Data and Network Security

Course Code: IT-4542

Finite Fields

- It is almost impossible to fully understand practical modern cryptography (AES, RSA, generally public key cryptography) if you do not know what is meant by a finite field.
- And if you do not understand the basics of publickey cryptography, you will not be able to understand
- the workings of several modern protocols (like the SSH protocol you use everyday for logging into other computers) for secure communications over networks.
- user and document authentication with certificates.
- digital rights management
- Elliptic Curve Cryptography - a replacement for RSA

Finite Fields

- A finite field is a finite set of numbers in which you can carry out the operations of addition, subtraction, multiplication, and division.
- You must know the followings before Finite Fields
- Set
- Group, abelian group
- Ring, commutative ring
- Integral domain
- field

Group

A set of objects, along with a binary operation on the elements of the set, must satisfy the following four properties for the set of objects to be called a group:

1. Closure with respect to the operation.
$\mathrm{a} \circ \mathrm{b}=\mathrm{c}$ is also in the set.
2. Associativity with respect to the operation.

$$
(\mathrm{a} \circ \mathrm{~b}) \circ \mathrm{c}=\mathrm{a} \circ(\mathrm{~b} \circ \mathrm{c})
$$

3. Identity element

$$
\mathrm{a} \circ \mathrm{i}=\mathrm{a}
$$

4. Inverse element

$$
\mathrm{a} \circ \mathrm{~b}=\mathrm{i}
$$

In general, a group is denoted by $\{G, \circ\}$ where G is the set of objects and \circ the operator.

Examples of infinite groups

- Infinite groups, meaning groups based on sets of infinite size
- set of all integers
- for a given value of N, the set of all $N \times N$ matrices over real numbers under the operation of matrix addition constitutes a group
- set of all 3×3 nonsingular matrices, along with the matrix multiplication as the operator

Examples of infinite groups

- Let $s_{n}=<1,2, \ldots ., n>$ denote a sequence of integers 1 through n.
- Let's now consider the set of all permutations of the sequence s_{n}. Denote this set by P_{n}. Each element of the set P_{n} stands for a permutation $<p_{1}, p_{2}, p_{3}, \ldots . ., p_{\mathrm{n}}>$ of the sequence s_{n}.
- Consider, for example, the case when $s_{3}=<1,2,3>$. The set of permutations of the sequence s_{3} is given by
$P_{3}=\{<1,2,3>,<1,3,2>,<2,1,3>,<2,3,1>,<3,1,2>,<3,2,1>\}$.
The set P_{3} is of size 6. That is the cardinality of P_{3} is 6 .
- Now let the binary operation on the elements of P_{n} be that of composition of permutations.
- Let's go back to the example in which the starting sequence is given by $s_{3}=<1,2,3>$.
- As already shown, each element of P_{3} is a distinct permutation of the three integers in s_{3}. That is,

$$
\left.P_{3}=\left\{<p_{1}, p_{2}, p_{3}\right\rangle \mid p_{1}, p_{2}, p_{3} \in s_{3} \text { with } p_{1} \neq p_{2} \neq p_{3}\right\}
$$

- Consider the following two elements π and ρ in the set P_{3} of permutations:

$$
\begin{aligned}
\pi & =<3,2,1\rangle \\
\rho & =<1,3,2\rangle
\end{aligned}
$$

- Let's now consider the following composition of the two permutations π and ρ :

$$
\pi \circ \rho=<3,2,1>\circ<1,3,2>
$$

$$
\pi \circ \rho=<3,2,1>\circ<1,3,2>=<2,3,1>
$$

Clearly, $\pi \circ \rho \in P_{3}$.
What About the Other Three Conditions

$$
\begin{aligned}
& \rho_{1} \circ\left(\rho_{2} \circ \rho_{3}\right)=\left(\rho_{1} \circ \rho_{2}\right) \circ \rho_{3} \\
& <1,2,3>\rho \circ \rho \circ<1,2,3>=\rho \\
& \rho \circ \pi=\pi \circ \rho=\text { the identity element }
\end{aligned}
$$

ABELIAN GROUPS

$$
a \circ b=b \circ a
$$

Is the permutation group $\left\{P_{n},{ }^{\circ}\right\}$ an abelian group? NO
If not for n in general, is $\left\{P_{n},{ }^{\circ}\right\}$ an abelian group for any particular value of n ?

