Chapter 5

Further Theory of Sets and Functions

5.1 INTRODUCTION

This chapter investigates some additional properties of sets and functions including set operations
on collections of sets and indexed sets. We also discuss the notion of a diagram of functions.

5.2 OPERATIONS ON COLLECTIONS OF SETS
Let o/ be a collection of sets. The union of </, denoted by

U{4:4 €} or U4 or simply U«
Aot

consists of all elements x such that x belongs to at least one set in «/; that is,
U{4:4€ o} ={x:x¢€ A4 forsome 4in o}
Analogously, the intersection of &/, denoted by

N{4:4€ 4} or N 4 or simply N
Aest

consists of all elements x such that x belongs to all the sets in 2/; that is,
({A4:4€ A} ={x:x¢€ A forevery 4in &}

If o/ is empty, then we do not define the intersection of /. In case &/ is nonempty and finite, then the
above are just the same as our previous definitions of union and intersection.

EXAMPLE 5.1
(a) Let o = [{1,2,3}, {2,3,4}, {2,3,5}]. Then
U« =1{1,2,3,4,5} and N« =1{2,3}
(b) Let A4 be any set and let = #(A) be the power set of 4. Then:
Uz=4 and N?2=yg
(¢) Leto ={[-1,1], [-2,2], [-3,3], ..., [-n,n], ...}. Then
U« =R and N« =[-1,1]

5.3 INDEXED COLLECTIONS OF SETS

Algebraic properties of unions and intersections are usually presented in the context of one of the
main ways of designating collections of sets, that is, as indexed collections of sets. Such collections of
sets and the set operations on them are discussed in this section.
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118 FURTHER THEORY OF SETS AND FUNCTIONS [CHAP. 5

Indexed Collections of Sets

Let I be any nonempty set, and let . be a collection of sets. An indexing function from I to £ is a
function f: I — #. For any i € I, we denote the image f(i) by 4;,. Thus the indexing function f is
usually denoted by

{d4;:iel}  or  {A;};; orsimply  {4;}

The set [ is called the indexing set, and the elements of I are called indices. If f is bijective, that is, one-to-
one and onto, then we say that .# is indexed by /.

Remark: Any nonempty collection o of distinct sets may be viewed as an indexed collection of sets
by letting .o/ be indexed by itself. Thus a collection of sets is usually given in the form {4;: i € I}, that s,
as an indexed collection of sets.

Operations on Indexed Collections of Sets
Consider any indexed collection {4; : i € I'} of sets. The union of the collection {4; : i € I'}, denoted by
U{4,:iel} or U 4; or simply U4

i€l
consists of those elements which belong to at least one of the 4;. Namely,
U{4,:iel}={x:x€ A, for some i€ I}
Analogously, the intersection of a collection set {4; : i € I}, denoted by
({4;:iel} or Nicr4i or, simply Ni4;
consists of those elements which belong to every 4;. Namely,
({A;:iel}={x:x¢€ A4 foreveryic I}

In the case that [ is a finite set, this is just the same as our previous definitions of union and intersection.
Suppose the indexing set I is the set P of positive integers. Then {4;} is called a sequence of sets,
usually denoted by A;, 4,, 4s,..., and the union and intersection of the sets may be denoted by

AIUA2U and AlﬂAzﬂ

respectively.
Suppose J C I. Then the union and intersection of only those sets 4; where i € J is denoted,
respectively, by

U{4,:ieJ} and ({4;:ieJ} or Uies4; and  (Vier4;

We emphasize that | J; 4; and (; 4; can only be used when the entire indexing set / is used in the union
and intersection.

