6.92.

6.96.

6.98.

6.99.

6.104.
6.108.

6.115.

6.117.

6.118.

6.119.

6.120.

6.126.

6.137.

6.139.

6.163.

(a) e{l +2z=-2)"'+

1
(b)B1=—7,B
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The Residue Theorem
Evaluation of Integrals
and Series

7.1 Residues

Let f(z) be single-valued and analytic inside and on a circle C except at the point z = a chosen as the center
of C. Then, as we have seen in Chapter 6, f(z) has a Laurent series about z = a given by

(o]

f@ =Y az—a)
n=-o 7.1)

a— a_
=00+a1(Z—a)+a2(z—a)2+...+ 1 2

+ “ e
z—a (z—a)’

where
1 f(@)
h==— Q——— d. =0, +1, +2,... 7.2
= i jg (z—a)"™! © (72)
C
In the special case n = —1, we have from (7.2)

fl;f(z) dz = 2mia_, (7.3)

c

Formally, we can obtain (7.3) from (7.1) by integrating term by term and using the results (Problems 4.21

and 4.22)
dz  [2m p=1
jg (z—ay { 0 p = integer # 1 7.4)

Because of the fact that (7.3) involves only the coefficient a_; in (7.1), we call a_ the residue of f(z) at
7 =a.

7.2 Calculation of Residues

To obtain the residue of a function f(z) at z = a, it may appear from (7.1) that the Laurent expansion of f(z)
about z = a must be obtained. However, in the case where z = a is a pole of order k, there is a simple
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formula for a_; given by

1 k—1

{z—a)f(2)} (1.5)

a-1 = lmo—s 7=

If kK = 1 (simple pole), then the result is especially simple and is given by

a_y = }1_1)1; (z—a) f(2) (7.6)

which is a special case of (7.5) with k = 1 if we define 0! = 1.

EXAMPLE 7.1: Iff(z) = z/(z — )(z+ 1)%, then z = 1 and z = —1 are poles of orders one and two, respectively.

We have, using (7.6) and (7.5) with k = 2,

Z 1
Residue at z=11is lim(z — 1){—— ¢ =-
ﬁl( ){(z—l)(z+1)2} 4
1d Z 1
Residue at z = —11is lim ——{ G+ D) (————— |} =—=
: Z—H“dZ{(Z ) ((z— 1)(z+1)2)] 4

If z=a is an essential singularity, the residue can sometimes be found by using known series
expansions.
EXAMPLE 7.2: Let f(z) = e~ /2. Then, z = 0 is an essential singularity and from the known expansion for ¢
with u = —1/z, we find
1 1 1
S T T
e T T

from which we see that the residue at z = 0 is the coefficient of 1/z and equals —1.

7.3 The Residue Theorem

Let f(z) be single-valued and analytic inside and on a simple closed curve C except at the singularities
a, b, c,... inside C, which have residues given by a_;, b_j, c_y,... [see Fig. 7-1]. Then, the residue
theorem states that

fl;f(Z) dz =2mi(a_1 +b_1+c_1+---) (7.7
c
i.e., the integral of f(z) around C is 2 times the sum of the residues of f(z) at the singularities enclosed by

C. Note that (7.7) is a generalization of (7.3). Cauchy’s theorem and integral formulas are special cases of
this theorem (see Problem 7.75).

Fig. 7-1
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7.4 Evaluation of Definite Integrals

The evaluation of definite integrals is often achieved by using the residue theorem together with a suitable
function f(z) and a suitable closed path or contour C, the choice of which may require great ingenuity. The
following types are most common in practice.

1. fjooo F(x) dx, where F(x) is a rational function.

Consider §C F(2) dz along a contour C consisting of the line along the x axis from —R to +R and
the semicircle I" above the x axis having this line as diameter [Fig. 7-2]. Then, let R — oo. If F(x) is
an even function, this can be used to evaluate fgo F(x)dx. See Problems 7.7-7.10.

y y
r c
1
X
R | R
Fig. 7-2 Fig. 7-3

2. 02 " G(sin 6, cos 0) d6, where G(sin 6, cos 6) is a rational function of sin 6 and cos 6.

Let 7= ¢'’. Then sin @ = (z — z7')/2i, cos § = (z 4+ 7z ')/2 and dz = ie'” d6 or dO = dz/iz. The
given integral is equivalent to 39(: F(z)dz where C is the unit circle with center at the origin
[Fig. 7-3]. See Problems 7.11-7.14.

(o]

3. J F (x){ C9S e } dx, where F(x) is a rational function.
sin mx
Here, we consider 5§C F(z)e™: dz where C is the same contour as that in Type 1. See Problems
7.15-7.17 and 7.37.

4. Miscellaneous integrals involving particular contours. See Problems 7.18-7.23.

7.5 Special Theorems Used in Evaluating Integrals

In evaluating integrals such as those of Types 1 and 3 above, it is often necessary to show that fr F(z)dz and
fr €™ F(z) dz approach zero as R — o0. The following theorems are fundamental.

THEOREM 7.1. If |F(z)] < M/R* for z = Re'®, where k > 1 and M are constants, then if T is the
semicircle of Fig. 7-2,
Rlim JF(z)dz =0
r
See Problem 7.7.
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THEOREM 7.2. If |F(z)] < M/R* for z = Re'®, where k >0 and M are constants, then if I" is the
semicircle of Fig. 7-2,
I%im Jeisz (2)dz=0
r
See Problem 7.15.

7.6 The Cauchy Principal Value of Integrals

If F(x) is continuous in @ < x < b except at a point xq such that a < xy < b, then if €, and ¢, are positive,
we define

b X0—€] b
J F(x)dx = lirnO J F(x)dx + J F(x)dx
a 6;—>0 a Xo+€

In some cases, the above limit does not exist for €; # €, but does exist if we take €, = €, = €. In such a case,
we call

b Xo—€ b
JF(x)dx:liI% J F(x)dx + J F(x)dx
a a Xot+€

the Cauchy principal value of the integral on the left.

EXAMPLE 7.3:

does not exist. However, the Cauchy principal value with €, = €, = € does exist and equals zero.

7.7 Differentiation Under the Integral Sign. Leibnitz’s Rule

A useful method for evaluating integrals employs Leibnitz’s rule for differentiation under the integral sign.
This rule states that

b b
d oF
d—aJF(x, a)dx = Ja—a dx

The rule is valid if @ and b are constants, « is a real parameter such that «; < o < a; where «; and «;, are
constants, and F(x, o) is continuous and has a continuous partial derivative with respect to a for
a<x<b, a <a< . ltcan be extended to cases where the limits a and b are infinite or dependent on «.
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7.8 Summation of Series

The residue theorem can often be used to sum various types of series. The following results are valid under
very mild restrictions on f(z) that are generally satisfied whenever the series converge. See Problems 7.24,
7.32 and 7.38.

1. Z f(n) = —{sum of residues of 7rcot wzf(z) at all the poles of f(z)}

2. Z (=1)"f(n) = —{sum of residues of mcsc wzf(z) at all the poles of f(z)}

>\ (2n+1
3. Zf( n;— > = {sum of residues of mrtan wzf(z) at all the poles of f(z)}

d 2 1
4, Z(—l)”f( n; > = {sum of residues of msec wzf(z) at all the poles of f(z)}

7.9 Mittag-Leffler's Expansion Theorem

1. Suppose that the only singularities of f(z) in the finite z plane are the simple poles a;, a, a3, . ..
arranged in order of increasing absolute value.

2. Let the residues of f(z) at a;, az, as,... be by, by, bs, . ...

3. Let Cy be circles of radius Ry that do not pass through any poles and on which | f(z)| < M, where
M is independent of N and Ry — o0 as N — o0,

Then Mittag—Leffler’s expansion theorem states that

= 1 1
f@4w+2m{ +}
n=1

z—a, a

7.10 Some Special Expansions

1. csc _! 2 ! ! + !
' R Ve e ey P

1 3 5
2'“”:”wa—ﬁ_aww—f+6ww—ﬁ_”>

1 1 1
=2t e A )

1 1 1 1
4. tz=—-42
o=t Z(zz—wz+zz—4772+z2—9772+ )

1 1 1 1
5. cschz:—ZZ( + )
b4

24w ZAAm 249w

1 3 5
R R a2 rr R

1 1 1
7. tanhz =2z + + + ...
<z2 + (/2 2+ G2 2+ (5m/2) )

1 1 1 1
8. thz=-+2
comz=2+ Z(Z2+772+22+4772+12+9772+ )
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SOLVED PROBLEMS

Residues and the Residue Theorem

7.1.