Is the set of all integers, positive, negative, and zero, along with the operation of arithmetic addition an abelian group?

- If the group operation is referred to as addition, then the group also allows for subtraction
- the identity element of such group is frequently denoted by the symbol 0 .
- additive inverse of ρ_{1} and even denote it by $-\rho_{1}$

$$
\rho_{1}+\left(-\rho_{1}\right)=0
$$

RINGS $\{\mathrm{R},+, \times\}$

- R denotes the set of objects, ' + ' the operator with respect to which R is an abelian group, the ' \times ' the additional operator needed for R to form a ring.
- R must be closed with respect to the additional operator ' x '.
- R must exhibit associativity with respect to the additional operator ' \times '.
- The additional operator (that is, the "multiplication operator") must distribute over the group addition operator. That is

$$
\begin{array}{r}
a \times(b+c)=a \times b+a \times c \\
(a+b) \times c=a \times c+b \times c
\end{array}
$$

- The "multiplication" operation is frequently shown by just concatenation in such equations:

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& (a+b) c=a c+b c
\end{aligned}
$$

Examples of Rings

- For a given value of N , the set of all $\mathrm{N} \times \mathrm{N}$ square matrices over the real numbers under the operations of matrix addition and matrix multiplication constitutes a ring.
- The set of all even integers, positive, negative, and zero, under the operations arithmetic addition and multiplication is a ring.
- The set of all integers under the operations of arithmetic addition and multiplication is a ring.
- The set of all real numbers under the operations of arithmetic addition and multiplication is a ring.

Commutative Rings

- A ring is commutative if the multiplication operation is commutative for all elements in the ring. That is, if all a and b in R satisfy the property

$$
\mathrm{ab}=\mathrm{ba}
$$

Examples of a commutative ring

- The set of all even integers, positive, negative, and zero, under the operations arithmetic addition and multiplication.
- The set of all integers under the operations of arithmetic addition and multiplication.
- The set of all real numbers under the operations of arithmetic addition and multiplication.

INTEGRAL DOMAIN

An integral domain $\{R,+, \times\}$ is a commutative ring that obeys the following two additional properties:

- ADDITIONAL PROPERTY 1: The set R must include an identity element for the multiplicative operation. That is, it should be possible to symbolically designate an element of the set R as ' 1 ' so that for every element a of the set we can say

$$
a 1=1 a=a
$$

- ADDITIONAL PROPERTY 2: Let 0 denote the identity element for the addition operation. If a multiplication of any two elements a and b of R results in 0 , that is if

$$
a b=0
$$

then either a or b must be 0 .

Examples of an integral domain

- The set of all integers under the operations of arithmetic addition and multiplication.
- The set of all real numbers under the operations of arithmetic addition and multiplication.

FIELDS

A field, denoted $\{F,+, \times\}$, is an integral domain whose elements satisfy the following additional property:

- For every element a in F, except the element designated 0 (which is the identity element for the ' + ' operator), there must also exist in F its multiplicative inverse. That is, if $a \in F$ and $a \neq 0$, then there must exist an element $b \in F$ such that

$$
a b=b a=1
$$

Examples of Fields

- The set of all real numbers under the operations of arithmetic addition and multiplication is a field.
- The set of all rational numbers under the operations of arithmetic addition and multiplication is a field.
- The set of all complex numbers under the operations of complex arithmetic addition and multiplication is a field.
- The set of all even integers, positive, negative, and zero, under the operations arithmetic addition and multiplication is NOT a field.
- The set of all integers under the operations of arithmetic addition and multiplication is NOT a field.