EXAMPLE 5.2
(a) Let I be the set Z of integers. To each integer n we assign the following subset of R:
Ay ={x:x<n}

In other words, 4, is the infinite interval (—oo,n]. For any real number a, there exist integers n; and n, such
that n; < a < n,. Hence

ae€Jn4, but a ¢ NnAn
Accordingly,
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(b) LetI={1,2,3,4,5} and J = {2,3,5}, and let
A4, ={1,9}, A, ={2,4,6,9}, Ay = {3,6,7,9}, Ay = {4,8}, As ={5,6,9}
Then
Nidi=g and Uidi ={1,2,...,9}
However,
Nics 4: = {6,9} and Uies 4i ={2,3,4,5,6,7,9}

The following theorem tells us, in particular, that the distributive laws and DeMorgan’s law in
Table 1-1 can be generalized to apply to indexed collections of sets.

Theorem 5.1: Let B and {4;} with i € I be subsets of a universal set U. Then:
(i) (U{4;})° =n{4f} and (N{4;})* = U{4}}.
(iii) If J is a subset of 7, then

U4, cU4; and N4, 2 N4

ieJ iel icJ iel

Since the empty set (J is a subset of any set, Theorem 5.1(iii) should imply that the empty inter-
section contains any set 4;. Accordingly, one sometimes defines

This may seem strange, but it is similar to defining 0! = 1 and a® = 1 in order for general properties to be
true.
We also note that Theorem 5.1(i) and (ii) apply to any collection &/ of sets.

54 SEQUENCES, SUMMATION SYMBOL

A sequence is a function from the set P of positive integers into a set 4. The notation a, is used to
denote the image of the integer k. Thus a sequence is usually denoted by

a,,az,as,. .. or {a,:n e P} or simply {a,}

Sometimes the domain of a sequence is the set N = {0, 1,2, ...} of nonnegative integers rather than P. In
such a case we say that n begins with 0 rather than 1.
A finite sequence over a set A4 is a function from {1,2,...,m} into A4, and it is usually denoted by

ay, az,...,a,

Such a finite sequence is sometimes called a list or an m-tuple.

EXAMPLE 5.3
(a) The familiar sequences
1,1/2,1/3,1/4,... and 1,1/2,1/4,1/8,...
may be formally defined, respectively, by
a,=1/n and b,=27"

where the first sequence begins with » = 1 and the second sequence begins with » = 0.

(b) The important sequence 1,—1,1,—1,... may be formally defined by
a, = (-1)"*! or, equivalently, by b, = (=1)"

where the first sequence begins with » = 1 and the second sequence begins with n = 0.
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(c) (Strings): Suppose aset 4 is finite and A is viewed as a character set or an alphabet. Then a finite sequence
over A is called a string or word, and it is usually written in the form a,a; ... a,, that is, without parentheses.
The number m of characters in the string is called its length. One also views the set with zero characters as a
string; it is called the empty string or null string.

Summation Symbol, Sums

Consider a sequence qa;,a,, a3, . ... Frequently we want to form sums of elements from the sequence.
Such sums may sometimes be conveniently represented using the summation symbol X (the Greek letter
sigma). Specifically, the sums

a+a+a+---+a, and A+ uiy + 0y + - +a,

will be denoted, respectively, by
n n
Z a; and Z a;
=1 j=m

The letter j in the above expression is called a dummy index or dummy variable. Other letters frequently
used as dummy variables are i,k, s, and ¢.

EXAMPLE 5.4

n
Y aibi=ab + b+ +ab,

i=1

5
ij=22+32+42+52=4+9+16+25=54
=2

Yi=14+24+n
j=1

The last sum in Example 5.4 appears often. It has the value n(n + 1)/2. Namely,

1
1+2+3+~-+n=@

Thus, for example,
14243+ 450 =—-+=1275

The formula may be proved using mathematical induction.

5.5 FUNDAMENTAL PRODUCTS
Consider a list 4, 4,,...,A4, of n sets. A fundamental product of the sets is a set of the form
AiNA5N---NA4},

where A] is either 4; or A{. We note that there are 2" such fundamental products since there is a choice
of two sets for each 47. One can also show (Problem 5.54) that such fundamental products are disjoint
and their union is the universal set U.

