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Finite Fields

• It is almost impossible to fully understand 
practical modern cryptography (AES, RSA, 
generally public key cryptography) if you do not 
know what is meant by a finite field.

• And if you do not understand the basics of public-
key cryptography, you will not be able to 
understand 
– the workings of several modern protocols (like the 

SSH protocol you use everyday for logging into other 
computers) for secure communications over networks. 

– user and document authentication with certificates.
– digital rights management
– Elliptic Curve Cryptography – a replacement for RSA



Finite Fields

• A finite field is a finite set of numbers in which 
you can carry out the operations of addition, 
subtraction, multiplication, and division. 

• You must know the followings before Finite 
Fields
– Set
– Group, abelian group
– Ring, commutative ring
– Integral domain
– field



Group
A set of objects, along with a binary operation on the 
elements of the set, must satisfy the following four 
properties for the set of objects to be called a group:
1. Closure with respect to the operation. 

a ◦ b = c is also in the set. 
2. Associativity with respect to the operation. 

(a ◦ b) ◦ c = a ◦ (b ◦ c)
3. Identity element

a ◦ i = a
4. Inverse element

a ◦ b = i
In general, a group is denoted by {G, ◦} where G is the set 
of objects and ◦ the operator.



Examples of infinite groups

• Infinite groups, meaning groups based on sets 
of infinite size
– set of all integers
– for a given value of N, the set of all N × N 

matrices over real numbers under the operation of 
matrix addition constitutes a group

– set of all 3 × 3 nonsingular matrices, along with 
the matrix multiplication as the operator



• Let sn = <1, 2, ...., n> denote a sequence of integers 1 through 
n.

• Let’s now consider the set of all permutations of the sequence 
sn. Denote this set by Pn. Each element of the set Pn stands for 
a permutation <p1, p2, p3, ....., pn> of the sequence sn.

• Consider, for example, the case when s3 = <1, 2, 3>. The set of 
permutations of the sequence s3 is given by 

P3 = {<1, 2, 3>,<1, 3, 2>,<2, 1, 3>,<2, 3, 1>,<3, 1, 2>,<3, 2, 1>}. 
The set P3 is of size 6. That is the cardinality of P3 is 6.

• Now let the binary operation on the elements of Pn be that of 
composition of permutations.

Examples of infinite groups





What About the Other Three Conditions



ABELIAN GROUPS

Is the permutation group {Pn, ◦} an abelian group? NO

If not for n in general, is {Pn, ◦} an abelian group for any 
particular value of n?

Is the set of all integers, positive, negative, and zero, along 
with the operation of arithmetic addition an abelian group? 



• If the group operation is referred to as 
addition, then the group also allows for 
subtraction

• the identity element of such group is 
frequently denoted by the symbol 0.

• additive inverse of     and even denote it by 



RINGS {R,+,×}

• R denotes the set of objects, ’+’ the operator 
with respect to which R is an abelian group, 
the ’×’ the additional operator needed for R to 
form a ring.





Examples of Rings
• For a given value of N, the set of all N × N square matrices 

over the real numbers under the operations of matrix 
addition and matrix multiplication constitutes a ring.

• The set of all even integers, positive, negative, and zero, 
under the operations arithmetic addition and multiplication 
is a ring.

• The set of all integers under the operations of arithmetic 
addition and multiplication is a ring.

• The set of all real numbers under the operations of 
arithmetic addition and multiplication is a ring.



Commutative Rings

• A ring is commutative if the multiplication 
operation is commutative for all elements in 
the ring. That is, if all a and b in R satisfy the 
property

ab = ba



Examples of a commutative ring

• The set of all even integers, positive, negative, 
and zero, under the operations arithmetic 
addition and multiplication.

• The set of all integers under the operations of 
arithmetic addition and multiplication.

• The set of all real numbers under the 
operations of arithmetic addition and 
multiplication.



INTEGRAL DOMAIN



Examples of an integral domain

• The set of all integers under the operations of 
arithmetic addition and multiplication.

• The set of all real numbers under the 
operations of arithmetic addition and 
multiplication.



FIELDS



Examples of Fields
• The set of all real numbers under the operations of 

arithmetic addition and multiplication is a field.

• The set of all rational numbers under the operations of 
arithmetic addition and multiplication is a field.

• The set of all complex numbers under the operations of 
complex arithmetic addition and multiplication is a field.

• The set of all even integers, positive, negative, and zero, 
under the operations arithmetic addition and multiplication 
is NOT a field.

• The set of all integers under the operations of arithmetic 
addition and multiplication is NOT a field.



Modular Arithmetic

• Given any integer a and a positive integer n, and given a division of 
a by n that leaves the remainder between 0 and n − 1, both inclusive, 
we define

remainder = a mod n

• The remainder must be between 0 and n − 1, both ends inclusive

• We will call two integers a and b to be congruent modulo n if
a mod n = b mod n

a ≡ b (mod n)   //a is congruent to b mod n

a ≡ k.n+b (mod n)

• When a is a divisor of b, we express this fact by a | b.



Examples of Modular Arithmetic

7 ≡  1   (mod 3)
−8 ≡  1   (mod 3)
−2 ≡  1   (mod 3)
7 ≡ − 8 (mod 3)

−2 ≡  7   (mod 3)

• The modulo n arithmetic maps all integers into 
the set {0, 1, 2, 3, ...., n − 1}.



