Chapter 4

Functions

4.1 INTRODUCTION

One of the most important concepts in mathematics is that of a function. The terms “map”,
“mapping’’, “transformation”, and many others mean the same thing; the choice of which word to
use in a given situation is usually determined by tradition and the mathematical background of the

person using the term.

4.2 FUNCTIONS

Suppose that to each element of a set 4 we assign a unique element of a set B; the collection of such
assignments is called a function from A4 into B. The set A4 is called the domain of the function, and the set
B is called the target set.

Functions are ordinarily denoted by symbols. For example, let f denote a function from A4 into B.
Then we write

ffA—B

which is read: “f is a function from 4 into B”, or “‘f takes A4 into B”, or “f maps A4 into B”.

Suppose f: A — Band a € A. Then f(a) [read: “‘f of a’’] will denote the unique element of B which f
assigns to a. This element f(a) in B is called the image of a under f or the value of f at a. We also say
that f sends or maps a into f(a). The set of all such image values is called the range or image of f, and it
is denoted by Ran(f), Im(f) or f(4). That is,

Im(f) = {b € B : there exists a € A4 for which f(a) = b}

We emphasize that Im(f) is a subset of the target set B.

Frequently, a function can be expressed ‘by means of a mathematical formula. For example,
consider the function which sends each real number into its square. We may describe this function
by writing

f(x) = x* or x > x? or y=x
In the first notation, x is called a variable and the letter f denotes the function. In the second notation,
the barred arrow — is read “goes into”. In the last notation, x is called the independent variable and y is
called the dependent variable since the value of y will depend on the value of x.

Furthermore, suppose a function is given by a formula in terms of a variable x. Then we assume,
unless otherwise stated, that the domain of the function is R or the largest subset of R for which the
formula has meaning, and that the target set is R.

Remark: Supposef: A — B. If A’ is a subset of 4, then f(A4") denotes the set of images of elements
in A’; and if B’ is a subset of B, then /! (B') denotes the set of elements of 4 each whose image belongs
to B’. That is,

f(AY={f(a):a€c4’} and f'(B)={acAd:f(a)c B’}
We call f(A’) the image of A', and we call f~'(B’) the inverse image or preimage of B'.

EXAMPLE 4.1

(a) Consider the function f(x) = <, le., f assigns to each real number its cube. Then the image of 2 is 8, and so we
may write f(2) = 8. Similarly, f(—3) = —27, and f(0) = 0.
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(b) Let g assign to each country in the world its capital city. Here the domain of g is the set of all the countries
in the world, and the target set is the list of cities in the world. The image of France under g is Paris; that is
g(France) = Paris. Similarly, g(Denmark) = Copenhagen and g(England) = London.

(¢) Figure 4-1 defines a function f from 4 = {a,b,¢,d} into B = {r,s,t,u} in the obvious way; that is,
f(a):s, f(b)’—_u, f(c)=r, f(d)=S

The image of f is the set {r, s, u}. Note that ¢ does not belong to the image of f because ¢ is not the image of any
element of A under f.

| =
P

Identity Function

Consider any set 4. Then there is a function from 4 into 4 which sends each element into itself. Itis
called the identity function on 4 and it is usually denoted by 14 or simply 1. In other words, the identity
function 14:4 — A is defined by

lA(a) =da

for every element a € A.

Functions as Relations

There is another point of view from which functions may be considered. First of all, every function
f: A — B gvies rise to a relation from A4 to B called the graph of f and defined by

Graph of f = {(a,b) :a € 4,b = f(a)}

Two functions f: 4 — B and g: 4 — B are defined to be equal, written f = g, if f(a) = g(a) for every
a € A; that is, if they have the same graph. Accordingly, we do not distinguish between a function and
its graph. Now, such a graph relation has the property that each a in 4 belongs to a unique ordered pair
(a, b) in the relation. On the other hand, any relation f from A4 to B that has this property gives rise to a
function f: 4 — B, where f(a) = b for each (a,b) in f. Consequently, one may equivalently define a
function as follows:

Definition: A function f/: 4 — B is a relation from 4 to B (i.e., a subset of 4 x B) such that each a € 4
belongs to a unique ordered pair (a,b) in f.

