Data and Network Security

Course Code: IT-4542

Finite Fields

- It is almost impossible to fully understand practical modern cryptography (AES, RSA, generally public key cryptography) if you do not know what is meant by a finite field.
- And if you do not understand the basics of publickey cryptography, you will not be able to understand
 - the workings of several modern protocols (like the SSH protocol you use everyday for logging into other computers) for secure communications over networks.
 - user and document authentication with certificates.
 - digital rights management
 - Elliptic Curve Cryptography a replacement for RSA

Finite Fields

- A finite field is a finite set of numbers in which you can carry out the operations of addition, subtraction, multiplication, and division.
- You must know the followings before Finite Fields
 - Set
 - Group, abelian group
 - Ring, commutative ring
 - Integral domain
 - field

Group

A set of objects, along with a binary operation on the elements of the set, must satisfy the following four properties for the set of objects to be called a group:

1. Closure with respect to the operation.

 $a \circ b = c$ is also in the set.

2. Associativity with respect to the operation.

$$(a \circ b) \circ c = a \circ (b \circ c)$$

3. Identity element

$$a \circ i = a$$

4. Inverse element

$$a \circ b = i$$

In general, a group is denoted by $\{G, \circ\}$ where G is the set of objects and \circ the operator.

Examples of infinite groups

- Infinite groups, meaning groups based on sets of infinite size
 - set of all integers
 - for a given value of N, the set of all N × N matrices over real numbers under the operation of matrix addition constitutes a group
 - set of all 3×3 nonsingular matrices, along with the matrix multiplication as the operator

Examples of infinite groups

- Let s_n = <1, 2, ..., n> denote a sequence of integers 1 through n.
- Let's now consider the set of all permutations of the sequence s_n. Denote this set by P_n. Each element of the set P_n stands for a permutation <p₁, p₂, p₃,, p_n> of the sequence s_n.
- Consider, for example, the case when $s_3 = <1, 2, 3>$. The set of permutations of the sequence s_3 is given by

 $P_3 = \{<\!\!1, 2, 3\!\!>, <\!\!1, 3, 2\!\!>, <\!\!2, 1, 3\!\!>, <\!\!2, 3, 1\!\!>, <\!\!3, 1, 2\!\!>, <\!\!3, 2, 1\!\!>\}.$

The set P_3 is of size 6. That is the cardinality of P_3 is 6.

• Now let the binary operation on the elements of P_n be that of composition of permutations.

- Let's go back to the example in which the starting sequence is given by $s_3 = \langle 1, 2, 3 \rangle$.
- As already shown, each element of P_3 is a distinct permutation of the three integers in s_3 . That is,

$$P_3 = \{ \langle p_1, p_2, p_3 \rangle \mid p_1, p_2, p_3 \in s_3 \text{ with } p_1 \neq p_2 \neq p_3 \}$$

• Consider the following two elements π and ρ in the set P_3 of permutations:

$$\begin{array}{rcl}
\pi & = & < 3, 2, 1 > \\
\rho & = & < 1, 3, 2 > \\
\end{array}$$

• Let's now consider the following composition of the two permutations π and ρ :

$$\pi \circ \rho \ = \ <3,2,1> \ \circ \ <1,3,2>$$

$$\pi \circ \rho = \langle 3, 2, 1 \rangle \circ \langle 1, 3, 2 \rangle = \langle 2, 3, 1 \rangle$$

Clearly, $\pi \circ \rho \in P_3$.

What About the Other Three Conditions

 $\rho_1 \circ (\rho_2 \circ \rho_3) = (\rho_1 \circ \rho_2) \circ \rho_3$ <1,2,3> \circ \rho = \rho \circ <1,2,3> = \rho

 $\rho \circ \pi = \pi \circ \rho = the identity element$

ABELIAN GROUPS $a \circ b = b \circ a$

Is the permutation group $\{P_n, \circ\}$ an abelian group? NO

If not for *n* in general, is $\{P_n, \circ\}$ an abelian group for any particular value of *n*?

Is the set of all integers, positive, negative, and zero, along with the operation of arithmetic addition an abelian group?