Modular Arithmetic

- Given any integer a and a positive integer n, and given a division of a by n that leaves the remainder between 0 and $n-1$, both inclusive, we define

$$
\text { remainder }=a \bmod n
$$

- The remainder must be between 0 and $n-1$, both ends inclusive
- We will call two integers a and b to be congruent modulo n if

$$
a \bmod n=b \bmod n
$$

$$
\begin{aligned}
& a \equiv b(\bmod n) / / a \text { is congruent to } b \bmod n \\
& a \equiv k \cdot n+b(\bmod n)
\end{aligned}
$$

- When a is a divisor of b, we express this fact by $a \mid b$.

Examples of Modular Arithmetic

$$
\begin{aligned}
7 \equiv 1 & (\bmod 3) \\
-8 & \equiv 1(\bmod 3) \\
-2 & \equiv 1(\bmod 3) \\
7 & \equiv-8(\bmod 3) \\
-2 & \equiv 7(\bmod 3)
\end{aligned}
$$

- The modulo n arithmetic maps all integers into the set $\{0,1,2,3, \ldots ., n-1\}$.

```
lrrrrrrrrrrrrrllllllllllllllll
```


Modular Arithmetic Operations

- The modulo n arithmetic maps all integers into the set $\{0,1,2,3, \ldots ., n-1\}$
$[(a \bmod n)+(b \bmod n)] \bmod n=(a+b) \bmod n$ $[(a \bmod n)-(b \bmod n)] \bmod n=(a-b) \bmod n$
$[(a \bmod n) \times(b \bmod n)] \bmod n=(a \times b) \bmod n$
Take $a=m n+r_{a}$, and $b=p n+r_{b}$
where r_{g} and r_{b} are the residues (the same thing as remainders) for a and b, respectively.
Substitute for a and b on the RHS and show how to derive the LHS.

Set of Residues

$$
Z_{n}=\{0,1,2,3, \ldots . ., n-1\}
$$

- Memaids
- The numbers $n, 2 n, 3 n,-n,-2 n$, etc., are exactly the same number as 0 .
- The number - 1 in mod n arithmetic, you should think $n-1$. That is, the number $n-1$ is exactly the same thing as the number -1 in $\bmod n$ arithmetic.

The Set $Z_{n}=\{0,1,2,3, \ldots . ., n-1\}$ and its Properties

- Consider the set Z_{n} along with the following two binary operators defined for the set
- modulo n addition
- modulo n multiplication
- Commutativity:

$$
\begin{aligned}
& (w+x) \bmod n=(x+w) \bmod n \\
& (w \times x) \bmod n=(x \times w) \bmod n
\end{aligned}
$$

- Associativity:

$$
\begin{aligned}
{[(w+x)+y] \bmod n } & =[w+(x+y)] \bmod n \\
{[(w \times x) \times y] \bmod n } & =[w \times(x \times y)] \bmod n
\end{aligned}
$$

- Distributivity of Multiplication over Addition:

$$
[w \times(x+y)] \bmod n=[(w \times x)+(w \times y)] \bmod n
$$

The Set $Z_{n}=\{0,1,2,3, \ldots . ., n-1\}$ and its Properties

- Existence of Identity Elements:

$$
\begin{aligned}
& (0+w) \bmod n=(w+0) \bmod n=w \bmod n \\
& (1 \times w) \bmod n=(w \times 1) \bmod n=w \bmod n
\end{aligned}
$$

- Existence of Additive Inverses:

For each $w \in Z_{n}$, there exists a $z \in Z_{n}$ such that

$$
w+z=0 \bmod n
$$

What is Z_{n} ?

- Is Z_{n} a group? If so, what is the group operator?
- Is Z_{n} an abelian group?
- Is Z_{n} a ring?
- Actually, Z_{n} is a commutative ring. Why?
- Why is Z_{n} not an integral domain?
- Why is Z_{n} not a field?