Although we do not distinguish between a function and its graph, we will still use the terminology
“graph of f” when referring to f as a set of ordered pairs. Moreover, since the graph of f is a relation,
we can draw its picture as was done for relations in general, and this pictorial representation is itself
sometimes called the graph of f. Also, the defining condition of a function, that each a € 4 belongs to a
unique pair (a,b) in f, is equivalent to the geometrical condition of each vertical line intersecting the
graph in exactly one point.
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EXAMPLE 4.2
(a) Letf: A — B be the function in Example 4.1(c). Then the graph of f is the following set of ordered pairs:
f=A(as), (b,u), (¢,r), (d,s)}
(b) Consider the following relations on the set 4 = {(1,2,3)}
f=A{13), 2,3), 3,1} g={(12), BN} ~={(13), (2,1, (1,2), 3,1)}

f is a function from A into A since each member of 4 appears as the first coordinate in exactly one ordered pair
in f; here f(1) =3, f(2) =3 and f(3) = 1. g is not a function from A into A since 2 € 4 is not the first
coordinate of any pair in g and so g does not assign any image to 2. Also 4 is not a function from A4 into 4 since
1 € A appears as the first coordinate of two distinct ordered pairs in 4, (1,3) and (1,2). If 4 is to be a function it
cannot assign both 3 and 2 to the element 1 € A.

(¢) By a real polynomial function, we mean a function f : R — R of the form
f(x)=ax" + a,,ﬁlx""'/ . tax+a

where the a; are real numbers. Since R is an infinite set, it would be impossible to plot each point of the graph.
However, the graph of such a function can be approximated by first plotting some of its points and then
drawing a smooth curve through these points. The points are usually obtained from a table where various
values are assigned to x and the corresponding values of f(x) computed.

Figure 4-2 illustrates this technique using the function f(x) = x* — 2x — 3.

v |/
-2 5
-1
0 |-3
1 -4
2 | -3
3 0
4 5

Graph of f(x) =x2-2x—3

Fig. 4-2

4.3 COMPOSITION OF FUNCTIONS

Consider functions f: 4 — B and g: B — C, that is, where the target set B of f is'the domain of g.
This relationship can be pictured by the following diagram:

a—L .p & ¢

Let a € A4; then its image f(a) under f is in B which is the domain of g. Accordingly, we can find the
image of f(a) under the function g, that is, we can find g(f(a)). Thus we have a rule which assigns to
each element a in 4 an element g(f(a)) in C or, in other words, f and g give rise to a well defined function
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from A4 to C. This new function is called the composition of f and g, and it is denoted by
gof
More briefly, if f: 4 — B and g: B — C, then we define a new function go f: 4 — C by
(gof)(a) =g(f(a))

Here = is used to mean equal by definition.
Note that we can now add the function g o f to the above diagram of f and g as follows:

a—L . & ¢

\\gof -/

We emphasize that the composition of f and g is written g o f, and not f o g; that is, the composition of
functions is read from right to left, and not from left to right.

EXAMPLE 4.3
(@) Letf: A — Bandg: B— C be the functions defined by Fig. 4-3. We compute gof : 4 — C by its definition:
(gof)(a) =g(f(a) =g(y) =1, (gof)(b) =g(f(b)) =g(z) =r, (gof)(c)=¢g(f(c)) =2g(y) =1t

Observe that the composition g o f is equivalent to “‘following the arrows’ from A4 to C in the diagrams of the
functions f and g.

4 f B g c
>< y‘
Fig. 4-3

(b) Letf:R — R and g: R — R be defined by f(x) = x? and g(x) =x+3. Then
(go)(2)=g(f(2)) =g =7 (fog)2)=/(g(2))=/(5) =25

Thus the composition functions g o f and f o g are not the same function. We compute a general formula for
these functions:

(gof)(x) =g(f(x) =g(x’) = x*+3
(fog)(x) =f(e(x)) =f(x+3) = (x+3)* = x* + 6x +9
(¢) Consider any function f : 4 — B. Then one can easily show that
foly=f —and lgof=f

where 1, and 1 are the identity functions on 4 and B, respectively. In other words, the composition of any
function with the appropriate identity function is the function itself.

Associativity of Composition of Functions

Consider functions f: 4 — B, g: B— C, and h: C — D. Then, as pictured in Fig. 4-4(a), we can
form the composition gof: 4 — C, and then the composition ho(gof): A — D. Similarly, as
pictured in Fig. 4-4(b), we can form the composition hog: B— D, and then the composition
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(hog)of: A — D. Both ho(gof) and (hog)of are functions with domain 4 and target set D. The
next theorem on functions (proved in Problem 4.15) states that these two functions are equal. That is:

Theorem 4.1: Letf: 4 — B, g: B— C,and h: C — D. Then
ho(gof)=(hog)of

Theorem 4.1 tells us that we can write ho gof: 4 — D without any parentheses.