There is a geometrical description of these fundamental products which is illustrated below.
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EXAMPLE 5.5 Consider three sets 4, B, C. The following lists the eight fundamental products of the three sets:
PL=4ANnBNC Py=ANBNC Ps=A4A"NnBNC P=ANBNC
P,=ANBNC* P,=ANB'NC* Pi=A°NBNC* Py =A°NB'NC*

These eight products correspond precisely to the eight disjoint regions in the Venn diagram of sets 4, B, C in Fig. 5-1
as indicated by the labeling of the regions.

Fig. 5-1

A Boolean expression in the sets Ay, 4,, ..., A, is an expression E = E(A4,, A,,...,A,) which is built
up from the sets using the operations of union, intersection, and complement. For example,

Ei=(AUB)NA°NC)N(B°UC) and E=[ANB)U(BNC)°
are Boolean expressions in the sets 4, B, C.

The following theorem applies.

Theorem 5.2: Any Boolean expression E = E(A4, A4,,...,A,) is equal to the empty set & or the unique
union of a finite number of fundamental products.

This theorem is a special case of Theorem 11.8 on Boolean algebras. So its proof appears there. We
indicate a geometrical interpretation here.

Consider sets A, B, C. Then any Boolean expression £ = E(A4, B, C) will be uniquely represented by
a finite number of regions in the Venn diagram in Fig. 5-1. Thus E = E(4, B, C) is either the empty set
or the union of one or more of the eight fundamental products in Fig. 5-1.

5.6 FUNCTIONS AND DIAGRAMS

Recall that we used the following diagram to represent functions f: 4 — Band g: B— C:

A—L . & .¢

Similarly, the following diagram represents functions f: 4 - B, g:B— C,and h: 4 — C:

Note that the diagram defines two functions from A4 to C, the function 4 represented by a single arrow,
and the composition function g o f represented by a sequence of two connected arrows. Each arrow or
sequence of arrows connecting 4 to C is called a path from 4 to C.
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Definition: A diagram of functions is said to be commutative if, for any pair of sets X and Y in the
diagram, any two paths from X to Y are equal.

EXAMPLE 5.6
(a) Suppose the diagram of functions in Fig. 5-2(a) is commutative. Then:
ioh=f, goi=j, gof=joh=goioh

(b) The functions /: A — B and g : B — A are inverses if and only if the diagrams in Fig. 5-2(b) are commutative,
that is, if and only if

gof=14 and fog=lp

Here 1, and 15 are the identity functions.

A D j A%A B———lg————->B
NG SO SN
A 7 > B 2 > C B A
(a) b)
Fig. 5-2

5.7 SPECIAL KINDS OF FUNCTIONS, FUNDAMENTAL FACTORIZATION

This section discusses a number of special kinds of functions which frequently occur in mathematics.
We also define and discuss the fundamental factorization of a function.

Restriction
Consider a function f: 4 — S. Let B be a subset of 4. Then f induces a function f’ on B defined by
f'(b) =1(b)
for every b € B. This function f' is called the restriction of f to B. It is sometimes denoted by

fls

EXAMPLE 5.7

(a) Let f:R — R be defined by f(x) = x%. Recall that f is not one-to-one, e.g., f(2) = f(—2) = 4. Consider the
restriction of f to the nonnegative real numbers D = [0,00). Then f|, is one-to-one. [In fact, f: D — D is
invertible and its inverse is the square root function f~'(x) = v/x.]

(b) Consider the functions
g=1{(1,3), (2,6), (3,11), (4,18), (527)} and  g'={(1,3), (3,11), (527)}

Observe that g’ is a subset of g. Thus g’ is the restriction of g to B = {1,3, 5}, the set of first elements of g.
Note that B is a subset of 4 = {1,2,3,4,5}, the set of first elements of g.

Extension

Consider a function f: 4 — S. Suppose B to be a superset of A4, that is, suppose 4 C B. Let
F: B — S be a function on B such that, for every a € 4,

F(a) = f(a)

This function F is called an extension of f to B. We note that such an extension is rarely unique.
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EXAMPLE 5.8

(a) Letf be the function on the nonnegative real numbers D = [0, co) defined by f(x) = x. Then the absolute value
function

—x ifx<0

is an extension of f to the set R of all real numbers. Clearly, the identity function 1z : R — R is also an
extension of f to R.