Modular Arithmetic Operations

• The modulo n arithmetic maps all integers into 
the set {0, 1, 2, 3, ...., n − 1}
[(a mod n) + (b mod n)] mod n = (a + b) mod n
[(a mod n) – (b mod n)] mod n = (a – b) mod n
[(a mod n) × (b mod n)] mod n = (a × b) mod n

Take a = mn + ra, and b = pn + rb

where ra and rb are the residues (the same thing as 
remainders) for a and b, respectively.
Substitute for a and b on the RHS and show how to 
derive the LHS.



Set of Residues
Zn = {0, 1, 2, 3, ....., n − 1}

• Memaids
– The numbers n, 2n, 3n, −n, −2n, etc., are exactly 

the same number as 0.

– The number −1 in mod n arithmetic, you should 
think n − 1. That is, the number n − 1 is exactly the 
same thing as the number −1 in mod n arithmetic.



The Set  Zn = {0, 1, 2, 3, ....., n − 1}
and its Properties

• Consider the set Zn along with the following two binary 
operators defined for the set
– modulo n addition
– modulo n multiplication

• Commutativity:
(w + x) mod n = (x + w) mod n
(w × x) mod n = (x × w) mod n

• Associativity:
[(w + x) + y] mod n = [w + (x + y)] mod n
[(w × x) × y] mod n = [w × (x × y)] mod n

• Distributivity of Multiplication over Addition:
[w × ( x + y)] mod n = [(w × x) + (w × y)] mod n



The Set  Zn = {0, 1, 2, 3, ....., n − 1}
and its Properties

• Existence of Identity Elements:
(0 + w) mod n = (w + 0) mod n = w mod n
(1 × w) mod n = (w × 1) mod n = w mod n

• Existence of Additive Inverses:
For each w ∈ Zn, there exists a z ∈ Zn such that

w + z = 0 mod n



What is  Zn ?

• Is Zn a group? If so, what is the group operator?

• Is Zn an abelian group?

• Is Zn a ring?

• Actually, Zn is a commutative ring. Why?

• Why is Zn not an integral domain?

• Why is Zn not a field?



Inverses in Zn

• For every element of Zn, 
– there exists an additive inverse in Zn

– there does not exist a multiplicative inverse for every non-
zero element of Zn. 

• Note: the multiplicative inverses exist for only those elements 
of Zn that are relatively prime to n [ gcd(a, n) = 1].

Z8 0 1 2 3 4 5 6 7
Additive
inverse 0 7 6 5 4 3 2 1

Multiplicative
inverse - 1 - 3 - 5 - 7



Some Properties
• modulo n addition

(a + b) ≡ (a + c) (mod n) implies b ≡ c (mod n)
– modulo n addition always holds, so additive inverses (− a) 

always exist

• modulo n multiplication (NOT obeyed always)
(a × b) ≡ (a × c) (mod n) does not imply b ≡ c (mod n)
unless a and n are relatively prime to each other

– modulo n multiplication  conditionally holds, so 
multiplicative inverses ( a− 1) conditionally ( gcd(a, n) = 1 ) 
exists.



Euclid’s Method for Finding the GCD



Euclid’s Method for Finding the GCD



Stein’s GCD Algorithm (Binary GCD algorithm)

• If both the integers a and b are even,
gcd(a, b) = 2 × gcd(a/2, b/2)

• If a is even and b is odd,
gcd(a, b) = gcd (a/2, b)

• If a is odd and b is even,
gcd(a, b) = gcd (a, b/2)

• If both a and b are odd and,
– with a > b,

gcd(a, b) = gcd (a − b, b) = gcd ((a − b)/2, b)

– with a < b,
gcd(a, b) = gcd (b − a, a) = gcd ((b − a)/2, a)



Prime Finite Fields

• Zn is, in general, a commutative ring.

• Zn is not a finite field because not every element in Zn is 
guaranteed to have a multiplicative inverse.

• An element a of Zn does not have a multiplicative inverse if a 
is not relatively prime to the modulus n.

• What if we choose the modulus n to be a prime number?

• Therefore, Zp is a finite field if we assume p denotes a prime 
number. Zp is sometimes referred to as a prime finite field. 
Such a field is also denoted GF(p), where GF stands for 
“Galois Field”.



Prime Finite Fields

• Zn has multiplicative identity but it is not be an integral domain
[a × b ≡ 0 (mod n) even when both a and b are non-zeros]
[a or b share common factors with n]

• Zp has multiplicative identity and it is an integral domain
[a × b ≡ 0 (mod p) either a or b must be zero]
[a or b don’t have any common factor with p]



Multiplicative Inverses for the Elements of Zp

• If a, b ∈ Zn ,and a × b ≡ 1 (mod n), then both a and b are 
inverse of each other. 

• When n equals a prime p, gcd(a, n) = 1 is guaranteed.

• Bezout’s Identity
gcd (a, b) = ax + by

Ex:  gcd(16, 6) = 2
= (−1)×16 + 3×6

a =16, b = 6
x = -1 , y = 3



Multiplicative Inverses for the Elements of Zp

• If a, x ∈ Zn ,and a × x ≡ 1 (mod n), then both a (known) and x
(to find) are inverse of each other. 

• Such that gcd(a, n) = 1
• Bezout’s Identity

ax + ny mod n = 1 mod n

Ex:  gcd(16, 6) = 2
= (−1)×16 + 3×6 = 2×16 + (−5)×6

a =16, b = 6
x = -1 , y = 3
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