Fig. 4-4

Remark: The above definition of the composition of functions and Theorem 4.1 are not really new.
Specifically, viewing the functions f and g as relations, then the composition function g o f is the same as
the composition of f and g as relations (Section 3.5) and Theorem 4.1 is the same as Theorem 3.1. One
main difference is that here we use the functional notation g o f for the composition of f and g instead of
the notation f o g which was used for relations.

4.4 ONE-TO-ONE, ONTO, AND INVERTIBLE FUNCTIONS

A function f: 4 — B is said to be one-to-one (written 1-1) if different elements in the domain A4 have
distinct images. Another way of saying the same thing follows:

S is one-to-one if f(a) = f(a') implies a = a’

A function f: 4 — Bis said to be an onto function if every element of B is the image of some element
in A or, in other words, if the image of f is the entire target set B. In such a case we say that f is a
function of 4 onto B or that f maps 4 onto B. That is:

S maps 4 onto Bif Vb € B, Ja € 4 such that f(a) =b

Here

V means “for every”’, and 3 means “‘there exist”

(These quantifiers are discussed in Chapter 10.)
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A function f: 4 — B is said to be invertible if its inverse relation f~! is a function from B to A.
Equivalently, f: 4 — Bis invertible if there exists a function f~': B — A, called the inverse of f, such that

f_lOfZIA and fof_l=13

In general, an inverse function f ~! need not exist or, equivalently, the inverse relation f~' may not be a
function. The following theorem (proved in Problem 4.23) gives simple criteria which tell us when it is.

Theorem 4.2: A function f: 4 — B is invertible if and only if f is both one-to-one and onto.

If f: A — Bis both one-to-one and onto, then f is called a one-to-one correspondence between A and
B. This terminology comes from the fact that each element of 4 will correspond to a unique element of B
and vice versa.

Some texts use the term injective for a one-to-one function, surjective for an onto function, and
bijective for a one-to-one correspondence.

EXAMPLE 4.4 Consider functions f;: A — B, f,: B— C, f3: C — D, and f;: D — E defined by Fig. 4-5. Now f;
is one-to-one since no element of B is the image of more than one element of 4. Similarly, f, is one-to-one.
However, neither f3 nor f; is one-to-one since f3(r) = f3(u) and f3(v) = fa(w).

Fig. 4-5

As far as being onto is concerned, f, and f; are both onto functions since every element of C is the image under
/> of some element of B and every element of D is the image under f; of some element of C, i.e., f(B) = C and
f3(C) = D. On the other hand, £, is not onto since 3 € B but 3 is not the image under f; of any element of 4, and fj is
not onto since, for example, x € E but x is not the image under f; of any element of D.

Thus f; is one-to-one but not onto, f3 is onto but not one-to-one, and f; is neither one-to-one nor onto.
However, f, is both one-to-one and onto, i.e., f; is a one-to-one correspondence between 4 and B. Hence f, is
invertible and ;' is a function from C to B.

Geometrical Characterization of One-to-One and Onto Functions

Consider now a real-valued function f: R — R. Since f may be identified with its graph and the
graph may be plotted in the cartesian plane R?, we might wonder whether the concepts of being one-to-
one and onto have some geometrical meaning. The answer is yes. Specifically:

(a) The function f: R — R is one-to-one means that there are no two distinct pairs (a;, ) and (a5, b) in
the graph of f; hence each vertical line in R? can intersect the graph of f in at most one point.

(b) The functionf: R — R is onto means that for every b € R there is at least one point a € R such that
(a, b) belongs to the graph of f; hence each vertical line in R? must intersect the graph of f at least
once.

(¢) Accordingly, the function f: R — R is one-to-one and onto, i.e., f is invertible, if and only if each
horizontal line in R? will intersect the graph of f in exactly one point.

We illustrate the above properties in the next example.
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EXAMPLE 4.5 Consider the following four functions from R into R whose graphs appear in Fig. 4-6:
L@ =2, HM=2, AH)=x-2-5x+6, fil)=x

Observe that there are horizontal lines which intersect the graph of f; twice and there are horizontal lines which do
not intersect the graph of f at all; hence f is neither one-to-one nor onto. Similarly, f; is one-to-one but not onto, f3
is onto but not one-to-one, and f; is both one-to-one and onto. The inverse of f; is the cube root function, that is,

fitx) = vx
./
i =x L) =2* L) =x*-22-5x+6 fi)=x*
Fig. 4-6

Remark: Sometimes we restrict the domain and/or target set of a function f in order to obtain an
inverse function f~'. For example, suppose we restrict the domain and target set of the function
filx) = x? to be the set D of nonnegative real numbers. Then f] is one-to-one and onto and its inverse
is the square root function, that is,

i) =vx
Similarly, suppose we restrict the target set of the exponential function f;(x) = 2* to be the set R* of

positive real numbers. Then f] is one-to-one and onto and its inverse is the logarithmic function (to the
base 2), that is,

fil(x) =log, x
(Exponential and logarithmic functions are investigated in Section 4.5.)

4.5 MATHEMATICAL FUNCTIONS, EXPONENTIAL AND LOGARITHMIC FUNCTIONS

This section presents various mathematical functions which appear often in mathematics and com-
puter science, together with their notation. We also discuss the exponential and logarithmic functions,
and their relationship.

Integer and Absolute Value Functions

Let x be any real number. The integer value of x, written INT(x), converts x into an integer by
deleting (truncating) the fractional part of the number. Thus

INT(3.14) =3, INT(V5)=2,  INT(-85)=-8, INT(7)=7

The absolute value of the real number x, written ABS(x) or |x|, is defined as the greater of x or —x.
Hence ABS(0) = 0, and, for x # 0, ABS(x) = x or ABS(x) = —x, depending on whether x is positive or
negative. Thus

|- 15|=15,  |7]=7, |-333|=333, |444| =444,  |—0.975/=0.075

We note that |x| = |— x| and, for x # 0, |x]| is positive.
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Remainder Function; Modular Arithmetic
Let k£ be any integer and let M be a positive integer. Then
k (mod M)

(read k modulo M) will denote the integer remainder when & is divided by M. More exactly, k (mod M) is
the unique integer r such that

k=Mqg+r where 0<r<M
When k is positive, simply divide £ by M to obtain the remainder r. Thus
25 (mod 7) =4, 25 (mod 5) =0, 35 (mod 11) =2, 3 (mod 8) =3

Problem 4.25 shows a method to obtain £ (mod M) when k is negative.
The term “mod” is also used for the mathematical congruence relation, which is denoted and defined
as follows:

a=b (mod M) if and only if = M divides b —a

M is called the modulus, and a = b (mod M) is read “a is congruent to » modulo M. The following
aspects of the congruence relation are frequently useful:

0=M (mod M) and ax M =a (mod M)

Arithmetic modulo M refers to the arithmetic operations of addition, multiplication, and subtraction
where the arithmetic value is replaced by its equivalent value in the set

{0,1,2,...,.M — 1}
or in the set
{1,2,3,..., M}
For example, in arithmetic modulo 12, sometimes called “clock™ arithmetic,
6+9=3, 7x5=11, 1-5=8, 24+10=0=12
(The use of 0 or M depends on the application.)

Exponential Functions
Recall the following definitions for integer exponents (where m is a positive integer):

. 1
a"=a-a...a(m times), a =1, a"=—
a

Exponents are extended to include all rational numbers by defining, for any rational number m/n,
am/n — Vg = (\,,/‘—l)m

For example,

1_1

24716’

In fact, exponents are extended to include all real numbers by defining, for any real number x,

=16, 2= 125%3 = 5* =25

a* =limd where r is a rational number

r—x

Accordingly, the exponential function f(x) = a” is defined for all real numbers.
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Logarithmic Functions

Logarithms are related to exponents as follows. Let b be a positive number. The logarithm of any
positive number x to the base b, written

log, x
represents the exponent to which » must be raised to obtain x. That is,
y = logy x and b =x

are equivalent statements. Accordingly,

log;8 =3 since 2°=8; log,100=2 since  10* =100
log,64 =6 since 2°=64; log,,0.001 = -3 since 107 =0.001

Furthermore, for any base b,
log,1 =0 since B =1
log, b=1 since b'=b

The logarithm of a negative number and the logarithm of 0 are not defined.

Frequently, logarithms are expressed using approximate values. For example, using tables or
calculators, one obtains

log;, 300 = 2.4771 and log, 40 = 3.6889
as approximate answers. (Here e =2.718281-.-.)

Three classes of logarithms are of special importance: logarithms to base 10, called common loga-
rithms; logarithms to base e, called natural logarithms; and logarithms to base 2, called binary logarithms.
Some texts write:

In x for log, x and Ig x or log x for log, x

The term log x, by itself, usually means log;, x; but it is also used for log, x in advanced mathematical
texts and for log, x in computer science texts.

Relationship between the Exponential and Logarithmic Functions

The basic relationship between the exponential and the logarithmic functions
f(x)=b" and  g(x) =log, x

is that they are inverses of each other; hence the graphs of these functions are related geometrically. This
relationship is illustrated in Fig. 4-7 where the graphs of the exponential function f(x) = 2%, the loga-
rithmic function g(x) = log, x, and the linear function s(x) = x appear on the same coordinate axis.
Since f(x) = 2* and g(x) = log, x are inverse functions, they are symmetric with respect to the linear
function h(x) = x or, in other words, the line y = x.

Figure 4-7 also indicates another important property of the exponential and logarithmic functions.
Specifically, for any positive ¢, we have

g(c) <hlc) <f(c)

In fact, as ¢ increases in value, the vertical distances A(c) — g(c) and f(c) — g(c) increase in value.
Moreover, the logarithmic function g(x) grows very slowly compared with the linear function A(x),
and the exponential function f(x) grows very quickly compared with A(x).
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fx=2"
h(x)=x

1 g(x)=log,x
A/ —

-1 1 x

Fig. 4-7

4.6 RECURSIVELY DEFINED FUNCTIONS

A function is said to be recursively defined if the function definition refers to itself. In order for the
definition not to be circular, the function definition must have the following two properties:

(1) There must be certain arguments, called base values, for which the function does not
refer to itself.

(2) Each time the function does refer to itself, the argument of the function must be closer to
a base value.

A recursive function with these two properties is said to be well-defined.

The following examples should help clarify these ideas.

Factorial Function

The product of the positive integers from 1 to #, inclusive, is called “n factorial” and is usually
denoted by n!:

n=1.2.3...(n=2)(n—1n

It is also convenient to define 0! = 1, so that the function is defined for all nonnegative integers. Thus we
have

o'=1, 1I'=1, 20=1.2=2, 31=1.2-3=6, 4=1-2.3.-4=24,
51=1.2.3.4.5=120, 6!=1.2.3-4.5.6="720
and so on. Observe that
5!1=5.41=5.24 =120 and 6!=6-51=6-120 =720
This is true for every positive integer »; that is,
nl=n.(=1)!
Accordingly, the factorial function may also be defined as follows:
.Definition 4.1: (Factorial Function)

(@) Ifn=0,thenn!=1.
() Ifn>0,thenn!=n-(n—1)
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Observe that the above definition of n! is recursive, since it refers to itself when it uses (n — 1)!
However:

(1) The value of ! is explicitly given when n = 0 (thus 0 is a base value).
(2) The value of n! for arbitrary # is defined in terms of a smaller value of n which is closer to
the base value 0.

Accordingly, the definition is not circular, or, in other words, the function is well-defined.

Fibonacci Sequence
The celebrated Fibonacci sequence (usually denoted by Fy, Fy, F,,...) is as follows:
0,1,1,2,3,5,8,13,21,34,55,...

That is, F; =0 and F, =1 and each succeeding term is the sum of the two preceding terms. For
example, the next two terms of the sequence are

34 +55=1289 and 55+ 89 =144
A formal definition of this function follows:

Definition 4.2: (Fibonacci Sequence)
(@) fn=0o0rn=1,then F, =n.
(b) Ifn> 1, then Fn = Fn‘2 +Fn——l'

This is another example of a recursive definition, since the definition refers to itself when it uses F,,_,
and F,_,;. However:

(1) The base values are 0 and 1.
(2) The value of F, is defined in terms of smaller values of n which are closer to the base
values.

Accordingly, this function is well-defined.

Solved Problems

FUNCTIONS
4.1. State whether or not each diagram in Fig. 4-8 defines a function from A = {a,b,c} into
B={x,y,z}.
] 4
(a) ©®)
Fig. 4-8

(a) No. There is nothing assigned to the element b € A.
() No. Two elements, x and z, are assigned to ¢ € 4.
(¢) Yes. Every element in the domain A = {a, b, c} is assigned a unique element in the target set B.