(b) Consider the functions
f={15), 3,11), (5,17)}  and  F={(1,5), (2,8), (3,11), (4,14), (5,17)}

Observe that F is a superset of f. Thus the function F is an extension of f from dom(f) = {1, 3,5} to
dom(F) ={1,2,3,4,5}.

Inclusion Map
Let 4 be a subset of a set S, that is, 4 C S. Let ¢ be the function from A4 to S defined by
ia)=a
for every a € A. Then /( is called the inclusion map. This map is frequently denoted by writing
{:A—>S

For example, the function f: Z — R defined by f(n) = n is the inclusion map from the integers Z into the
real numbers R.

Characteristic Function
Consider a universal set U. For any subset 4 of U, let x4 be the function from U to {0, 1} defined by

(x) = 1 ifxed
Xa\X) =00 ifxg4

Then x4 is called the characteristic function of A.

EXAMPLE 59 Let U= {a,b,c,d,e} and A = {a,d,e}. Then the function
{(a, 1), (6,0), (c,0), (d,1), (e, 1)}

is the characteristic function x 4.

On the other hand, any function f: U — {0, 1} defines a subset 4, of U as follows:

A ={x:xel, f(x)=1}

Furthermore, the characteristic function x4, of 4y is the original function f. Thus there is a one-to-one correspon-
dence between the power set Z(U) of U and the set of all functions from U into {0,1}.
Equivalence Relation and Canonical Map

Let = be an equivalence relation on a set S. Recall that = induces a partition of S into equivalence
classes, called the quotient set of S by =, and denoted and defined by

s/=={ld):ae S}
Let n: S — S/= be the function defined by
n(a) = [a]

that is, n sends each element of S into its equivalence class. Then 7 is called the canonical or natural map
from S into S/=.
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EXAMPLE 5.10 Consider the relation = of congruence modulo 5 on the set Z of integers; that is,
a=b (mod 5)
if 5 divides a — b. Then = is an equivalence relation on Z. There are five equivalence classes:

0 ={..,-10,-50,510,...}  [3]={...,~7,-2,3,8,13,...}
[l] = {~.-,—9,—4,1,6,11,...} [4] = {,“,_6,_1,4,9, 14,}
2={..,-8-32712,..}

Let : Z — Z/= be the canonical map. Then
N =0M=1[02, n2019=[19=M, n(-12)=[-12]=[3]

Fundamental Factorization of a Function
Consider any function f: 4 — B. Consider the relation ~ on 4 defined by
a~a if fla)=f(a)

We show (Problem 5.20) that ~ is an equivalence relation on 4. We will let 4/f denote the quotient set
under this relation. Recall that Im(f) = f(4) denotes the image of / and it is a subset of the target set B.

The following lemma and theorem (proved in Problems 5.21 and 5.22) apply.
Lemma 5.3: The function f*: A/f — f(A) defined by
f*(la]) =f(a)
is well-defined and bijective.
Theorem 5.4: Let /: 4 — B. Then the diagram in Fig. 5-3 is commutative; that is,
=/0f"on

We note that, in Fig. 5-3, n is the canonical mapping from A4 into 4/f, f* is the bijective function
defined above, and ¢ is the inclusion map from f(4) into B.

A f - B
r/l .
Alf A7)

Fig. §-3

5.8 ASSOCIATED SET FUNCTIONS

Consider a function f: S — T. Recall that the image f[A] of any subset 4 of S consists of the
elements in T which are images of elements in A4, that is,

f[A] = {b € T : there exists a € 4 such that f(a) = b}

Also recall that the preimage or inverse image f~'[B] of any subset B of T consists of all elements in S
whose images belong to B, that is,

f'Bl={a€S:f(a)e T}
Thus f[A] is a subset of T and f~'[B] is a subset of S.
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EXAMPLE 5.11 Let /: R — R be defined by f(x) = x2. Then
FH1,2,3,4}] ={1,4,9,16} and  f[(1,5)] = (1,25)

Also,
4,9 =1{-3,-2,2,3} and  f7'[(1,4)]=(1,2)U(-2,-1)

Accordingly, a function f: S — T induces a function, also denoted by f, from the power set 2(S) of
S into the power set Z(T) of T, and a function f ! from 2(T) back to 2(S). These functions f and f '
are called set functions since they map sets into sets, i.e., their domains and target sets are collections of
sets.