- If the group operation is referred to as addition, then the group also allows for subtraction
- the identity element of such group is frequently denoted by the symbol 0.
- additive inverse of ρ_1 and even denote it by $-\rho_1$

$$\rho_1 + (-\rho_1) = 0$$

RINGS {R,+,×}

• R denotes the set of objects, '+' the operator with respect to which R is an abelian group, the '×' the additional operator needed for R to form a ring.

- R must be **closed** with respect to the additional operator ' \times '.
- R must exhibit associativity with respect to the additional operator '×'.
- The additional operator (that is, the "multiplication operator") must **distribute** over the group addition operator. That is

$$a \times (b + c) = a \times b + a \times c$$
$$(a + b) \times c = a \times c + b \times c$$

• The "multiplication" operation is frequently shown by just concatenation in such equations:

$$\begin{array}{rcl} a(b\ +\ c) & = & ab\ +\ ac \\ (a\ +\ b)c & = & ac\ +\ bc \end{array}$$

Examples of Rings

- For a given value of N, the set of all $N \times N$ square matrices over the real numbers under the operations of matrix addition and matrix multiplication constitutes a ring.
- The set of all even integers, positive, negative, and zero, under the operations arithmetic addition and multiplication is a ring.
- The set of all integers under the operations of arithmetic addition and multiplication is a ring.
- The set of all real numbers under the operations of arithmetic addition and multiplication is a ring.

Commutative Rings

• A ring is commutative if the multiplication operation is commutative for all elements in the ring. That is, if all a and b in R satisfy the property

$$ab = ba$$

Examples of a commutative ring

- The set of all even integers, positive, negative, and zero, under the operations arithmetic addition and multiplication.
- The set of all integers under the operations of arithmetic addition and multiplication.
- The set of all real numbers under the operations of arithmetic addition and multiplication.

INTEGRAL DOMAIN

An integral domain $\{R, +, \times\}$ is a commutative ring that obeys the following two additional properties:

• ADDITIONAL PROPERTY 1: The set *R* must include an **identity element** for the **multiplicative operation**. That is, it should be possible to symbolically designate an element of the set *R* as '1' so that for every element *a* of the set we can say

$$a1 = 1a = a$$

• ADDITIONAL PROPERTY 2: Let 0 denote the identity element for the addition operation. If a multiplication of any two elements *a* and *b* of *R* results in 0, that is if

$$ab = 0$$

then either a or b must be 0.

Examples of an integral domain

- The set of all integers under the operations of arithmetic addition and multiplication.
- The set of all real numbers under the operations of arithmetic addition and multiplication.

FIELDS

A field, denoted $\{F, +, \times\}$, is an **integral domain** whose elements satisfy the following additional property:

• For every element a in F, except the element designated 0 (which is the identity element for the '+' operator), there must also exist in F its **multiplicative inverse**. That is, if $a \in F$ and $a \neq 0$, then there must exist an element $b \in F$ such that

$$ab = ba = 1$$

Examples of Fields

- The set of all real numbers under the operations of arithmetic addition and multiplication is a field.
- The set of all rational numbers under the operations of arithmetic addition and multiplication is a field.
- The set of all complex numbers under the operations of complex arithmetic addition and multiplication is a field.
- The set of all even integers, positive, negative, and zero, under the operations arithmetic addition and multiplication is NOT a field.
- The set of all integers under the operations of arithmetic addition and multiplication is NOT a field.

Modular Arithmetic

• Given any integer *a* and a positive integer *n*, and given a division of *a* by *n* that leaves the remainder between 0 and n - 1, both inclusive, we define

```
remainder = a \mod n
```

- The remainder must be between 0 and n 1, both ends inclusive
- We will call two integers *a* and *b* to be congruent modulo *n* if $a \mod n = b \mod n$

 $a \equiv b \pmod{n}$ //a is congruent to b mod n

 $a \equiv k.n + b \pmod{n}$

• When *a* is a divisor of *b*, we express this fact by *a* | *b*.

Examples of Modular Arithmetic

- $7 \equiv 1 \pmod{3}$
- $-8 \equiv 1 \pmod{3}$
- $-2 \equiv 1 \pmod{3}$
 - $7 \equiv -8 \pmod{3}$
- $-2 \equiv 7 \pmod{3}$
- The modulo *n* arithmetic maps all integers into the set {0, 1, 2, 3, ..., n − 1}.

 ...
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 2
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Modular Arithmetic Operations

The modulo *n* arithmetic maps all integers into the set {0, 1, 2, 3, ..., n − 1}

 $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$ $[(a \mod n) - (b \mod n)] \mod n = (a - b) \mod n$ $[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$

Take
$$a = mn + r_a$$
, and $b = pn + r_b$

where r_a and r_b are the residues (the same thing as remainders) for *a* and *b*, respectively.

Substitute for *a* and *b* on the RHS and show how to derive the LHS.

Set of Residues $Z_n = \{0, 1, 2, 3, ..., n - 1\}$

- Memaids
 - The numbers n, 2n, 3n, -n, -2n, etc., are exactly the same number as 0.
 - The number -1 in *mod n* arithmetic, you should think n - 1. That is, the number n - 1 is exactly the same thing as the number -1 in *mod n* arithmetic.

The Set $Z_n = \{0, 1, 2, 3, ..., n - 1\}$ and its Properties

- Consider the set *Z_n* along with the following two binary operators defined for the set
 - modulo *n* addition
 - modulo *n* multiplication
- Commutativity: $(w + x) \mod n = (x + w) \mod n$ $(w \times x) \mod n = (x \times w) \mod n$
- Associativity: $[(w + x) + y] \mod n = [w + (x + y)] \mod n$ $[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$
- Distributivity of Multiplication over Addition: [$w \times (x + y)$] mod $n = [(w \times x) + (w \times y)]$ mod n

The Set $Z_n = \{0, 1, 2, 3, ..., n - 1\}$ and its Properties

- Existence of Identity Elements:
 (0+w) mod n = (w + 0) mod n = w mod n
 (1 × w) mod n = (w × 1) mod n = w mod n
- Existence of Additive Inverses: For each $w \in Z_n$, there exists a $z \in Z_n$ such that $w + z = 0 \mod n$

What is Z_n ?

- Is *Z_n* a group? If so, what is the group operator?
- Is *Z_n* an abelian group?
- Is Z_n a ring?
- Actually, *Z_n* is a commutative ring. Why?
- Why is *Z_n* not an integral domain?
- Why is *Z_n* not a field?

Inverses in Z_n

- For every element of Z_n ,
 - there exists an additive inverse in Z_n
 - there does not exist a multiplicative inverse for every nonzero element of Z_n .

Z 8	0	1	2	3	4	5	6	7
Additive inverse	0	7	6	5	4	3	2	1
Multiplicative inverse	-	1	-	3	-	5	-	7

• Note: the multiplicative inverses exist for only those elements of *Z_n* that are relatively prime to *n* [*gcd*(*a*, *n*) = 1].

Some Properties

- modulo *n* addition
 - $(a+b) \equiv (a+c) \pmod{n}$ implies $b \equiv c \pmod{n}$
 - modulo n addition always holds, so additive inverses (- a) always exist
- modulo *n* multiplication (NOT obeyed always) $(a \times b) \equiv (a \times c) \pmod{n}$ does not imply $b \equiv c \pmod{n}$ unless *a* and *n* are relatively prime to each other
 - modulo *n* multiplication conditionally holds, so multiplicative inverses (a^{-1}) conditionally (gcd(a, n) = 1) exists.

Euclid's Method for Finding the GCD

$$- gcd(a, a) = a$$

- if b|a then gcd(a, b) = b

-gcd(a, 0) = a since it is always true that a|0 $gcd(a, b) = gcd(b, a \mod b)$ gcd(8, 17): gcd(70, 38) = gcd(17, 8)= gcd(38, 32) = gcd(8, 1)= gcd(32, 6) = gcd(1, 0)= gcd(6, 2)= gcd(2, 0)Therefore, gcd(8, 17) Therefore, gcd(70, 38) = 2

Euclid's Method for Finding the GCD

gcd(40902, 24140)

- = gcd(24140, 16762)
- = gcd(16762,7378)
- = gcd(7378, 2006)
- = gcd(2006, 1360)
- = gcd(1360, 646)
- = gcd(646, 68)
- = gcd(68, 34)
- = gcd(34,0)

Therefore, gcd(40902, 24140) = 34

Stein's GCD Algorithm (Binary GCD algorithm)

- If both the integers *a* and *b* are even, $gcd(a, b) = 2 \times gcd(a/2, b/2)$
- If *a* is even and *b* is odd, gcd(a, b) = gcd(a/2, b)
- If *a* is odd and *b* is even, gcd(a, b) = gcd(a, b/2)
- If both *a* and *b* are odd and,
 with *a > b*,
 gcd(a, b) = gcd (a b, b) = gcd ((a b)/2, b)

- with
$$a < b$$
,
 $gcd(a, b) = gcd (b - a, a) = gcd ((b - a)/2, a)$

Prime Finite Fields

- Z_n is, in general, a commutative ring.
- Z_n is not a finite field because not every element in Z_n is guaranteed to have a multiplicative inverse.
- An element a of *Z_n* does not have a multiplicative inverse if a is not relatively prime to the modulus *n*.
- What if we choose the modulus *n* to be a prime number?
- Therefore, Z_p is a finite field if we assume p denotes a prime number. Z_p is sometimes referred to as a prime finite field. Such a field is also denoted GF(p), where GF stands for "Galois Field".

Prime Finite Fields

- *Z_n* has multiplicative identity but it is not be an integral domain
 [*a* × *b* ≡ 0 (*mod n*) even when both *a* and *b* are non-zeros]
 [*a* or *b* share common factors with *n*]
- Z_p has multiplicative identity and it is an integral domain
 [a × b ≡ 0 (mod p) either a or b must be zero]
 [a or b don't have any common factor with p]

Multiplicative Inverses for the Elements of Z_p

- If $a, b \in Z_n$, and $a \times b \equiv 1 \pmod{n}$, then both *a* and *b* are inverse of each other.
- When *n* equals a prime p, gcd(a, n) = 1 is guaranteed.
- Bezout's Identity

$$gcd(a, b) = ax + by$$

Ex:
$$gcd(16, 6) = 2$$

= $(-1) \times 16 + 3 \times 6$
 $a = 16, \qquad b = 6$
 $x = -1, \qquad y = 3$

Multiplicative Inverses for the Elements of Z_p

- If $a, x \in Z_n$, and $a \times x \equiv 1 \pmod{n}$, then both $a \pmod{a}$ and x (to find) are inverse of each other.
- Such that gcd(a, n) = 1
- Bezout's Identity

 $ax + ny \mod n = 1 \mod n$

Ex:
$$gcd(16, 6) = 2$$

= $(-1) \times 16 + 3 \times 6 = 2 \times 16 + (-5) \times 6$
 $a = 16, \qquad b = 6$
 $x = -1, \qquad y = 3$

$$g_{Ld}(547,560).$$

$$560 \int \frac{2}{1120}$$

$$\frac{1120}{447} \int \frac{1120}{447} \int \frac{1120}{48} \int \frac{1120}{112} \int \frac{1120}{48} \int \frac{1120}{12} \int \frac{1120}{48} \int \frac{1120}{48} \int \frac{1120}{48} \int \frac{1120}{48} \int \frac{1120}{48} \int \frac{1120}{12} \int \frac{1120}{48} \int$$

$$\frac{9\pi verses:}{8x:} = \frac{174 \times \pm 1 \mod 37}{37 \times \pm 1 \mod 17}$$

$$37 \times \pm 1 \mod 17$$

$$x = ?$$

$$gcd(37, 17) = 1$$

$$6x37 - 13 \times 17 \pm 1 \mod 17$$

$$6x37 = 1 \mod 17$$

$$37' = 6$$