Inverses in Zn_{n}

- For every element of $Z n$,
- there exists an additive inverse in Zn
- there does not exist a multiplicative inverse for every nonzero element of Zn .

Z_{8}	0	1	2	3	4	5	6	7

Additive inverse	0	7	6	5	4	3	2	1
Multiplicative inverse	-	1	-	3	-	5	-	7

- Note: the multiplicative inverses exist for only those elements of $Z n$ that are relatively prime to $n[\operatorname{gcd}(a, n)=1]$.

Some Properties

- modulo n addition

$$
(a+b) \equiv(a+c)(\bmod n) \text { implies } b \equiv c(\bmod n)
$$

- modulo n addition always holds, so additive inverses $(-a)$ always exist
- modulo n multiplication (NOT obeyed always)

$$
(a \times b) \equiv(a \times c)(\bmod n) \text { does not imply } b \equiv c(\bmod n)
$$ unless a and n are relatively prime to each other

- modulo n multiplication conditionally holds, so multiplicative inverses $\left(a^{-1}\right)$ conditionally ($\operatorname{gcd}(a, n)=1$) exists.

Euclid's Method for Finding the GCD

$-\operatorname{gcd}(a, a)=a$

- if $b \mid a$ then $\operatorname{gcd}(a, b)=b$
$-\operatorname{gcd}(a, 0)=a \quad$ since it is always true that a $\mid 0$
$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$

$$
\begin{aligned}
\operatorname{gcd} & (70,38) \\
& =\operatorname{gcd}(38,32 \\
& =\operatorname{gcd}(32,6) \\
& =\operatorname{gcd}(6,2) \\
& =\operatorname{gcd}(2,0)
\end{aligned}
$$

$\operatorname{gcd}(8,17):$

$$
=\operatorname{gcd}(38,32) \quad=\operatorname{gcd}(17,8)
$$

$$
\begin{aligned}
& =\operatorname{gcd}(8,1) \\
& =\operatorname{gcd}(1,0)
\end{aligned}
$$

Therefore, $\operatorname{gcd}(8,17)=1$
Therefore, $\operatorname{gcd}(70,38)=2$

Euclid's Method for Finding the GCD

```
gcd( 40902, 24140 )
    = gcd( 24140, 16762 )
    = gcd( 16762, 7378 )
    = gcd( 7378, 2006 )
    = gcd( 2006, 1360 )
    = gcd( 1360, 646 )
    = gcd( 646, 68 )
    = gcd( 68, 34 )
    = gcd( 34, 0 )
```

Therefore, $\operatorname{gcd}(40902,24140)=34$

Stein's GCD Algorithm (Binary GCD algorithm)

- If both the integers a and b are even,

$$
\operatorname{gcd}(a, b)=2 \times \operatorname{gcd}(a / 2, b / 2)
$$

- If a is even and b is odd,

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a / 2, b)
$$

- If a is odd and b is even,

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b / 2)
$$

- If both a and b are odd and,
- with $a>b$,

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(a-b, b)=\operatorname{gcd}((a-b) / 2, b)
$$

- with $a<b$,

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b-a, a)=\operatorname{gcd}((b-a) / 2, a)
$$

Prime Finite Fields

- Z_{n} is, in general, a commutative ring.
- Z_{n} is not a finite field because not every element in Z_{n} is guaranteed to have a multiplicative inverse.
- An element a of Z_{n} does not have a multiplicative inverse if a is not relatively prime to the modulus n.
- What if we choose the modulus n to be a prime number?
- Therefore, Z_{p} is a finite field if we assume p denotes a prime number. Z_{p} is sometimes referred to as a prime finite field. Such a field is also denoted GF(p), where GF stands for "Galois Field".