Observe that brackets [. .] rather than parentheses (. .) are used to distinguish between a function
and its associated set functions, i.e., f(a) denotes a value of the original function, whereas f[4] and
f7[B] denote values of the associated set functions.

We note that the associated set function f ~! is not in general the inverse of the associated set
function . For example, for the above function f(x) = x?, we have

s, =/71(1L,9] = (1,2) U (=2,-1)

However, we do have the following theorem.

Theorem 5.5: Let f: S — T,and let 4 C S and BC T. Then:
() ACf ' oflA]
(i) B=fof'[B].

As noted above, the inclusion in (i) cannot in general be replaced by equality.

59 CHOICE FUNCTIONS
Consider a collection {4, : i € I'} of subsets of a set B. A function
fi{4i} - B
is called a choice function if, for every i € I,
f(4;) € 4;

that is, if the image of each set is an element in the set.

EXAMPLE 5.12 Consider the following subsets of B = {1,2,3,4,5}:
A :{1’2’3}» A2={1,3,4}, A3={215}

Figure 5-4 shows functions f and g from {4, 4,, A3} into B. The function f is not a choice function since f(4,) = 2
does not belong to A,, that is f(4;) &€ 4. On the other hand, g is a choice function. Namely, g(4,) = 2 belongs
to A;, g(A4,) =4 belongs to A,, and g(A43) = 2 belongs to A3, that is, g(4;) € 4;, for i =1,2,3.

>< !

Fig. 5-4
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Remark: Essentially, a choice function, for any collection of sets, “‘chooses” an element from each
set in the collection. The question of whether or not a choice function exists for any collection of sets lies
at the foundation of set theory. Chapter 9 will be devoted to this question.

5.10 ALGORITHMS AND FUNCTIONS

An algorithm M is a finite step-by-step list of well-defined instructions for solving a particular
problem, say, to find the output f(X) for a given function f with-input X. (Here X may be a list or
set of values.) Frequently, there may be more than one way to obtain f(X) as illustrated by the
following examples. The particular choice of the algorithm M to obtain f(X) may depend on the
“efficiency” or “complexity’’ of the algorithm; this question of the complexity of an algorithm M is
discussed in the next section.

EXAMPLE 5.13 (Polynomial Evaluation) Suppose, for a given polynomial f(x) and value x = a, we want to find
f(a), say,

fx)=2x"—7x* +4x— 15 and a=S5
This can be done in the following two ways.
(a) (Direct Method): Here we substitute a = 5 directly in the polynomial to obtain
f(5) =2(125) — 7(25) +4(5) = 7=250 — 175+ 20 — 15 =80

Observe that there are 4 + 3 + 1 = 8 multiplications and 3 additions. In general, evaluating a polynomial of
degree n directly would require approximately

n(n—1)

5 multiplications and » additions.

n+mn—-1)+---+1=

(b) (Horner’s Method or Synthetic Division): Here we rewrite the polynomial by successively factoring out x (on
the right) as follows:

fx)=02x* =Tx+4)x—15=[2x - T)x +4]x — 15
Then
f5)=[(3)5+4)5-15=(19)5-15=95-15=80
For those familiar with synthetic division, the above arithmetic is equivalent to the following synthetic division:
5/12—-7+ 4-15

10 + 15495
2+34+19+80

Observe that here there are 3 multiplications and 3 additions. In general, evaluating a polynomial of degree n
by Horner’s method would require approximately

n multiplications and » additions

Clearly Horner’s method (b) is more efficient than the direct method (a).