7.2

Let f(z) be analytic inside and on a simple closed curve C except at point a inside C.
(a) Prove that

ﬁ (Z _ a)rl+l

n=—oo

fl2) = Z a,(z—a)" where a, = ! %ﬁdz,nz(), +1, +2,...
C

i.e., f(z) can be expanded into a converging Laurent series about z = a.
(b) Prove that

%f(z) dz = 2mia_,

c

Solution

(a) This follows from Problem 6.25 of Chapter 6.
(b) If we let n = —1 in the result of (a), we find

a_, = ﬁ ffyf(z) dz, i.e., ﬁ;f(z) dz = 2mia_;

C C

We call a_; the residue of f(z) at z = a.

Prove the residue theorem. If f(z) is analytic
inside and on a simple closed curve C except at
a finite number of points a, b, c, ... inside C at
which the residues are a_;, b_1, c_q, .. .,
respectively, then

%f(Z)dZ =2mila_1+b_1+c_1+--)
C

i.e., 27 times the sum of the residues at all
singularities enclosed by C.

Solution
With centers at a, b, c,..., respectively, construct Fig. 7-4
circles Ci, C,, C3,... that lie entirely inside C as

shown in Fig. 7-4. This can be done since a, b, c, . ..
are interior points. By Theorem 4.5, page 118, we have

%f(Z)dZ: ﬁ;f(z)dz—i— f{;f(z)dz_k Eﬁf(z)dz—i—--. W
But, by Problem 7.1, ¢ G G G
ﬂ;f(Z) dz = 2mia_y, fff(Z) dz = 2mib_y, f{)f(z) dz = 2mic_y, ... )
G e !

Then, from (1) and (2), we have, as required,

%f(z) dz =2mi(a_y +b_y +c_1 +---) = 2i (sum of residues)
c
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The proof given here establishes the residue theorem for simply-connected regions containing a finite
number of singularities of f(z). It can be extended to regions with infinitely many isolated singularities and
to multiply-connected regions (see Problems 7.96 and 7.97).

7.3. Let f(z) be analytic inside and on a simple closed curve C except at a pole a of order m inside C.
Prove that the residue of f(z) at a is given by

1 dm—l

{z—a)"f(2)}

= lim—
= = 1) dgm

Solution

Method 1. Suppose f(z) has a pole a of order m. Then the Laurent series of f(2) is

a_m a_m, a_
m +n1171+“'+ 1 +ap+ai(z—a) +axz—a) +--- (1)
@—a)"  (z—-a) Z—a

f@) =

Then multiplying both sides by (z — a)™, we have

G-a"f@=an+anG—a)+ - +aiz—a)" " +afz—a)" +--- @
This represents the Taylor series about z = a of the analytic function on the left. Differentiating both sides
m — 1 times with respect to z, we have

m—1

%{(z —a)"f@} = (m—Dla_y +mm—1)---2ap(z —a) + - -

Thus, on letting z — a,

m—1

lim
7—a dszl

{z—a)"f@}=m—-Dla,

from which the required result follows.
Method 2. The required result also follows directly from Taylor’s theorem on noting that the coefficient of
(z—a)™ ! in the expansion (2) is

1 m—1

= WF {z—a)"f(2)}

z=a

a—

Method 3. See Problem 5.28, page 161.

-2z

7.4. Find the residues of (a) f(z) = ——————
@ @+ D@2+ 4)

plane.

and (b) f(z) = % csc? z at all its poles in the finite

Solution

(a) f(2) has a double pole at z = —1 and simple poles at z = +2i.
Method 1. Residue at z = —1 is

; {( Ve } = lim @+ -2) - -2 __14

1
im —— S [ —
1 1ldz @+ D@ +4 (2 +4) 25

Residue at z = 2i is

) —4 —4i T+
}irgl,{(z—zi)- T } A

G+ D2z-20G+20)] Qi+ DX4) 25
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Residue at z = —2i is

2_ _ . _.
hm {(Z+21) -2z }_ 4 4 4i 1=

G+ D2z =20)Gz+2D)  (=2i+ 1)*(—4)) 25
Method 2. Residue at z = 2i is
(@ =2)(E - 22) =2z . oz2—2i
lim{-———>——=1 = { lim - 11 lim
=2l 2+ D2 +4) =2z + 1)?) |22 + 4
—4—4i 1 —4—-4i 1 T+i
= l1im_—= =
Qi+ 1)? =22z Qi+1)? 4 25

using L’Hospital’s rule. In a similar manner, or by replacing i by —i in the result, we can obtain the residue

at z = —2i.
®) f :ezcsczz:ez/sinzz has double poles at z =0, +m, +2m, ..., ie., z=mm where m =0,
+1, +2,....

Method 1. Residue at 7 = mar is

3

1d , € . €[z = mm)?sinz + 2(z — m@) sinz — 2(z — mar)? cos Z]
lim (z—mm)" —5—} = lim -
z—>mm sim" z

coma 11dz sin” z

Letting z — m7 = u or z = u + mr, this limit can be written

lim e
u—0

3 lim 3

- u? sinu + 2usinu — 2u® cos u e u? sinu + 2usinu — 2u? cos u
sin” u u—0 sin” u

The limit in braces can be obtained using L’Hospital’s rule. However, it is easier to first note that

oW . 3
lim——=Ilim(—) =
u—0sIn” u u—0\SIn u

and thus write the limit as

W sinu +2usinu — 2u’cosu  u’ mw u? sinu + 2u sinu — 2u* cos u
. =¢""lim
u? sin’ u 3

"™ lim emnm

u—0 u—0 u

using L’Hospital’s rule several times. In evaluating this limit, we can instead use the series expansions
sinu=u—u’/3 4+, cosu=1—u?/2'+--..

Method 2 (using Laurent’s series).

In this method, we expand f(z) = ¢ csc? z in a Laurent series about z = mr and obtain the coefficient of
1/(z — mr) as the required residue. To make the calculation easier, let z = u 4+ mar. Then, the function to
be expanded in a Laurent series about u = 0 is "™ csc>(mm + u) = €"™e" csc? u. Using the Maclaurin
expansions for ¢ and sin u, we find using long division

l/l2 M3 M2
(1+u~|— + = + ) e"‘"<1~|—u+—+-~-)

e"Te" csctu = 5 5
l/l3 + MS ) 1 M2 + u4
51 " 6 120

w2
1
e ..
u

o u? 2u
21242 4
u( 3+45+ )

and so the residue is ¢™".
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cotzcothz
—F at

7.5. Find the residue of F(z) = 3 z=0.
Z

Solution
We have, as in Method 2 of Problem 7.4(b),

2 4 2 4
7 7z
| L | [ LTI
coszcoshz ( 2!+4! )( +2!+4!+ >
Fz) = = 35 35

z3sinzsinhz_z Fal+ oz
z Z—a"i‘ﬁ—"' Z+§+§+"'

and so the residue (coefficient of 1/z) is —7/45.
Another Method. The result can also be obtained by finding

.1 d* [ 5 coszcoshz
lim — — {7 ———mF—
=0 4! d#* |7 Zsinzsinhz

but this method is much more laborious than that given above.

1 el

7.6. Evaluate — ¢ ——————— dz around the circle C with equation |z| = 3.
2mffz2(z2+2z+2) a &

C

Solution

The integrand ¥/ {zz(z2 +2z+ 2)} has a double pole at z = 0 and two simple poles at z = —1 + i [roots of
72> 4+ 2z + 2 = 0]. All these poles are inside C.
Residue at z =0 is

.14 { 5 e } . (@ H 224+ 2)e) — ()22 +2) t—1
lim — d—z z = =

—_— ¢ = lim
>0 1! 22 +2z+2)) =0 (2 +2z+2)7 2

Residue at z = —1 +1i is

fim Lz — 14 0] e i e i z+1—i

i —(=14+)]————t = lim {— lim {———

| 2(2+2z4+2) ol | 22| o1 |2+ 22+ 2
(=14t 1 (14t

Tl 2 4

Residue at z=—1—1i1is

o e(—lfi)r
li —(=1—i =
z»ljlllfi{ [z = Dl ZZ(ZZ + 2z 4 2)} 4

Then, by the residue theorem

e tr—1 e(—1+i)z e(—l—i)t
{)mdz = 277 (sum of residues) = 2771'{ 3 + ) + 1 }
c

P L2 B
= 21 2 26 COoS
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that is,

1 ﬂ; o P U U
D = e COS
2mi | 2@ +2:+2) 7 2

C

Definite Integrals of the Type f:o F(x)dx

7.7. Let |F(z)] < M/R* for z = Re'® where k > 1 and M are
constants. Prove that limg_, o fr F(z)dz = 0 where I' is y
the semi-circular arc of radius R shown in Fig. 7-5.