Prime Finite Fields

- Z_{n} has multiplicative identity but it is not be an integral domain [$a \times b \equiv 0(\bmod n)$ even when both a and b are non-zeros] [a or b share common factors with n]
- Z_{p} has multiplicative identity and it is an integral domain [$a \times b \equiv 0(\bmod p)$ either a or b must be zero] [a or b don't have any common factor with p]

Multiplicative Inverses for the Elements of Z_{p}

- If $a, b \in Z_{n}$, and $a \times b \equiv 1(\bmod n)$, then both a and b are inverse of each other.
- When n equals a prime $p, \operatorname{gcd}(a, n)=1$ is guaranteed.
- Bezout's Identity

$$
\operatorname{gcd}(a, b)=a x+b y
$$

Ex: $\operatorname{gcd}(16,6)=2$

$$
\begin{aligned}
\quad=(-1) \times 16+3 \times 6 & \\
a=16, & b=6 \\
x & =-1,
\end{aligned} \quad y=3
$$

Multiplicative Inverses for the Elements of Z_{p}

- If $a, x \in Z_{n}$, and $a \times x \equiv 1(\bmod n)$, then both $a($ known $)$ and x (to find) are inverse of each other.
- Such that $\operatorname{gcd}(a, n)=1$
- Bezout's Identity

$$
a x+n y \bmod n=1 \bmod n
$$

Ex: $\operatorname{gcd}(16,6)=2$

$$
\begin{array}{ll}
\quad=(-1) \times 16+3 \times 6=2 \times 16+(-5) \times 6 \\
a=16, & b=6 \\
x=-1, & y=3
\end{array}
$$

$$
\begin{aligned}
\text { ged } & (1547,560) . \\
\hat{1547}= & 2 \times 560+427 \\
560 & =1 \times 427+133 \\
427 & =3 \times 133+28 \\
133 & =4 \times 28+21 \\
28 & =1 \times 21+7 \\
21 & =3 \times 7+0_{L \rightarrow} \text { Stop. }
\end{aligned}
$$

How to write it as a linear combination?
(Move bottom to top).

$$
\begin{aligned}
& 7=28-1 \times 21 \\
& 21=133-4 \times 28 \\
& 28=427-3 \times 133 \\
&=28-(133-4 \times 28) \\
&=5 \times 28-1 \times 133 \\
& 133=560-1 \times 427=5(427-3 \times 133)-1 \times 133 \\
&=5 \times 427-16 \times 133 \\
& 427=1547-2 \times 560=5 \times 427-16(560-1 \times 427) \\
&=21 \times 427-16 \times 560 \\
&=21(1547-2 \times 560)-16 \times 560 \\
&=21 \times 1547-58 \times 560
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gcd}(37,17)=1 \\
& 37=2 \times 17+3 \\
& 17=5 \times 3+2 \\
& 2=3 \times 2+1 \\
& 1=3-1 \times 2 \\
& 2=17-5 \times 3 \\
& 3=37-2 \times 17
\end{aligned}
$$

$$
\begin{aligned}
& 1 7 \longdiv { 3 7 } \mathbf { 2 } ^ { 2 } \\
& 34 \\
& 3 \longdiv { 1 7 5 } \\
& \frac{15}{2 \sqrt{3}}
\end{aligned}
$$

$$
\text { 1) } \frac{2}{\frac{2}{x}} 2^{2}
$$

$$
1=3-1 \times 2
$$

$$
\begin{aligned}
& =3-(17-5 \times 3) \\
& =6 \times 3-1 \times 17 \\
& =6(37-2 \times 17)-1 \times 17 \\
& =6 \times 37-13 \times 17
\end{aligned}
$$

Inverses:
Ex:

$$
\begin{aligned}
& 37 x \equiv 1 \bmod 17 \\
& x=? \\
& \operatorname{gcd}(37,17)=1 \\
& 6 \times 37-13 \times 17 \equiv 1 \bmod 17 \\
& 6 \times 37 \equiv 1 \bmod 17 \\
& 37^{-1}=6
\end{aligned}
$$