EXAMPLE 5.14 (Greatest Common Divisor) Let a and b be positive integers with, say, b < a; and suppose we
want to find d = ged (a, b), the greatest common divisor of a and b. This can be done in the following two ways.
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(a) (Direct Method): Here we find all the divisors of a and all the divisors of b; say, by testing all the numbers
from 2 to a/2 and from 2 to b/2. Then we pick the largest common divisor. For example, suppose a = 258 and
b = 60. The divisors of a and b follow:

a=258; divisors: 1,2,3,6,86,129,258
b= 60; divisors:  1,2,3,4,5,6,10,12, 15,20, 30,60

Accordingly, d = ged (258, 60) = 6.

(b) (Euclidean Algorithm): Here we divide a by b to obtain a remainder r; (where r; < b). Then we divide b by the
remainder r; to obtain a second remainder r, (where r, < r;). Next we divide r; by r, to obtain a third
remainder r; (where r; < r;). And so on. Since

a>b>ri>r,>ry3> - (%)

eventually we obtain a remainder r,, = 0. Then r,,_; = gcd (a,b). For example, suppose a = 258 and b = 60.
Then:

(1) Dividing a = 258 by b = 60 yields the remainder r; = 18.
(2) Dividing b = 60 by r, = 18 yields the remainder r, = 6.
(3) Dividing r, = 18 by r, = 6 yields the remainder ry = 0.

Thus r, = 6 = ged (258, 60).

Remark: The Euclidean algorithm is a very efficient way to find the greatest common divisor of
two positive integers @ and b. The fact that the algorithm ends follows from (*). The fact that the
algorithm yields d = ged (a, b) follows from properties of the integers.

511 COMPLEXITY OF ALGORITHMS

The analysis of algorithms is a major task in mathematics and computer science. In order to
compare algorithms, we must have some criteria to measure the efficiency of our algorithms. This
section discusses this important topic.

Suppose M is an algorithm, and suppose # is the size of the input data. The time and space used by
the algorithm are the two main measures for the efficiency of M. The time is measured by counting the
number of “key operations”; for example:

(@) In sorting and searching, one counts the number of comparisons.
(b) In arithmetic, one counts multiplications and neglects additions.

Key operations are so defined when the time for the other operations is much less than or at most
proportional to the time for the key operations. The space is measured by counting the maximum of
memory needed by the algorithm.

The complexity of an algorithm M is the function f(n) which gives the running time and/or storage
space requirement of the algorithm in terms of the size n of the input data. Frequently, the storage space
required by an algorithm is simply a multiple of the data size. Accordingly, unless otherwise stated or
implied, the term “‘complexity” shall refer to the running time of the algorithm.

The complexity function f(n), which we assume gives the running time of an algorithm, usually
depends not only on the size n of the input data but also on the particular data.

EXAMPLE 5.15 Suppose we want to search through an English short story TEXT for the first occurrence of a
given 3-letter word W. Clearly, if W is the 3-letter word “the”, then W likely occurs near the beginning of TEXT, so
f(n) will be small. On the other hand, if W is the 3-letter word “zoo”, then W may not appear in TEXT at all, so
f(n) will be large.
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The above discussion leads us to the question of finding the complexity function f(n) for certain
cases. The two cases one usually investigates in complexity theory follow:

(1) Worst case: The maximum value of f(n) for any possible input.
(2) Average case: The expected value of f(n).

The analysis of the average case assumes a certain probabilistic distribution for the input data. The
average case also uses the following concept in probability theory. Suppose the numbers ny,n,,...,n;
occur with respective probabilities py, p,,...,px. Then the expectation or average value E is given by

E=mp+npy+---+mp;

Remark: The complexity of the average case of an algorithm is usually much more complicated to
analyze than that of the worst case. Moreover, the probabilistic distribution that one assumes for the
average case may not actually apply to real situations. Accordingly, unless otherwise stated or implied,
the complexity of an algorithm shall mean the function which gives the running time of the worst case in
terms of the input size. This is not too strong an assumption, since the complexity of the average case for
many algorithms is proportional to the worst case.