Tr
Solution
By Property (e), page 112, we have _ x
R | R
M ™ .
JF(z)dz <o 7TR=F Fig. 7-5
r
since the length of arc L = @wR. Then
lim JF(z)a’z =0 andso lim JF(z)dz =0
R— R—o0
r r
7.8. Show that for z = Re'®, | f(z)] < M/R*, k > 1if f(z) = 1/(Z6 +1).
Solution
Suppose z = Re'®. Then
| 1 1 1 2
= < = < —
/(@I |R666i9+ 1| ~ |R6eS — 1 RS — 1~ RS
where R is large enough (say R > 2, for example), so that M = 2, k = 6. A
Note that we have made use of the inequality |z; + 22| > |z1] — |z2]| with z; = RO and 7, = 1.

d
7.9. Evaluate Jix
x0 4+ 1
0

Solution
Consider §C dz/(z% + 1), where C is the closed contour of Fig. 7-5 consisting of the line from —R to R and the
semicircle I', traversed in the positive (counterclockwise) sense.

Since z% + 1 = 0 when z = ™6, ¢3™/6 37/6 T7/6 Oi/6 117/6 these are simple poles of 1/(z° + 1).
Only the poles e™/% &3m/6 and &™/6 lie within C. Then, using L’Hospital’s rule,

1 1 i
} = lim = 66757”/6

2 emi/6 670 -

Residue at ¢™® = lim {(z — ¢™/®
z—>e™ ( )26 +1

1 .
lim —=—¢7 "/
7—> €3mi/6 6Z5 6

Residue at 3™/ = lim {(z — &3™/6)———
2> £37/6 ( )16 F1

i i 1 1 1 )
Resid t Smf6 li _eom/oy__ | _ li " 25m/6
esidue at e ng‘-/s (z—e )26 1 ng,-/a 5 =6°
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Thus
dz I s 1 . 1 2T
—2mil= wi/6 4 _ ,=5m/2 4 — ,—25mij6 | _ =1
%ZGH m{6e T e 3
c
that is,
T d d 2
x 4 T
= =7 1
Jx6+1+Jz6+1 3 M
—R r

Taking the limit of both sides of (1) as R — o and using Problems 7.7 and 7.8, we have

R 00
dx dx 2
li = =— 2
i | 2= A= @
—R —o0

Since
T dx 2]0 dx
o417 T x4
— 00 0
the required integral has the value /3.
T x*dx ki
7.10. Show that J 5 =—
2+ 1)*(x2+2x+2) 50

—00

Solution

The poles of 22 /(z* 4+ 1)*(z> + 2z + 2) enclosed by the contour C of Fig. 7-5 are z = i of order 2and z = —1 + i
of order 1.
Residue at z =i is

im 4 { (= ip 2 } 9i — 12
2l _
—idz @+ )z — D)2 +2z2+2) 100
Residue at z = —1+1iis

2 3 —4

lim (z+4+1-1) - S =
>l @+ D@+ 1—dez+1+i) 25

Then
2 dz [9i—12 3—4i] Tw
7 = 2771 _— —‘r —_— = —
@+ DX +27+2) 100 25 50
C
or
R
J X2 dx n J 2 dz B 7;7'
@+ 1D?@2+2x+2) )@+ D2 +2:4+2) 50

—R r

Taking the limit as R — oo and noting that the second integral approaches zero by Problem 7.7, we obtain
the required result.
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Definite Integrals of the Type foz " G(sin 0, cos 0)dO

2 J
0
7.11. Evaluate .
J 3—2cos@+sinf
0
Solution
Let z=¢" Then sinf= (" — e /2i=(z—2z"1/2i, cosO= (" +e/2=0+27"/2, dz=izd
so that
21

J do _f‘; dz/iz _4; 2.dz
3—2cosf+sinf  [J3-20c+zD/2+@—zDH/2i JA-20)2+6iz—1—2i
0 C C

where C is the circle of unit radius with center at the origin (Fig. 7-6).
The poles of 2/{(1 — 202 +6iz—1— 21'} are the simple poles

bt V6iy —4(1 = 2i)(—1 — 2i)

2(1 —2i)
—6i + 4i . .
:m_2—l, 2-0/5
Only (2 —7)/5 lies inside C.
Residue at
2-0/5 lim {z—(2—19)/5} 2
_ — lim —_(_
' >(@2-0)/5 ¢ ! (1 =202 +6iz—1—2i
. 2 1
= lim —mM———=—
—2-/52(1 —2i)z+6i  2i y

C
by L’Hospital’s rule. / ) x
Then \J

+ 2dz o 1y
A—202+6iz—1-2i "\2i)= ™
C
Fig. 7-6

the required value.

2
7.12. Given a > |b|, show that J
0

de 27
a+bsind /2 _p2

Solution
Let z = €. Then, sinf= (" —e ) /2i=(z—2z"Y/2i, dz=ie®df=izd0 so that

2m

J do _% dz/iz _i; 2dz
a+bsin®  Ja+biz—z"Y/2i | bz +2aiz—b
0 C C

where C is the circle of unit radius with center at the origin, as shown in Fig. 7-6.
The poles of 2/(bz* + 2aiz — b) are obtained by solving bz + 2aiz — b = 0 and are given by

_ —2ai + vV—4a> +4b>  —ai + Va? — b%i
= 2b - b
i—a-i-vaz —bz}, [—a—Va2 —b2}_
= i, i

b b
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Only [(—a +Va? - b2> /b}i lies inside C, since

‘—a-i-«/az—bzi_«/aZ—bZ—a.«/az—b2+a_| b ’<l
| b B b Vi —p+a |V —1 +a)
when a > |b|.
Residue at
—a—l—\/ —b? 2
S L s Ty

2 1 1
bz 42ai butai Ja b2

by L’Hospital’s rule.
Then

j£ 2d (1 o
b2 +2aiz— b \JZ ) VR

C

the required value.

2
cos 36 T
7.13. Show that | ——— d6=—.
ow tha JS—4C050 12
0
Solution
Let z = ¢®. Then cos 0 = (z+21)/2, cos360= (¥ + 3% /2 = (2 +773)/2, dz=izd8 so that

21

J cos 36 d0—§ @+z27/2 dr _l% L+1 &
5—4cos@  J5—-4@+zH/2iz 2Q2z—1)(z-2)

0 C

where C is the contour of Fig. 7-6.
The integrand has a pole of order 3 at z = 0 and a simple pole z = % inside C.
Residue at z =0 is

lim 1 &2 L+1
lm Sz PQRz—-Dz-2)

Residue at z =1 is

i (). fr ) e
e \F 72 Pz—-Dz—-2)f 24

Then
1 P+1 1 21 65
T = ——m|e=—2l = L d.
2ifl;z3(2z—1)(z—2) “= gt m){s 24} 1o 3 require
C
21
do Sar

7.14. Show that | — = —.
J (5—3sinh)? 32

0

Solution

Letting z = ¢, we have sin 0 = (z — z7")/2i, dz = i’ d§ = izdf and so
27

J do _ﬂ; dz/iz _ _iﬂ; zdz
) (5—3sin6)? J (5-3z—zH2i> i J (322 — 10iz — 3)?

where C is the contour of Fig. 7-6.
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The integrand has poles of order 2 at z = (10i + +/—100 +36)/6 = (10i & 8i)/6 = 3i, i/3. Only the
pole i/3 lies inside C.

Residue at
2=i/3= lim d%{(z —i/3)" m}
Then

4%; zdz 4(2 ) -5 S5
—_— _— = —— T = —
i ez —10z—32  i-"™N\2s6) T 32

C

Another Method. From Problem 7.12, we have for a > |b|,

27
J 9  2m
a+bsind /g2 _p2

0

Then, by differentiating both sides with respect to a (considering b as constant) using Leibnitz’s rule,

we have
2 2 2
iJL_JE #d(,__JL
da)a+bsind ) da\a+bsing) (a + bsin 6)?
0 0 0

_i 2ar _ —27a
“da\Jaz—p2) " @—b)"
that is,

2
J do 2ma

(a+bsin6)? (@ — b2y~

0

Letting @ = 5 and b = —3, we have

T de 2m(5) S

(5—3sinf? (2—32y7 32
0

Definite Integrals of the Type J F(x){cs(i)z :ch } dx

7.15. Let |F(z)] < M/R* for z = Re'® where k > 0 and M are constants. Prove that

Jim Je"mZF(z) dz=0
r

where I is the semicircular arc of Fig. 7-5 and m is a positive constant.
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Solution
Let z = Re®. Then [ ™ F(z)dz = [] ¢"R¢"F(Re!®)iRe' df. Then

le"R" F(Re'®)iRe™®| B

IA

J "R F(Re'®)iRe' d B
0

|€imR cos 6—mR sin GF(Reie)iReW' 4o

Il
Oty OY——y O——y

e—mRsin 9|F(Rei9)|R 4o

T /2
RIZI Je—mRSinOde — M j e—mRsinﬁde
0 0

IA

Rk-1

Now sin 0 > 26/ for 0 < 6 < w/2, as can be seen geometrically from Fig. 7-7 or analytically from
Problem 7.99.
Then, the last integral is less than or equal to

/2
M ~2mRé/ ™ —mR
Wje Ao = e (1)
0 . 9
. . /2 T
As R — oo, this approaches zero, since m and k are
positive, and the required result is proved. Fig. 7-7

7.16. Show that JM dx="Z¢ m>0.
x2 41 2
0

Solution

Consider §C {™ /(> 4+ 1)} dz where C is the contour of Fig. 7-5. The integrand has simple poles at z = +1,
but only z =i lies inside C.
Residue at z =i is

) ) eimz _d
lzlg}{(z_l)(z—i)(z—i-i)} =7

Then

eimz e ™ .
C

or

X241 2+ 1
—R r

R
imz imz
J ¢ dx—l—J ¢ dz = e ™
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that is,
R R .
COS mx sin mx e
d. ] d dz =me™
sz—i-l x+1jx2+1 x+Jzz+l 7 = me
R R r
and so
R imz
COS mx e
2 d dz = we™™
sz—i—l x+Jzz+l 7 = e
0 r

Taking the limit as R — oo and using Problem 7.15 to show that the integral around I" approaches zero, we
obtain the required result.

Evaluate J _ XS dx.
xX24+2x4+5
Solution

Consider ﬁc{zei”Z /(2 427+ 5)} dz where C is the contour of Fig. 7-5. The integrand has simple poles at
z=—1 + 2i, but only z = —1 + 2i lies inside C.
Residue at z = —1 4 2i is

iz —im—21r
. ze'™
1 1-2))———} =(—1+4+2i
Hlfﬂzi{(ZjL ) 22+2z+5} T
Then
% ZeiaTz p 5 ( 1+2) e—iar—27r ﬂ_(l 2) o
———————dz = 2mi(— D———) == —2e
2H2ts5" 4 2
c
or
R . i
xelﬂx Zel T . s
— i+ | ———dz=—(1 =2 4
Jx2+2x+5 +Jz2+2z+5 ¢ 2( e
—R T
that is,
R R ) -
X COS TTX . X sin 77X ze' T N —om
i | dz=—01-2
Jx2+2x+5 x+ljx2+2x+5 o Jz2+2z+5 ‘ 2( e
_R —R r

Taking the limit as R — oo and using Problem 7.15 to show that the integral around I" approaches zero, this
becomes

o] o]

X COS X X sin 7mx T
" 4 . e - . 27 _ . 27
Jx2+2x+5 x+le2+2x+5x 2°¢ 1me
Equating real and imaginary parts,
J xcosm . _ T, m J x sin mmx dr = — o7
2+2x+57 20 2+2x+5

Thus, we have obtained the value of another integral in addition to the required one.
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Miscellaneous Definite Integrals

7.18. Show that Jydx -
X

0

7
2

Solution

The method of Problem 7.16 leads us to consider the integral of e’/z around the contour of Fig. 7-5. However,

since z = 0 lies on this path of integration and since we cannot integrate through a singularity, we modify that

contour by indenting the path at z = 0, as shown in Fig. 7-8, which we call contour C’ or ABDEFGHIJA.
Since z = 0 is outside C’, we have

iz
i[) e—dz =0
Z
&
or
= X 1Z R X 1Z
J ¢ dvt J —a’z+Je—dx+ J Cdz=0
“R HIA € BDEFG
Replacing x by —x in the first integral and combining with the third integral, we find
R ix —ix iz iz
Jldx—k J Car+ J Caz=0
X Z Z
€ HIA BDEFG
or
R iz iz
2;’Jﬁdx =- J - J Sy
X Z Z
€ HIA BDEFG

Let € — 0 and R — 0. By Problem 7.15, the second integral on the right approaches zero. Letting z = ee’?
in the first integral on the right, we see that it approaches

0

e’ icoi®
—lim | —iee'’d0 = — lim | i d§ = mi
e—0 | eel? e—~>0
w w
since the limit can be taken under the integral sign.
Then we have
R . o .
sinx sinx T
lim ZIJ—dx:m or J—d ==
R—00 X X 2
e—0 € 0
y
Y B
R C
g /4
o X
o R A

Fig. 7-8 Fig. 7-9
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7.19. Prove that

sinx® dx =

1 |

2
dx=—-_|—=
cos x“ dx 2\/g

Let C be the contour indicated in Fig. 7-9, where AB is the arc of a circle with center at O and radius R. By
Cauchy’s theorem,

o3
c—3

Solution

{) eizzdz — 0

c

or
J ¢Cdz+ J ¢ dz + J ¢z =0 (D
oA AB 5o

Now on OA, 7z = x (from x = O tox = R); on AB, z = Re'® (from § = 0to § = 7/4); on BO, 7 = re™/* (from
r = R to r = 0). Hence from (1),

R /4 0
Jei"zdx + J ¢®"iRe® d6 + Je"’zeﬂ/zem/“ dr=0 (2)
0 0 R
that is,
R R /4
J(cos x +isinx?)dx = ™ Je”zdr - J iR cos20-R*sin20; b6 3)
0 0 0

We consider the limit of (3) as R — . The first integral on the right becomes [see Problem 10.14]

74| o= g :ﬁ 7'"'/4:1\/? i\/ZT 4
¢ ,[e = V2 T2y @
0

The absolute value of the second integral on the right of (3) is

/4 /4 /2
Jeichos26—R2sin26l~Reied0 < Je_RZSi“ZHRdGZB J e—R2sin¢>d¢
- 2
0 0 0
/2
R —2R2d>/7r T _R?
<5 [ emras=Za-e)
0

where we have used the transformation 26 = ¢ and the inequality sin ¢ > 2¢/m, 0 < ¢ < 7/2 (see Problem
7.15). This shows that as R — oo, the second integral on the right of (3) approaches zero. Then (3) becomes

T 1 |7 i |m

2 s 2 L L
J(COSX +zs1nx)dx—2\/;+2\/;
0

and so, equating real and imaginary parts, we have as required,

0 00

1 |7
2 .2
d = dx =— |—
Jcosx x Jsmx X 2\/;
0 0
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Peat T
7.20. Show that J dx = — ,0<p <l
1+x sinpm

0

Solution

Consider 39C (z"7'/1 + z)dz. Since z = 0 is a branch point, choose C as the contour of Fig. 7-10 where the
positive real axis is the branch line and where AB and GH are actually coincident with the x axis but are
shown separated for visual purposes.
The integrand has the simple pole z = —1 inside C.
Residue at z = —1 = e™ is
P!

— em' p—1 — e(pfl)m'
1+z €™

lim (z+1)

Then

Zp— 1

dz = 2mie® D™
14z

a—e—

or, omitting the integrand,

J+ J + J + J = 2mie?~ ™
AB  BDEFG GH HJA

We thus have

R 27 X T € L 0 . L

pr—l det J (Rel0)17 llRlelOde J(xezﬂ[)]) ldx J (eezﬁ)p 1l€?lod9 _ 27Tl-e(p7|)77i
1+x 1 + Re'? 1 + xe?m 1+ eet®

€ 0 R 27

where we have used z = xe>™ for the integral along GH, since the argument of z is increased by 27 in going

around the circle BDEFG.
Taking the limit as € — 0 and R — oo and nothing that the second and fourth integrals approach zero,

we find
s 1 P i(p—1) .p—1
xP~ e PP~ :
dx + dx = 2meP~Dm
14+x 1+x
0 [
or
s 1
. xP~ )
(1 — ™Dy Jidx = 2rieP— D
1+x
0
so that
s .
xP1 2 e D7 277 T
T+ 2™ T 1 e2mo—D ~ gpmi _gpmi sinpr
0
y
D
R
- € A B
X
-l J\ H G Y
& 37
—R+ i 2 R+ri
oL A
2 x
F -R o T R

Fig. 7-10 Fig. 7-11
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(o]
cosh ax

T
coshx = 2 cos(ma/2)

where |a| < 1.

0

Solution

Consider j;c (e*/cosh z) dz where C is a rectangle having vertices at —R, R, R + i, —R + i (see Fig. 7-11).

The poles of ¢*/ coshz are simple and occur where coshz =0, i.e., 2= (n+3)mi, n =0, £1, +2,....
The only pole enclosed by C is /2.
Residue of ¢*“/coshz at z = mi/2 is

az eam'/Z emTi/Z

e .
li — /2 — — — _jpami/2
Mm@ mi/2) e T sinh(aiy2)  isin(az) - ¢
Then, by the residue theorem,
ellZ . .
fi; dz = 2mi(—ie"™?) = 2met™/?
coshz
c
This can be written
R T . —R
ax d ea(R-H)) d a(x—ri) d
J coshx A Jcosh(R—i—iy)l v J cosh(x + i) o
-R 0 R
0
a(—R-H)) a2 !
idy =2
+Jcosh( R+ )l Y e M

As R — oo, the second and fourth integrals on the left approach zero. To show this, let us consider the
second integral. Since

R+iy —R—iy 1 y . 1 1
| cosh(R + in)] = (2| = {1 — e R = (R e Ry 2 Sk

2
we have
w m
e(FH) e® (a=DR
_ < dy = 4me
Jcosh(R—l—ly) J Ra Y =
0 0

and the result follows on noting that the right side approaches zero as R — oo since |a| < 1. In a similar
manner, we can show that the fourth integral on the left of (1) approaches zero as R — 0. Hence, (1) becomes

R e(L’C . R eax )
lim J dx—l—e‘”"J dx} = 2me™/?

R—00 coshx coshx
“R “R
since cosh(x + i) = — cosh x. Thus
R 0 X
e e 2 7re®™i/2 27 T
lim dx = dx = _— . =
R—>o | coshx coshx 1+ ™ eami/2 4 g=ami/2 — cos(7a/2)

—R —00
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Now

0 o

—00

eax eax T
dx =
J coshx +Jcoshx o cos(ma/2)
0

Then, replacing x by —x in the first integral, we have

[ [ (<]

J e de+ J @ d Jcosh ax T
X X = X =
coshx coshx coshx cos(ma/2)

0 0 0

from which the required result follows.

TInG? + 1
7.22. Prove that J%dx = 7In2.
x> +1
0

Solution

Consider 3§C{ln(z +i)/7 + 1} dz around the contour C consisting of the real axis from —R to R and the

semicircle I' of radius R (see Fig. 7-12).

The only pole of In(z + i)/(z> + 1) inside C is the simple pole z = i, and the residue is

lim (z — i) In(z+i)  In(2)
T TG+ 2

Hence, by the residue theorem,

In(z +§) [In(2i)
=2
4; 211 dz m{ %

C

1
} = 7ln(2i) = wln2 + 3 i

e))

on writing In(2i) = In2 +Ini =In2 + Ine™? = 1n2 + mi/2 using principal values of the logarithm. The
iting In(2i)) =In2+Ini=In2+1Ine™? =1n2 /2 gp pal val f the logarithm. Th

result can be written

R
J In(x + 7) i Jln(z + 1)
x

x2+1 241
“R r

1
dz:wan—i—Eﬂ'zi

or

0 R
J1n(x+1)dx+Jln(x+z)dx+Jln(z+1)

x24+1 x24+1 241
—R 0 T

Replacing x by —x in the first integral, this can be written

R R
In(i — In(i ] ' 1

J n@ x)dx—i-J n(l+x)dx+J NCHD 2t L
X2 +1 x2 41 2 +1 2

0 0

or, since In(i — x) + In(i +x) = In(® — x%) = In(x*> + 1) + i,

R

x2 41 x24+1 2 +1

0 0 r

1
dz = 7Tln2+§772i

R
In(2 + 1 ] 1 ] 1
dex—i—J m dx+Jn(Z+l)dz:7rln2+§ﬂ2i

2



7.23.

CHAPTER 7 The Residue Theorem Evaluation

As R — oo, we can show that the integral around I" approaches zero (see Problem 7.101). Hence, on taking real
parts, we find as required,

R 0
In(x% + 1 In(x% + 1
nmJ“(x + )dx:J D e 72
RS0 | x2 41 x2+1
/2 /2

1
Prove that J Insinxdx = J Incosxdx = —§7Tln2.
0 0

Solution

Letting x = tan 0 in the result of Problem 7.22, we find

/2 /2
In(tan? 1
J Msecz 0do= -2 J Incos 0 df = wIn2
tan? 0+ 1
0
from which
/2
1
J 1ncost9d0:—§ﬂ'ln2 (D

0
which establishes part of the required result. Letting 8 = /2 — ¢ in (1), we find
/2
1
J Insing dep = —§7T1n2
0

y
(N+3) (~1+i) Cy (N+DH(+)

-

N+1

e
=

N2 -

x (N+3) (1) (N+3) (1-i)

Fig. 7-12 Fig. 7-13

Summation of Series

7.24. Let Cy be a square with vertices at

1 , 1 . 1 , 1 .
(N+2)(1+l), <N+2)(—1+z), <N+2>(—1—l), <N+2)(1—z)

as shown in Fig. 7-13. Prove that on Cy, |cot 7rz] < A where A is a constant.
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Solution
We consider the parts of Cy which lie in the regions y > 1, — % <y< % and y < —%.

Case 1: y > 1. In this case, if z = x + iy,

‘em'z + e—m’z’ ea'rix—ﬂ'y + e—m‘x+77y
|cot mz| = =

- |em'z — iz eTIX—TY _ p—mix+my

o™ 4+ [T D] _ e 4 e™ 1 4e™ 14"

— |e—mx+ﬂ'y| _ |emx—77'y| emw — =™ 1— e—27r_v s Pt 1
Case 2: y < —1. Here, as in Case 1,
cotm < [T pe™ b 1bem
cotmz| = |em'x—ﬂy| _ Ie*ﬂ'ix+77y| T —e™m 1 —e2™ 1 —e T 1

Case 3: —] <y <1 Consider z = N 4§+ iy. Then
|cot 7rz| = |cot (N +%+ iy)| = |cot(m/2 + miy)| = |[tanh wy| < tanh(7/2) = A,
Ifz=-N—- % + iy, we have similarly
|cot 77| = |cot T (—N —%—i— iy)| = [tanh y| < tanh(7/2) = A,

Thus, if we choose A as a number greater than the larger of A; and A,, we have |cot 7rz| < A on Cy where A
is independent of N. It is of interest to note that we actually have |cot mz| < A; = coth(7/2) since A, < A;.

7.25. Let f(z) be such that along the path Cy of Fig. 7-13, | f(2)| < M/|z|" where k > 1 and M are con-
stants independent of N. Prove that

Z f(n) = —{sum of residues of 7rcot wzf(z) at the poles of f(z)}

Solution

Case 1: f(2) has a finite number of poles.

In this case, we can choose N so large that the path Cy of Fig. 7-13 encloses all poles of f(z). The poles of
cot 7rz are simple and occur at z =0, +1, +2,....

Residue of wcotmz f(z) atz=n,n=0, +1, +2,...,1s

. . z—n
lim (z — n)mrcot wzf(z) = lim ’7T< - ) cos m7f(z) = f(n)
z—n —n  \Sin 7z
using L’Hospital’s rule. We have assumed here that f(z) has no poles at z = n, since otherwise the given series
diverges.

By the residue theorem,

N
ﬂ; meot wzf(z) dz = Z fn)+ S (n

Cy n=—N

where S is the sum of the residues of 7rcot 7z f(z) at the poles of f(z). By Problem 7.24 and our assumption on
f(2), we have

TAM
Nk

=<

(8N +4)

ﬁ; meot wzf(2)dz
Cn
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since the length of path Cy is 8N + 4. Then, taking the limit as N — oo, we see that

A}im SF meotmzf(z)dz =0 )
Cn
Thus, from (1) we have as required,
> fy=-s 3)

Case 2: f(z) has infinitely many poles.
If f(z) has an infinite number of poles, we can obtain the required result by an appropriate limiting pro-
cedure. See Problem 7.103.

1

7.26. P that -
rove that o

T
5= —coth 7ra where a > 0.
a a

Nn—=—00
Solution

Let f(z) = 1/(z> + a%), which has simple poles at z = +ai.
Residue of 7rcot 71'z/(z2 +ad¥)atz=aiis

fim ( ) mcot 7z T cot mai T coth
—ail = = — — Ta
i (z — ai)(z + ai) 2ai 2a
Similarly, the residue at z = —ai is (—/2a) coth ma, and the sum of the residues is —(7/a) coth 7ra. Then, by
Problem 7.25,
i # = —(sum of residues) = T coth ma
n+a T a

n=-—0o

il 1
7.27. Prove that ngl g = %th ma — o) where a > 0.

Solution

The result of Problem 7.26 can be written in the form

—1 00
1 1 1 7
> Tt aT ’;f 5= cothma

n=—o0

or

= 1 1 =
ZZI: m—i—;:ECOth’ﬁa

which gives the required result.
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1 1 1 >
7.28. P that — + —+—+ ... = —.
rove thal ]2—|—22—|—32+ G
Solution
We have
< 22t )
R SR e BN
mTcotmz  TWCOS ML 2! 4!
F(Z): Z2 :Zzsinfn-z: 7722 "l
z3(1_7z ' _)
3! 5!

1 7 7 1 7
:Z—3<1_7+...><1+T+...>:g(l_T+...>

so that the residue at z = 0 is —72/3.
Then, as in Problems 7.26 and 7.27,

—1 N N
Trcot mz 1 1 7 1 7
j£ g k=l atl a2y

Cy

Taking the limit as N — oo, we have, since the left side approaches zero,

<1 7 21 P
DD B D D

n=1
Another Method. Take the limit as a — 0 in the result of Problem 7.27. Then, using L’Hospital’s rule,

lim

—_— m -———=—
a0~ n? 4+ a?

d 1 il_l, wacothmz—l_ﬂz
n2 " a=0 2a? 6

n=1

7.29. Suppose f(z) satisfies the same conditions given in Problem 7.25. Prove that

Z(—l)”f(n) = —{sum of residues of 7 csc 7zf(z) at the poles of f(z)}

Solution

We proceed in a manner similar to that in Problem 7.25. The poles of csc mz are simple and occur at
z=0, +1, £2,....
Residue of wesc mz f(z) atz=n, n =0, +1, £2,...,1is

lim (z — n)wese 7z f(z) = lim 7T<Z._7n>f(z) = (—=1)"f(n)
—n —n SIN7Z

1mn

By the residue theorem,

N
%WCSC’TTZf(Z)dZ: Z =D+ S Q)

Cy n=—N

where S is the sum of the residues of mcsc mzf(z) at the poles of f(2).
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Letting N — oo, the integral on the left of (1) approaches zero (Problem 7.106) so that, as required, (1)

becomes
D (=) = - (©)
fo]

-1 72 cos ma . .

Prove that Z =D 5= where a is real and different from 0, +1, +2,....
it (n+a) sin“7a
Solution
Let f(z) = 1/(z + a)* which has a double pole at z = —a.
Residue of mcsc wz/(z + a)Y atz = —alis
lim i (z+a)*- mesemel _ — 77 ¢sc 7ra cot ma
>—ady 2 ( + )2 - :
Then, by Problem 7.29,
[o] _1 n 77-2

Z ) > = —(sum of residues) = 7 ¢sc ma cot ma = y

we—h (n+a) sin“ma
Suppose a # 0, +1, +£2,.... Prove that

A+ 1 at+4 n at+9 1 72 cos ma
@—-1? (@®—4? (a®—-9) ~2a*  2sin’ma
Solution
The result of Problem 7.30 can be written in the form
i_{ L. }+[ 1L 1 }+ % cos Ta
@ |a+1? (@—17? (a+27° (a—2)7 "~ sin’ma
or
i_Z(az—l— 1) 2(a2+4)_2(a2+9) _ 72 oS T
@ (@-17 (@—-4? (@-9) T sin’ma

from which the required result follows. Note that the grouping of terms in the infinite series is permissible since

the series is absolutely convergent.

Prove that — ! ! += ! ! :i.
3 3" 7 32
Solution
We have
F(z) = WSE; == 3 C:; o B — ,Tz;zT/z! +-)
<1 +ﬂ2—z+ ) —+f+
-3 2 2z

so that the residue at z = 0 is 7 /2.
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The residue of F(z) at z=n + %, n=0, +1, +£2,... [which are the simple poles of sec 77], is

— 1 —(—=1)"
lim {z—(n+1)}5——=—"— lim (n+3)  —D

2ntl/2 73 cos 7z (n + ) ontl/2 cosmz (n+ %)3

If Cy is a square with vertices at N(1 + i), N(1 — i), N(—1 + i), N(—1 — i), then
N N 3

msec 77 (G DA =" 7
d = — — = -8 _— _
1; 73 < Z 13+2 Z(2n+1)3+2

Cn n=—N (I’l + §) n=—N

and since the integral on the left approaches zero as N — oo, we have

= (-1 o1 3
I A LS R S g
Liont1)y B3 TS 16

(=]

from which the required result follows.

Mittag-Leffler's Expansion Theorem

7.33. Prove Mittag—Leffler’s expansion theorem (see page 209).

Solution

Let f(z) have poles at z = a,, n =1, 2,..., and suppose that z = { is not a pole of f(z). Then, the function
f(@/z—{¢haspolesatz=a,,n=1,2,3,...and {.
Residue of f(z)/z— {atz=a,,n=1,2,3,...,is

f(Z) b,
lim (z — a,,)—
> an z2—=¢ ay—¢
Residue of f(z)/z — {atz = {is
(2)
tim(z - 09, —1(¢)
Then, by the residue theorem, y
CN
1 4; f(Z) d — (1) [ ] od,
& N
N [ 123] X
where the last summation is taken over all poles ° ot
inside circle Cy of radius Ry (Fig. 7-14). ’
Suppose that f(z) is analytic at z = 0. Then, G| G
putting { = 0 in (1), we have
1 [ f .
dz=f(0 — 2 Fig. 7-14
P } L da=10)+ Z @) g
Cn

Subtraction of (2) from (1) yields
1 1 1 1
f(é/)_f(o)‘f‘;bn(an_g—an) T%f(z){ig—g}dz
Cy

¢ ﬂ; @, )
2
Cn

wz—0
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Now since |z — ¢| = [z — [{] = Ry — |{] for z on Cy, we have, if | f(2)| < M,

ﬂ; f@ - M - 27Ry

) = Re@Ry — 12D

As N — oo and therefore Ry — oo, it follows that the integral on the left approaches zero, i.e.,

limi; TAC) dz=0

N— oo Z(Z — g)
Cn

Hence from (3), letting N — oo, we have as required

1 1
(O =f(0)+ ;bn (m+a)

the result on page 209 being obtained on replacing { by z.

1 1 1
7.34. Prove that cotz = —+ Z( + —) where the summation extends overn = +1, +2,....
z Z—nmT N

n
Solution
Consider the function

1 zcosz—sinz
f@=cotz——=——"——
z zsinz

Then f(z) has simple poles at z = nm, n = +1, +2, +3,..., and the residue at these poles is

. zcosz —sing . z—nm\ .. ZC0SZ — Sing
lim (z — nm)|—— ) = lim - Iim|———— ) =1
z—>nm zZsmzg z—>nm\ SINZ ) z—>nm z

At 7 =0, f(z) has a removable singularity since

. 1 . [zcosz—singz
lim{cotz——) =lim|——— ) =0
z—0 Z z—0 zZsmzg

by L’Hospital’s rule. Hence, we can define f(0) = 0.
By Problem 7.110, it follows that f(z) is bounded on circles Cy having center at the origin and radius
Ry = (N + %)77. Hence, by Problem 7.33,

1 1 1
tz——= —
cotz | Z(z_mﬁm)

n

from which the required result follows.
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1 1 1
7.35. Prove that cotz = E+ 2Z{Z2 — -|-Z2 —i + .. }

Solution

We can write the result of Problem 7.34 in the form

1 - 1 1 ul 1 1

cotz =+ iim, n_ZN<z_m+m)+§(z—m+m>}
L <1 + 1>+( L, 1 >+--~+< L, 1 )}
z Noowl\z4+7 z-—m z+2m z-27 z+Nm z—Nm
LT S S }
7 Now|ZZ—m 2 —47? 2 —N*7?
z P?—m -4

Miscellaneous Problems

a+ioo

1 e .
7.36. Evaluate i J ——— dz where a and t are any positive constants.

7L Jz+1
a—ioo
Solution
The integrand has a branch point at z = —1. We shall take as a branch line that part of the real axis to the left of
z = —1. Since we cannot cross this branch line, let us consider
eZI
ﬁ; —dz
2 Vz+1

where C is the contour ABDEFGHJKA shown in Fig. 7-15. In this figure, EF and HJ actually lie on the real axis
but have been shown separated for visual purposes. Also, FGH is a circle of radius € while BDE and JKA
represent arcs of a circle of radius R.

Since €% /+/z + 1 is analytic inside and on C, we have by Cauchy’s theorem

eZt
imdz =0 (1)

Omitting the integrand, this can be written

[+J+J+J+J+J=0 @

AB BDE EF FGH HJ JKA

Now, on BDE and JKA, z = Re'® where 6 goes from 6 to 7 and 7 to 2 — 6, respectively.

On EF, z+ 1 =ue™, 7+ 1 = Jue™? = i/u; whereas on HJ, z+ 1 =ue ™™, /7+ 1 = Jue ™? =
—iﬁ. In both cases, z= —u — 1, dz = —du, where u varies from R —1 to € along EF and e to R —1
along HJ.
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On FGH, 7+ 1 = ee'® where ¢ goes from —ar to 7. Thus, (2) can be written

a+iT

T . €
ezt eRE'et . e—(u+1)t(_du)
e | iretan |
J Vz+1 /Re'? + 1 ivu
a—iT 6o R—1
i e . R e~y
+ J +i66l¢ dd)"l‘ J - . =
Veet + 1 ) —iJu
2m—6o il Y

T

Let us now take the limit as R — oo (and T = v/ R? — a2 — o0) and € — 0. We can show (see Problem 7.111)
that the second, fourth, and sixth integrals approach zero. Hence, we have

a+ioo R—1 o
o4 e—(n+l)t p 5 e—(u+1)t J
dz = lim 2i u = 2i u
j Vit 1 0 J Vu J Vu
a—ioo R— 00 € 0

or letting u = 02,

Tnu? o

du = —

7.37. P that .
rove tha Juz 1 3

0
Solution

Let C be the closed curve of Fig. 7-16 where I'; and I'; are semicircles of radii € and R, respectively, and center
at the origin. Consider
(Inz)?
d
Si;zz 1%

C
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Since the integrand has a simple pole z = i inside C and since the residue at this pole is

. . (In2)? (ni?  (mi/2? -
lim (z — 7) - — == =
i (z—=i(z4+1) 2i 2i 8i

we have by the residue theorem

(ngy> ~—  (—7\ -7
fshean() -7
C

Now
o (no? . [an?  [an? [ (no?
nzg nz nz nzg nz
dz = d. d: d.
%Zz—i-lz JZZ+1 Z+Jz2+1Z+Jzz+1Z+Jzz+l
C —R I € I,

dz

ey

2

Let z = —u in the first integral on the right so that Inz = In(—«) = Inu + In(—1) = Inu + 7 and dz = —du.
Also, let z = u (so that dz = du and Inz = Inu) in the third integral on the right. Then, using (1), we have

R R

u? + 1 Z2+1 u> +1 Z2+1

€ T € Iy

Now, let € — 0 and R — oo. Since the integrals around I'; and I"; approach zero, we have

—r

4

j(lnu~|—m’)2 J(lnu)2 -
———F du du =——
u? +1 u? +1 4
0
or
(In u)® J Inu J du -7
2 du+2 du — =
Ju2+1 R o 117 4
0 0
Using the fact thatjuzj_l:tan’]uozg
0

8

0

In u)? 1

2J(n”) dthzm'JﬂduzI
u? +1 u? +

0

0

Equating real and imaginary parts, we find

0

J(lnu)zd _ -

Inu
u? +1

u? +1 =g
0

O3

the second integral being a by-product of the evaluation.

3

N2 2 2 2
J(lnu—l—m) du—i—J(an) dZ+J(lnu) du—i—J(an) dr=_"
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7.38. Prove that

coth 7T+coth27'r+coth37r+ s
13 23 33 180 N
(N +3)(-1+) s(v+1)i  (N+3)(1+)
Solution N
Consider s
®2i A
ﬁ; arcot 7z coth 7z ®i
——dz
Z ala o o o o ol a X
Cn N-1|-N 2 -1 [01 2 N[N+
® —
taken around the square Cy shown in Fig. 7-17. l_
The poles of the integrand are located at: 7 =0 ! ?-2
(pole of order 5); z= +1, £2,... (simple ®_Ni
poles); z = +i, +2i,... (simple poles). ] - > ! .
By Problem 7.5 (replacing z by 7z), we see that: (N+3)(-1-0) $-(N+Di - (V+3) (1)
) L
Residue at z =0 is 15 Fig. 7-17

Residue at z=n(n = +1, £2,...)1s

) {(z —n) arcos mzcoth 7TZ} coth nar
lim . =

sin 71z 2 n3

z—n

Residue at z=ni (n= +1, +2,...)is

. {(z — ni) wcot wzcosh ’7TZ} cothnm
lim . =

sinh 7z 2 n3

z—>ni

Hence, by the residue theorem,

7rcot 71z coth 77 77 N cothnw
dz = 4
fi; ‘=5 T ; 3

z n
Cn

Taking the limit as N — oo, we find as in Problem 7.25 that the integral on the left approaches zero and the
required result follows.

SUPPLEMENTARY PROBLEMS

Residues and the Residue Theorem

7.39. For each of the following functions, determine the poles and the residues at the poles:

2241 1\’ i
@1 (b <i> . ©55 (@sechz, (o) cotz,
2—z—2 z—1 Z

cosh z
23

7.40. Prove that Tf dz = i if C is the square with vertices at +2 + 2i.
c

7.41. Show that the residue of (cscz cschz)/z* at z =0 is —1/60.

“d.
7.42. Evaluate % ¢ & around the circle C defined by [z| = 5.
cosh z
c

2
4
7.43. Find the zeros and poles of f(z) = ‘

B +22+22
7.44. Evaluate %eil/z sin(1/z) dz where C is the circle |z| = 1.
C

and determine the residues at the poles.
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inh3
7.45. Let C be a square bounded by x = +2, y = +2. Evaluate %LZS Z
2 (z — mi/4)

22245
7.46. Evaluate %—dz where C is (a) |z — 2i| =6, (b) the square with vertices at 1+, 2+,
Jc+2'@+42 a
2+2i, 14 2i.
[ 2 + 3sin 7z

7.47. Evaluate 1) dz where C is a square having vertices at 3 43, 3 —3i, —3 4 3i, —3 — 3i.

2z — 1)?

1 s
7.48. Evaluate %ﬁdz, t > 0 around the square with vertices at 2 + 2i, —2 +2i, —2 —2i, 2 — 2i.
2(Z?
C
Definite Integrals
o0 2
d 36
7.49. Prove that J T i. 7.52. Evaluate J _C0897
*+1 22 5+4cosf
0 0
T d 236 3
7.50. Evaluate J—xz 7.53. Prove that JL ==
02+ D2 +4) 5 —4cos26 8
0 0
2 in30 0 -
7.51. Evaluate JL 7.54. Prove that if m > 0, J cosm_ e e " m)
5—3cosf x+1) 4
0 0
7.55. (a) Find the residue of ——— at z = i. (b) Evaluate JL’“S X
Z+1) . J (2 +1)
do 2

7.56. Given a® > b? + ¢. Prove that J = )
a+bcosO+csind /g2 —p2 — 2

2@

cos 36 1357
7.57. Prove that = .
rove ta J (5—3cos0) " 16,384
0

7.59. Evaluate J P Ea—
(x2 +4x+5)

7.58. Evaluate JL 7.60. Prove that J
*4+x24+1
0

x2

7.61. Discuss the validity of the following solution to Problem 7.19. Let u = (1 4 i)x/+/2 in the result fooo e du =
L/ to obtain [;° e~ dx = }(1 — i)/7/2 from which [;° cosx?dx = [;° sinx® dx = 1/7/2 on equating real
and imaginary parts.

)

cos 27x —
7.62. Show that | ———=""_ gx eV,
ow thal J)ﬁ‘—i—xz—i-l Zf
0

Summation of Series

Gl 1 T w 1
7.63. Prove that " ——— = —coth 7+ —csch’7 — =.
rove thal ’; T coth 7+ 1 csch™mr 3

T e

7.64. Prove that (a) ;E =50 (b) ;5 =915
2 (=1 'nsinn® rsinh ad

7.65. P that =— ,

rove tha ; n? + o? 2 sinh a7

1111 T
7.66. Prove that — B 22+32 E—i_“':ﬁ'

—mT<O0<m
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= 1 7 ( sinh27ma + sin 27ma
7.67. P that _ = .
rove ta n;oo n* +4a*  4d® {COSh 27a — cos 27m}
I e 1 7
7.68. Prove that Z Z m = ?Coth 7ra coth 7b.
e ——— m ac)n a.

Mittag-Leffler's Expansion Theorem

1 1 1 1
7.69. Provethatcsczz;—2z<zz_ﬂ_2—Z2_47T2+Z2_9ﬂ2_...>,
1 3 5
7.70. Prove that sechz = 7 5 — 5 + 5 — ).
(m/2y +22 Gm/2)" +22 (57/2)° + 2
7.71. (a) Prove that tan 2 ( ! + ! + ! + >
J1. \% =2z ).
(w2 =22 GBm/2} =2 (57/2)° -2
(b) Use th It in (a) to sh thtl+l+l+l+ —ﬁ
se the result in (a) to show that -7 + 27 + 5 + o5 =3

7.72. Prove the expansions (a)2, (b)4, (c)5, (d)7, (e) 8 on page 209.

i 1 11 1 1 1 1 1 774
7.73. Provethat;mzz—z E_E—i_ez—l . 7.74. Provethatﬁ+37+57+7—4+~~:%.
=1

Miscellaneous Problems

7.75. Prove that Cauchy’s theorem and integral formulas can be obtained as special cases of the residue theorem.

. .22 —472+5 .
7.76. Prove that the sum of the residues of the function ——————— at all the poles is 2/3.
326 —8z+10

7.77. Let n be a positive integer. Prove that fozw €% cos(nf — sin ) dO = 27/n!.
7.78. Evaluate §c Ze!/? dz around the circle C with equation |z — 1| = 4.

7.79. Prove that under suitably stated conditions on the function:

@ [g7f(€)df = 2af(0), (b) [;"f(e")cos 6d0 = —mf (0).

7.80. Show that: (a) fozw cos(cos ) cosh(sin ) d6 = 27 (b) fozw e“* 9 cos(sin ) cos 6 d6 = .

[

7.81. Prove that J

0

sinax 1 a 1
dx = ;coth 5 — .
am 17 T3 T 24

[Hint. Integrate e“/(e*™ — 1) around a rectangle with vertices at 0, R, R + i, i and let R — 00.]

[

7.82. Prove that J st ax ! 7T

e +1 ¥ =22 2sinhma

a+ioco
. . e sin pt
7.83. Given a, p, and t are positive constants. Prove that S ——dz= .
2 +p? p
0 a—ioo
Inx mlna
7.84. Prove that | ———dx = ——.
x2 4 a2 2a
0
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7.85.

7.86.

7.87.

7.88.

7.89.

7.90.

7.91.

7.92.

7.93.

7.94.

7.95.

7.96.
7.97.

7.98.

(o]
i Sinhax sina

- X = L
sinh 7mx cosa + cosh A

Suppose —7 < a < . Prove that J e

—o00
[

Prove that J dx In2
\¢ _— =
(4x%2 + m)coshx 2
0
T Inx -2 i (In x)? 372
Prove that (a)Jx‘*—f—ldx_ T (b)JX4+1dx_ a
0 0

1 2

Hint. Consider (In2) dz around a semicircle properly indented at z = 0.
4+ 1

c

Z
©

Inx
Evaluate | ————dx.
24+
0

Prove that if |a| < 1 and b > 0, J
0

sinh ax
sinh x 2

cos am + cosh b

(<)

Prove that if —1 <p <1, J
0

cos px T
X = .
coshx 2 cosh(pm/2)

[

Prove that J
0
Suppose a > 0 and —7/2 < 8 < /2. Prove that

In(1 + x) 7In2
dx = .
1+ x2 2

() Je_""‘z <P cos(ax” sin B) dx = 1 \/m/a cos(B/2).
0
(b) Je—wfz <P sin(ax” sin B) dx = 1 /m/asin(B/2).
0
= 1
2, _
Prove that csc”z = n;m P——

Suppose a and p are real and such that 0 < |p| < 1 and 0 < |a| < z. Prove that

J xPdx _ T sinpa

¥ 4+2xcosa+1  \sinpw/\ sina
0

1

Prove J
0

dx _2m
NN

Prove the residue theorem for multiply-connected regions.

[Consider contour of Fig. 7-18.]

Find sufficient conditions under which the residue theorem

cosbxdx = 7—7(%)
T

(Problem 7.2) is valid if C encloses infinitely many iso-
lated singularities.

Let C be a circle with equation |z| = 4. Determine the value
of the integral

1

ﬂ; Zesc—dz
z

C

if it exists.

/E

Fig. 7-18



7.99.

7.100.

7.101.

7.102.

7.103.

7.104.

7.105.

7.106.

7.107.

7.108.

7.109.

7.110.
7.111.

7.112.

7.113.

7.114.

7.115.

7.116.

7.117.
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Give an analytical proof that sin § > 260/ for 0 < 0 < 7/2.

[Hint. Consider the derivative of (sin 6)/6, showing that it is a decreasing function.]
X 1
Prove that | — dx = —.

sinh 7mx 4
0

Verify that the integral around I" in equation (2) of Problem 7.22 goes to zero as R — oo.

@ S is real. Prove that | In(1 — 2rcos 6+ ) do = | ° it =1
a) Suppose r is real. Prove that | In r cos r =\Vawnr? if | =1
/2
(b) Use the result in (a) to evaluate J In sin 6 d6 (see Problem 7.23).
0

Complete the proof of Case 2 in Problem 7.25.

-p
Let 0 < p < 1. Prove that J al 1dx = mrcotpar in the Cauchy principal value sense.

Show that Y prar 5

| (7),

Verify that as N — oo, the integral on the left of (1) in Problem 7.29 goes to zero.

Prove that ! ! +— ! ! + = S
5 35 7 T 1536

Prove the results given on page 209 for (a) Z f (27—’_> and (b) Z( 1)”f<2n + 1)

(=1)"sin n9 0(m — 0)(m+ 0)
n3 12 ’

Given —7 < 6 < . Prove that Z

n=1
Prove that the function cotz — 1/z of Problem 7.34 is bounded on the circles Cy.

Show that the second, fourth, and sixth integrals in equation (3) of Problem 7.36 approach zero as € — 0 and
R — oo,

1 1 1 T
P that — =1
rove that C h(m/2) ~ 3cosh(3m/2) | 5 cosh(57/2) 8
a+ioo
1 J ez’ b d
Prove that where a and ¢ are any positive constants.
. f «/—
coth nw 1977
P that .
rove tha Z =36.700
dx 4 —a
P that = .
rove tha J(xz + 1) cosh mx 2
0
P that ! + ! s
rove tha — — =
Bsinh7 23sinh27  33sinh37 360

Prove that if a and ¢ are any positive constants,

a+ioo .
1 sint
— e cot™ zdz = -

a—ioo



