divided into three zones: an outer crust, a mantle, and an inner
core. The dimensions of these zones and the masses contained
within them are shown on the figure. Earth has a total mass of
5.98 X 10* kg and a radius of 6370 km. Ignore rotation and assume
that Earth is spherical. (a) Calculate a, at the surface. (b) Suppose
that a bore hole (the Mohole) is driven to the crust—mantle inter-
face at a depth of 25.0 km; what would be the value of a, at the bot-
tom of the hole? (c) Suppose that Earth were a uniform sphere
with the same total mass and size. What would be the value of a, at
a depth of 25.0km? (Precise measurements of a, are sensitive
probes of the interior structure of Earth, although results can be
clouded by local variations in mass distribution.)

25 km
N

Core, 1.93 x 10** kg

__—— Mantle, 401 x 10%* kg

T~ Crust, 3.94 102 kg

~—>=13490 km

Fig. 13-41 Problem 27.

*28 (& Assume a planet is a uniform sphere of radius R that
(somehow) has a narrow radial tunnel through its center
(Fig. 13-7). Also assume we can position an apple anywhere
along the tunnel or outside the sphere. Let Fy be the magnitude
of the gravitational force on the apple when it is located at the

PART 2
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planet’s surface. How far from the surface is there a point where
the magnitude is § Fy if we move the apple (a) away from the
planet and (b) into the tunnel?

sec. 13-6 Gravitational Potential Energy

*29 Figure 13-42 gives the potential energy function U(r) of a
projectile, plotted outward from the surface of a planet of radius
R,. What least kinetic energy is required of a projectile launched at
the surface if the projectile is to “escape” the planet?

9t

U(10°1)

-3 —

4

e

5L
Fig. 13-42 Problems 29
and 34.

°30 In Problem 1, what ratio m/M gives the least gravitational
potential energy for the system?

*31 ssm The mean diameters of Mars and Earth are 6.9 X 10° km
and 1.3 X 10* km, respectively. The mass of Mars is 0.11 times
Earth’s mass. (a) What is the ratio of the mean density (mass per
unit volume) of Mars to that of Earth? (b) What is the value of the
gravitational acceleration on Mars? (c) What is the escape speed
on Mars?

*32 (a) What is the gravitational potential energy of the two-par-
ticle system in Problem 3? If you triple the separation between the
particles, how much work is done (b) by the gravitational force be-
tween the particles and (c) by you?

°33 What multiple of the energy needed to escape from Earth gives
the energy needed to escape from (a) the Moon and (b) Jupiter?

*34 Figure 13-42 gives the potential energy function U(r) of a
projectile, plotted outward from the surface of a planet of radius
R,. If the projectile is launched radially outward from the surface
with a mechanical energy of —2.0 X 10° J, what are (a) its kinetic
energy at radius r = 1.25R, and (b) its turning point (see Section
8-6) in terms of R,?

35 (@ Figure 13-43 shows four particles,
each of mass 20.0 g, that form a square with an
edge length of d = 0.600 m. If d is reduced to
0.200 m, what is the change in the gravitational
potential energy of the four-particle system?

d

*36 (@ Zero, a hypothetical planet, has a
mass of 5.0 X 102 kg, a radius of 3.0 X 10°m,
and no atmosphere. A 10 kg space probe is to
be launched vertically from its surface. (a) If the probe is launched
with an initial energy of 5.0 X 107 J, what will be its kinetic energy
when it is 4.0 X 10° m from the center of Zero? (b) If the probe is
to achieve a maximum distance of 8.0 X 10° m from the center of
Zero, with what initial kinetic energy must it be launched from the
surface of Zero?

Fig. 13-43
Problem 35.
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*37 (@ The three spheres in Fig. 13-44, with masses m, = 80 g,
mp = 10 g, and m = 20 g, have their centers on a common line,
with L = 12 cm and d = 4.0 cm. You move sphere B along the line
until its center-to-center separation from C is d = 4.0 cm. How
much work is done on sphere B (a) by you and (b) by the net gravi-
tational force on B due to spheres A and C?

L

- 4 d—
‘ 1
B c

A

Fig. 13-44 Problem 37.

*38 Indeep space,sphere A of mass 20 kg is located at the origin
of an x axis and sphere B of mass 10 kg is located on the axis at x =
0.80 m. Sphere B is released from rest while sphere A is held at the
origin. (a) What is the gravitational potential energy of the two-
sphere system just as B is released? (b) What is the kinetic energy
of B when it has moved 0.20 m toward A?

39 ssm (a) What is the escape speed on a spherical asteroid
whose radius is 500 km and whose gravitational acceleration at the
surface is 3.0 m/s?? (b) How far from the surface will a particle go if
it leaves the asteroid’s surface with a radial speed of 1000 m/s? (c)
With what speed will an object hit the asteroid if it is dropped from
1000 km above the surface?

*40 A projectile is shot directly away from Earth’s surface.
Neglect the rotation of Earth. What multiple of Earth’s radius Ry
gives the radial distance a projectile reaches if (a) its initial speed is
0.500 of the escape speed from Earth and (b) its initial kinetic en-
ergy is 0.500 of the kinetic energy required to escape Earth? (c)
What is the least initial mechanical energy required at launch if the
projectile is to escape Earth?

41 ssm Two neutron stars are separated by a distance of
1.0 X 10! m. They each have a mass of 1.0 X 10°° kg and a radius
of 1.0 X 10° m. They are initially at rest with respect to each other.
As measured from that rest frame, how fast are they moving when
(a) their separation has decreased to one-half its initial value and
(b) they are about to collide?

«42 (@ TFigure 13-45a shows a particle A that can be moved
along a y axis from an infinite distance to the origin. That origin lies
at the midpoint between particles B and C, which have identical

y (cm)
0 I I I |
0.5 1 1.5 2
_1 —
=
=
|
()
b Sy
=)
A
B C -3 —
@ A X
=D —<—D —

(a) (0)
Fig. 13-45 Problem 42.

masses, and the y axis is a perpendicular bisector between them.
Distance D is 0.3057 m. Figure 13-45b shows the potential energy
U of the three-particle system as a function of the position of parti-
cle A along the y axis. The curve actually extends rightward and ap-
proaches an asymptote of —2.7 X 107!! J as y — c. What are the
masses of (a) particles B and C and (b) particle A?

sec. 13-7 Planets and Satellites: Kepler's Laws

*43 (a) What linear speed must an Earth satellite have to be in a
circular orbit at an altitude of 160 km above Earth’s surface? (b)
What is the period of revolution?

*44 A satellite is put in a circular orbit about Earth with a radius
equal to one-half the radius of the Moon’s orbit. What is its period
of revolution in lunar months? (A lunar month is the period of rev-
olution of the Moon.)

*45 The Martian satellite Phobos travels in an approximately cir-
cular orbit of radius 9.4 X 10°m with a period of 7h 39 min.
Calculate the mass of Mars from this information.

°46 The first known collision between space debris and a func-
tioning satellite occurred in 1996: At an altitude of 700 km, a year-
old French spy satellite was hit by a piece of an Ariane rocket. A
stabilizing boom on the satellite was demolished, and the satellite
was sent spinning out of control. Just before the collision and in
kilometers per hour, what was the speed of the rocket piece rela-
tive to the satellite if both were in circular orbits and the collision
was (a) head-on and (b) along perpendicular paths?

°47 ssm  www The Sun, which is 2.2 X 10 m from the center
of the Milky Way galaxy, revolves around that center once every
2.5 X 10® years. Assuming each star in the Galaxy has a mass equal
to the Sun’s mass of 2.0 X 10 kg, the stars are distributed uni-
formly in a sphere about the galactic center, and the Sun is at the
edge of that sphere, estimate the number of stars in the Galaxy.

*48 The mean distance of Mars from the Sun is 1.52 times that of
Earth from the Sun. From Kepler’s law of periods, calculate the
number of years required for Mars to make one revolution around
the Sun; compare your answer with the value given in Appendix C.

°49 A comet that was seen in April 574 by Chinese astronomers
on a day known by them as the Woo Woo day was spotted again in
May 1994. Assume the time between observations is the period of
the Woo Woo day comet and take its eccentricity as 0.11. What are
(a) the semimajor axis of the comet’s orbit and (b) its greatest dis-
tance from the Sun in terms of the mean orbital radius Rp of Pluto?

*50 =% An orbiting satellite stays over a certain spot on the
equator of (rotating) Earth. What is the altitude of the orbit (called
a geosynchronous orbit)?

°51 ssm A satellite, moving in an elliptical orbit, is 360 km
above Earth’s surface at its farthest point and 180 km above at its
closest point. Calculate (a) the semimajor axis and (b) the
eccentricity of the orbit.

°52 The Sun’s center is at one focus of Earth’s orbit. How far
from this focus is the other focus, (a) in meters and (b) in terms of
the solar radius, 6.96 X 10® m? The eccentricity is 0.0167, and the
semimajor axis is 1.50 X 10" m.

53 A 20 kg satellite has a circular orbit with a period of 2.4 h
and a radius of 8.0 X 10°m around a planet of unknown mass. If
the magnitude of the gravitational acceleration on the surface of
the planet is 8.0 m/s?, what is the radius of the planet?




*54 Hunting a black hole. Observations of the light from a certain
star indicate that it is part of a binary (two-star) system. This visible
star has orbital speed v = 270 km/s, orbital period 7 = 1.70 days,
and approximate mass m; = 6M,, where M, is the Sun’s mass,
1.99 X 10*° kg. Assume that the visible star and its companion star,
which is dark and unseen, are both in circular orbits (Fig. 13-46).
What multiple of M, gives the approximate mass m, of the dark
star?

Fig. 13-46 Problem 54.

*55 In 1610, Galileo used his telescope to discover four promi-
nent moons around Jupiter. Their mean orbital radii @ and periods
T are as follows:

Name a (103 m) T (days)
To 422 1.77
Europa 6.71 3.55
Ganymede 10.7 7.16
Callisto 18.8 16.7

(a) Plot log a (y axis) against log T (x axis) and show that you get a
straight line. (b) Measure the slope of the line and compare it with
the value that you expect from Kepler’s third law. (¢) Find the mass
of Jupiter from the intercept of this line with the y axis.

*56 In 1993 the spacecraft Galileo sent home an image (Fig.
13-47) of asteroid 243 Ida and a tiny orbiting moon (now known as
Dactyl), the first confirmed example of an asteroid—moon system.
In the image, the moon, which is 1.5 km wide, is 100 km from the
center of the asteroid, which is 55 km long. The shape of the
moon’s orbit is not well known; assume it is circular with a period

Fig. 13-47 Problem 56. A tiny moon (at right) orbits
asteroid 243 Ida. (Courtesy NASA)
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of 27 h. (a) What is the mass of the asteroid? (b) The volume of the
asteroid, measured from the Galileo images, is 14 100 km3. What is
the density (mass per unit volume) of the asteroid?

*57 1LW In a certain binary-star system, each star has the same
mass as our Sun, and they revolve about their center of mass. The
distance between them is the same as the distance between Earth
and the Sun. What is their period of revolution in years?

*=s58 The presence of an unseen planet orbiting a distant star can
sometimes be inferred from the motion of the star as we see it. As
the star and planet orbit the center of mass of the star—planet sys-
tem, the star moves toward and away from us with what is called
the line of sight velocity, a motion that can be detected. Figure
13-48 shows a graph of the line of sight velocity versus time for the
star 14 Herculis. The star’s mass is believed to be 0.90 of the mass
of our Sun. Assume that only one planet orbits the star and that
our view is along the plane of the orbit. Then approximate (a) the
planet’s mass in terms of Jupiter’s mass n; and (b) the planet’s or-
bital radius in terms of Earth’s orbital radius 7.

70

F— 1500 days —~

Time

Line of sight velocity (m/s)
=

Fig. 13-48 Problem 58.

*e59 Three identical stars of mass M form an equilateral triangle
that rotates around the triangle’s center as the stars move in a com-
mon circle about that center. The triangle has edge length L. What
is the speed of the stars?

sec. 13-8 Satellites: Orbits and Energy

°60 In Fig. 13-49, two satellites, A and B, P i
both of mass m = 125 kg, move in the y AN
same circular orbit of radius r = 7.87 X
10° m around Earth but in opposite senses | |

of rotation and therefore on a collision Earth /

course. (a) Find the total mechanical en- AN ,/
N 7

ergy E, + Ep of the two satellites + S~ -7

Earth system before the collision. (b) If
the collision is completely inelastic so that
the wreckage remains as one piece of tan-
gled material (mass = 2m), find the total mechanical energy immedi-
ately after the collision. (c) Just after the collision, is the wreck-
age falling directly toward Earth’s center or orbiting around Earth?

*61 (a) At what height above Earth’s surface is the energy re-
quired to lift a satellite to that height equal to the kinetic energy
required for the satellite to be in orbit at that height? (b) For
greater heights, which is greater, the energy for lifting or the kinetic
energy for orbiting?

Fig. 13-49
Problem 60.

*62 Two Earth satellites, A and B, each of mass m, are to be
launched into circular orbits about Earth’s center. Satellite A is to

PART 2
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orbit at an altitude of 6370 km. Satellite B is to orbit at an altitude
of 19 110 km. The radius of Earth R is 6370 km. (a) What is the ra-
tio of the potential energy of satellite B to that of satellite A, in or-
bit? (b) What is the ratio of the kinetic energy of satellite B to that
of satellite A, in orbit? (c) Which satellite has the greater total en-
ergy if each has a mass of 14.6 kg? (d) By how much?

*63 ssM WWwWw An asteroid, whose mass is 2.0 X 107* times
the mass of Earth, revolves in a circular orbit around the Sun at a
distance that is twice Earth’s distance from the Sun. (a) Calculate
the period of revolution of the asteroid in years. (b) What is the ra-
tio of the kinetic energy of the asteroid to the kinetic energy of
Earth?

*64 A satellite orbits a planet of unknown mass in a circle of ra-
dius 2.0 X 107 m. The magnitude of the gravitational force on the
satellite from the planet is ' = 80 N. (a) What is the kinetic energy
of the satellite in this orbit? (b) What would F be if the orbit radius
were increased to 3.0 X 10’ m?

*65 A satellite is in a circular Earth orbit of radius r. The area A
enclosed by the orbit depends on 7% because A = 772, Determine
how the following properties of the satellite depend on r: (a) pe-
riod, (b) kinetic energy, (c) angular momentum, and (d) speed.

66 One way to attack a satellite in Earth orbit is to launch a
swarm of pellets in the same orbit as the satellite but in the oppo-
site direction. Suppose a satellite in a circular orbit 500 km above
Earth’s surface collides with a pellet having mass 4.0 g. (a) What is
the kinetic energy of the pellet in the reference frame of the satel-
lite just before the collision? (b) What is the ratio of this kinetic en-
ergy to the kinetic energy of a 4.0 g bullet from a modern army rifle
with a muzzle speed of 950 m/s?

*s67 What are (a) the speed and (b) the period of a 220 kg satel-
lite in an approximately circular orbit 640 km above the surface of
Earth? Suppose the satellite loses mechanical energy at the aver-
age rate of 1.4 X 10° J per orbital revolution. Adopting the reason-
able approximation that the satellite’s orbit becomes a “circle of
slowly diminishing radius,” determine the satellite’s (c) altitude, (d)
speed, and (e) period at the end of its 1500th revolution. (f) What
is the magnitude of the average retarding force on the satellite? Is
angular momentum around Earth’s center conserved for (g) the
satellite and (h) the satellite—Earth system (assuming that system
is isolated)?

«s68 (& Two small spaceships, each with mass m = 2000 kg, are
in the circular Earth orbit of Fig. 13-50, at an altitude % of 400 km.
Igor, the commander of one of the
ships, arrives at any fixed point in
the orbit 90 s ahead of Picard, the
commander of the other ship. What
are the (a) period T, and (b) speed
v, of the ships? At point P in Fig.
13-50, Picard fires an instantaneous
burst in the forward direction, re-
ducing his ship’s speed by 1.00%.
After this burst, he follows the el-
liptical orbit shown dashed in the
figure. What are the (c) kinetic en-
ergy and (d) potential energy of his ship immediately after the
burst? In Picard’s new elliptical orbit, what are (e) the total energy
E, (f) the semimajor axis a, and (g) the orbital period 7? (h) How
much earlier than Igor will Picard return to P?

Fig. 13-50 Problem 68.

sec. 13-9 Einstein and Gravitation

°69 In Fig. 13-17b, the scale on which the 60 kg physicist stands
reads 220 N. How long will the cantaloupe take to reach the floor if
the physicist drops it (from rest relative to himself) at a height of
2.1 m above the floor?

Additional Problems

70 The radius R, of a black hole is the radius of a mathematical
sphere, called the event horizon, that is centered on the black hole.
Information from events inside the event horizon cannot reach the
outside world. According to Einstein’s general theory of relativity,
R, = 2GM/c* where M is the mass of the black hole and c is the
speed of light.

Suppose that you wish to study a black hole near it, at a radial
distance of SOR,,. However, you do not want the difference in gravi-
tational acceleration between your feet and your head to exceed
10 m/s? when you are feet down (or head down) toward the black
hole. (a) As a multiple of our Sun’s mass Mg, approximately what is
the limit to the mass of the black hole you can tolerate at the given
radial distance? (You need to estimate your height.) (b) Is the limit
an upper limit (you can tolerate smaller masses) or a lower limit
(you can tolerate larger masses)?

71 Several planets (Jupiter, Saturn,
Uranus) are encircled by rings, perhaps
composed of material that failed to form
a satellite. In addition, many galaxies
contain ring-like structures. Consider a
homogeneous thin ring of mass M and
outer radius R (Fig. 13-51). (a) What
gravitational attraction does it exert on a
particle of mass m located on the ring’s
central axis a distance x from the ring
center? (b) Suppose the particle falls
from rest as a result of the attraction of the ring of matter. What is
the speed with which it passes through the center of the ring?

Fig. 13-51
Problem 71.

72 A typical neutron star may have a mass equal to that of the
Sun but a radius of only 10 km. (a) What is the gravitational accelera-
tion at the surface of such a star? (b) How fast would an object be
moving if it fell from rest through a distance of 1.0 m on such a star?
(Assume the star does not rotate.)

73 Figure 13-52 is a graph of the kinetic energy K of an asteroid
versus its distance r from Earth’s center, as the asteroid falls di-
rectly in toward that center. (a) What is the (approximate) mass of
the asteroid? (b) What is its speed at r = 1.945 X 107 m?

K (10°7)

|
1
1.75 1.85 1.95

7 (107 m)
Fig. 13-52 Problem 73.




74 %5 The mysterious visitor that appears in the enchanting
story The Little Prince was said to come from a planet that “was
scarcely any larger than a house!” Assume that the mass per unit
volume of the planet is about that of Earth and that the planet
does not appreciably spin. Approximate (a) the free-fall accelera-
tion on the planet’s surface and (b) the escape speed from the
planet.

75 1Lw The masses and coordinates of three spheres are as
follows: 20 kg, x = 0.50 m,y = 1.0m; 40 kg, x = —1.0m,y = —1.0 m;
60 kg,x = 0m, y = —0.50 m. What is the magnitude of the gravita-
tional force on a 20 kg sphere located at the origin due to these
three spheres?

76 ssm A very early, simple satellite consisted of an inflated
spherical aluminum balloon 30m in diameter and of mass
20 kg. Suppose a meteor having a mass of 7.0 kg passes within 3.0 m
of the surface of the satellite. What is the magnitude of the gravita-
tional force on the meteor from the satellite at the closest approach?

77 @ Four uniform spheres, with masses m, = 40 kg, my = 35 kg,
m¢ = 200 kg, and mj, = 50 kg, have (x, y) coordinates of (0,50 cm),
(0,0), (=80 cm, 0), and (40 cm, 0), respectively. In unit-vector nota-
tion, what is the net gravitational force on sphere B due to the
other spheres?

78 (a) In Problem 77, remove sphere A and calculate the gravi-
tational potential energy of the remaining three-particle system.
(b) If A is then put back in place, is the potential energy of the
four-particle system more or less than that of the system in (a)?
(c) In (a), is the work done by you to remove A positive or nega-
tive? (d) In (b), is the work done by you to replace A positive or

negative? P
e

~

79 ssm A certain triple-star system d \\O n
consists of two stars, each of mass m, re- " \
volving in the same circular orbit of ra- | !
dius r around a central star of mass M
(Fig. 13-53). The two orbiting stars are al-
ways at opposite ends of a diameter of
the orbit. Derive an expression for the -—-
period of revolution of the stars. Fig. 13-53

80 The fastest possible rate of rotation of Problem 79.

a planet is that for which the gravitational force on material at the equa-
tor just barely provides the centripetal force needed for the rotation.
(Why?) (a) Show that the corresponding shortest period of rotation

is
7= |37
Gp
where pis the uniform density (mass per unit volume) of the spher-
ical planet. (b) Calculate the rotation period assuming a density of
3.0 glem?, typical of many planets, satellites, and asteroids. No as-

tronomical object has ever been found to be spinning with a period
shorter than that determined by this analysis.

81 ssm In a double-star system, two stars of mass 3.0 X 10
kg each rotate about the system’s center of mass at radius 1.0 X
10" m. (a) What is their common angular speed? (b) If a
meteoroid passes through the system’s center of mass perpendic-
ular to their orbital plane, what minimum speed must it have at
the center of mass if it is to escape to “infinity” from the two-star
system?
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82 A satellite is in elliptical orbit with a period of 8.00 X 10* s
about a planet of mass 7.00 X 10?* kg. At aphelion, at radius 4.5 X
107 m, the satellite’s angular speed is 7.158 X 107 rad/s. What is its
angular speed at perihelion?

83 ssm Inashuttle craft of mass m = 3000 kg, Captain Janeway
orbits a planet of mass M = 9.50 X 10% kg, in a circular orbit of ra-
dius r = 4.20 X 10’ m. What are (a) the period of the orbit and (b)
the speed of the shuttle craft? Janeway briefly fires a forward-
pointing thruster, reducing her speed by 2.00%. Just then, what are
(c) the speed, (d) the kinetic energy, (e) the gravitational potential
energy, and (f) the mechanical energy of the shuttle craft? (g)
What is the semimajor axis of the elliptical orbit now taken by the
craft? (h) What is the difference between the period of the original
circular orbit and that of the new elliptical orbit? (i) Which orbit
has the smaller period?

84 A uniform solid sphere of radius R produces a gravitational
acceleration of a, on its surface. At what distance from the sphere’s
center are there points (a) inside and (b) outside the sphere where
the gravitational acceleration is a,/3?

85 LW A projectile is fired vertically from Earth’s surface with
an initial speed of 10 km/s. Neglecting air drag, how far above the
surface of Earth will it go?

86 An object lying on Earth’s equator is accelerated (a) toward the
center of Earth because Earth rotates, (b) toward the Sun because
Earth revolves around the Sun in an almost circular orbit, and (c)
toward the center of our galaxy because the Sun moves around the
galactic center. For the latter, the period is 2.5 X 10® y and the ra-
dius is 2.2 X 10?° m. Calculate these three accelerations as multi-
ples of g = 9.8 m/s2.

87 (a) If the legendary apple of Newton could be released from
rest at a height of 2 m from the surface of a neutron star with a
mass 1.5 times that of our Sun and a radius of 20 km, what would be
the apple’s speed when it reached the surface of the star? (b) If the
apple could rest on the surface of the star, what would be the approx-
imate difference between the gravitational acceleration at the top
and at the bottom of the apple? (Choose a reasonable size for an ap-
ple; the answer indicates that an apple would never survive near a
neutron star.)

88 With what speed would mail pass through the center of Earth
if falling in a tunnel through the center?

89 ssm The orbit of Earth around the Sun is almost circular: The
closest and farthest distances are 1.47 X 108 km and 1.52 X 10% km
respectively. Determine the corresponding variations in (a) total
energy, (b) gravitational potential energy, (c) kinetic energy, and
(d) orbital speed. (Hint: Use conservation of energy and conserva-
tion of angular momentum.)

90 A 50 kg satellite circles planet Cruton every 6.0 h. The magni-
tude of the gravitational force exerted on the satellite by Cruton is
80 N. (a) What is the radius of the orbit? (b) What is the kinetic en-
ergy of the satellite? (c) What is the mass of planet Cruton?

91 We watch two identical astronomical bodies A and B, each of
mass m, fall toward each other from rest because of the gravita-
tional force on each from the other. Their initial center-to-center
separation is R;. Assume that we are in an inertial reference frame
that is stationary with respect to the center of mass of this two-
body system. Use the principle of conservation of mechanical
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energy (K, + Uy = K; + U)) to find the following when the center-
to-center separation is 0.5R;: (a) the total kinetic energy of the sys-
tem, (b) the kinetic energy of each body, (c) the speed of each body
relative to us, and (d) the speed of body B relative to body A.

Next assume that we are in a reference frame attached to
body A (we ride on the body). Now we see body B fall from rest to-
ward us. From this reference frame, again use K, + U; = K; + U; to
find the following when the center-to-center separation is 0.5R;: ()
the kinetic energy of body B and (f) the speed of body B relative
to body A. (g) Why are the answers to (d) and (f) different? Which
answer is correct?

92 A 150.0 kg rocket moving radially outward from Earth has a
speed of 3.70 km/s when its engine shuts off 200 km above Earth’s
surface. (a) Assuming negligible air drag, find the rocket’s kinetic
energy when the rocket is 1000 km above Earth’s surface. (b) What
maximum height above the surface is reached by the rocket?

93 Planet Roton, with a mass of 7.0 X 10** kg and a radius of
1600 km, gravitationally attracts a meteorite that is initially at rest
relative to the planet, at a distance great enough to take as infinite.
The meteorite falls toward the planet. Assuming the planet is air-
less, find the speed of the meteorite when it reaches the planet’s
surface.

94 Two 20kg spheres are fixed in place on a y axis, one at
y=040m and the other at y = —0.40m. A 10kg ball is then
released from rest at a point on the x axis that is at a great distance
(effectively infinite) from the spheres. If the only forces acting on the
ball are the gravitational forces from the spheres, then when the ball
reaches the (x, y) point (0.30 m, 0), what are (a) its kinetic energy
and (b) the net force on it from the spheres, in unit-vector notation?

95 Sphere A with mass 80 kg is located at the origin of an xy coordi-
nate system; sphere B with mass 60 kg is located at coordinates
(0.25 m, 0); sphere C with mass 0.20 kg is located in the first quadrant
0.20 m from A and 0.15 m from B. In unit-vector notation, what is the
gravitational force on C due to A and B?

96 =% In his 1865 science fiction novel From the Earth to the
Moon, Jules Verne described how three astronauts are shot to the
Moon by means of a huge gun. According to Verne, the aluminum
capsule containing the astronauts is accelerated by ignition of ni-
trocellulose to a speed of 11 km/s along the gun barrel’s length of
220 m. (a) In g units, what is the average acceleration of the capsule
and astronauts in the gun barrel? (b) Is that acceleration tolerable
or deadly to the astronauts?

A modern version of such gun-launched spacecraft (although
without passengers) has been proposed. In this modern version,
called the SHARP (Super High Altitude Research Project) gun,
ignition of methane and air shoves a piston along the gun’s tube,
compressing hydrogen gas that then launches a rocket. During this
launch, the rocket moves 3.5 km and reaches a speed of 7.0 km/s.
Once launched, the rocket can be fired to gain additional speed. (c)
In g units, what would be the average acceleration of the rocket
within the launcher? (d) How much additional speed is needed
(via the rocket engine) if the rocket is to orbit Earth at an altitude
of 700 km?

97 An object of mass m is initially held in place at radial distance
r = 3R from the center of Earth, where Ry is the radius of Earth.
Let My be the mass of Earth. A force is applied to the object to
move it to a radial distance r = 4R, where it again is held in place.
Calculate the work done by the applied force during the move by
integrating the force magnitude.