Rate of Growth; Big O Notation

Suppose M is an algorithm, and suppose 7 is the size of the input data. Clearly the complexity f(n)
of M increases as n increases. It is usually the rate of increase of f(n) that we want to examine. This is
usually done by comparing f(n) with some standard function, such as

log, n, n, nlog, n, n?, n, 2"

The rates of growth for these standard functions are indicated in Fig. 5-5, which gives their approximate
values for certain values of n. Observe that the functions are listed in the order of their rates of growth:
the logarithmic function log, n grows most slowly, the exponential function 2" grows most rapidly, and
the polynomial functions n° grows according to the exponent c.

g(n)
n logn n nlogn n? n3 2n
5 3 5 15 25 125 | 32
10 4 10 40 100 | 103 103
100 7 100 700 10* 10° 1030
1000 10 10° 10* 108 10° 10300

Fig. 5-5 Rate of growth of standard functions.
The way we compare our complexity function f(n) with one of the standard functions is to use the
functional “big O notation which we formally define below.

Definition: Let f(x) and g(x) be arbitrary functions defined on R or a subset of R. We say “f(x) is of
order g(x)”, written

f(x) = O(g(x))

if there exists a real number k and a positive constant C such that, for all x > k, we have

[F(x)] < Clg(x)]

Assuming f(n) and g(n) are functions defined on the positive integers, then
f(n) = O(g(n))

means that f(n) is bounded by a constant multiple of g(n) for almost all .
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Remark: The above is called the “big O notation since f(x) = o(g(x)) has an entirely different
meaning. We also write

f(x) =h(x) +O0(g(x))  when  f(x) - h(x) = O(g(x))-

EXAMPLE 5.16
(a) Let P(x) be a polynomial of degree m. We show (Problem 5.24) that P(x) = O(x™). Thus,
Tx2 —9x+4=0(x}) and 8x> — 576x? + 832x — 248 = O(x°)
(b) The following gives the complexity of certain well-known searching and sorting algorithms in computer science:

(1) Linear search: O(n) (3) Bubble sort: O(r?)
(2) Binary search: O(log,) (4) Merge-sort: O(nlogn)

Solved Problems

GENERALIZED OPERATIONS, INDEXED SETS
51. Let o =[{1,2,3,4}, {2,3,4,5}, {3,4,5,6}, {3,4,7,8,9}].
Find: (a) U<, (b) N
(@) | consists of all elements which belong to at least one of the sets in ; hence
U« ={1,2,3,...,8,9}
(b) (N« consists of those elements which belong to every set in /; hence

N ={3,4}

5.2.  Let 4, ={m,2m,3m,...} where m € P; that is, 4,, consists of the positive multiples of m.
Find: (a) 43N 4s; (b) AsNAg; (c) AsUAys; (d) U(4,, :m e S) where S is the set of
prime numbers.

(a) The numbers which are divisible by 3 and divisible by 5 are the multiples of 15. Thus A3NAs = Ays.
(b) The multiples of 12 and no other numbers are contained in A, and Ag; hence 44 N Ag = Ays.

(¢) The multiples of 21 are contained in the multiples of 7, that is, 4,; C 4,. Hence 4, U Ay = A;.

(d) Every positive integer except 1 is a multiple of a prime number. Thus

U, :me S)=1{2,3,4,...} = P\{1}

5.3. Let B, = [n,n+ 1] where n € Z, the integers. Find:
(a) ByUB,; (b) ByNBy; (c) U}L Bi=(B;:ie{7,8,...,18}); (d)U(Bi:i€Z).

(a) By U B, consists of all points in the intervals [1,2] and [2,3]; hence B, UB, = [1,3].
(b) B3N By consists of the points which lie in both [3,4] and [4, 5]; hence B; N B, = {4}.
(¢) U:; B; means the union of the sets [7,8],[8,9],...,[18,19]. Hence

18

UB =17,19]

=

(d) Since every real number belongs to at least one interval [i,i + 1], we have |J(B;:i € Z) =R.:



