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c. g3(x) =
�
x + 3
x2 + 2

�1/2
d. g4(x) = 3x

4 + 2x2 + 3
4x3 + 4x − 1

2. a. Perform four iterations, if possible, on each of the functions g defined in Exercise 1. Let p0 = 1
and pn+1 = g( pn), for n = 0, 1, 2, 3.

b. Which function do you think gives the best approximation to the solution?

3. The following four methods are proposed to compute 211/3. Rank them in order, based on their
apparent speed of convergence, assuming p0 = 1.

a. pn = 20pn−1 + 21/p
2
n−1

21
b. pn = pn−1 − p

3
n−1 − 21
3p2n−1

c. pn = pn−1 − p
4
n−1 − 21pn−1
p2n−1 − 21 d. pn =

�
21

pn−1

�1/2
4. The following four methods are proposed to compute 71/5. Rank them in order, based on their apparent

speed of convergence, assuming p0 = 1.
a. pn = pn−1

�
1+ 7− p

5
n−1

p2n−1

�3
b. pn = pn−1 − p

5
n−1 − 7
p2n−1

c. pn = pn−1 − p
5
n−1 − 7
5p4n−1

d. pn = pn−1 − p
5
n−1 − 7
12

5. Use a fixed-point iteration method to determine a solution accurate to within 10−2 for x4−3x2−3 = 0
on [1, 2]. Use p0 = 1.

6. Use a fixed-point iteration method to determine a solution accurate to within 10−2 for x3− x− 1 = 0
on [1, 2]. Use p0 = 1.

7. Use Theorem 2.3 to show that g(x) = π + 0.5 sin(x/2) has a unique fixed point on [0, 2π]. Use
fixed-point iteration to find an approximation to the fixed point that is accurate to within 10−2. Use
Corollary 2.5 to estimate the number of iterations required to achieve 10−2 accuracy, and compare
this theoretical estimate to the number actually needed.

8. Use Theorem 2.3 to show that g(x) = 2−x has a unique fixed point on [ 13 , 1]. Use fixed-point iteration
to find an approximation to the fixed point accurate to within 10−4. Use Corollary 2.5 to estimate the
number of iterations required to achieve 10−4 accuracy, and compare this theoretical estimate to the
number actually needed.

9. Use a fixed-point iteration method to find an approximation to
√
3 that is accurate to within 10−4.

Compare your result and the number of iterations required with the answer obtained in Exercise 12
of Section 2.1.

10. Use a fixed-point iteration method to find an approximation to 3
√
25 that is accurate to within 10−4.

Compare your result and the number of iterations required with the answer obtained in Exercise 13
of Section 2.1.

11. For each of the following equations, determine an interval [a, b] on which fixed-point iteration will
converge. Estimate the number of iterations necessary to obtain approximations accurate to within
10−5, and perform the calculations.

a. x = 2− e
x + x2
3

b. x = 5
x2
+ 2

c. x = (ex/3)1/2 d. x = 5−x
e. x = 6−x f. x = 0.5(sin x + cos x)

12. For each of the following equations, use the given interval or determine an interval [a, b] on which
fixed-point iteration will converge. Estimate the number of iterations necessary to obtain approxima-
tions accurate to within 10−5, and perform the calculations.
a. 2+ sin x − x = 0 use [2, 3] b. x3 − 2x − 5 = 0 use [2, 3]
c. 3x2 − ex = 0 d. x − cos x = 0

13. Find all the zeros of f (x) = x2+10 cos x by using the fixed-point iteration method for an appropriate
iteration function g. Find the zeros accurate to within 10−4.
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14. Use a fixed-point iteration method to determine a solution accurate to within 10−4 for x = tan x, for
x in [4, 5].

15. Use a fixed-point iteration method to determine a solution accurate to within 10−2 for 2 sin πx+x = 0
on [1, 2]. Use p0 = 1.

16. Let A be a given positive constant and g(x) = 2x − Ax2.
a. Show that if fixed-point iteration converges to a nonzero limit, then the limit is p = 1/A, so the

inverse of a number can be found using only multiplications and subtractions.

b. Find an interval about 1/A for which fixed-point iteration converges, provided p0 is in that
interval.

17. Find a function g defined on [0, 1] that satisfies none of the hypotheses of Theorem 2.3 but still has a
unique fixed point on [0, 1].

18. a. Show that Theorem 2.2 is true if the inequality |g�(x)| ≤ k is replaced by g�(x) ≤ k, for all
x ∈ (a, b). [Hint: Only uniqueness is in question.]

b. Show that Theorem 2.3 may not hold if inequality |g�(x)| ≤ k is replaced by g�(x) ≤ k. [Hint:
Show that g(x) = 1− x2, for x in [0, 1], provides a counterexample.]

19. a. Use Theorem 2.4 to show that the sequence defined by

xn = 12xn−1 +
1

xn−1
, for n ≥ 1,

converges to
√
2 whenever x0 >

√
2.

b. Use the fact that 0 < (x0−
√
2)2 whenever x0 �=

√
2 to show that if 0 < x0 <

√
2, then x1 >

√
2.

c. Use the results of parts (a) and (b) to show that the sequence in (a) converges to
√
2 whenever

x0 > 0.

20. a. Show that if A is any positive number, then the sequence defined by

xn = 12xn−1 +
A

2xn−1
, for n ≥ 1,

converges to
√
A whenever x0 > 0.

b. What happens if x0 < 0?

21. Replace the assumption in Theorem 2.4 that “a positive number k < 1 exists with |g�(x)| ≤ k” with
“g satisfies a Lipschitz condition on the interval [a, b] with Lipschitz constant L < 1.” (See Exercise
27, Section 1.1.) Show that the conclusions of this theorem are still valid.

22. Suppose that g is continuously differentiable on some interval (c, d) that contains the fixed point
p of g. Show that if |g�( p)| < 1, then there exists a δ > 0 such that if |p0 − p| ≤ δ, then the
fixed-point iteration converges.

23. An object falling vertically through the air is subjected to viscous resistance as well as to the force
of gravity. Assume that an object with mass m is dropped from a height s0 and that the height of the
object after t seconds is

s(t) = s0 − mg
k
t + m

2g

k2
(1− e−kt/m),

where g = 32.17 ft/s2 and k represents the coefficient of air resistance in lb-s/ft. Suppose s0 = 300 ft,
m = 0.25 lb, and k = 0.1 lb-s/ft. Find, to within 0.01 s, the time it takes this quarter-pounder to hit the
ground.

24. Let g ∈ C1[a, b] and p be in (a, b)with g( p) = p and |g�( p)| > 1. Show that there exists a δ > 0 such
that if 0 < |p0 − p| < δ, then |p0 − p| < |p1 − p| . Thus, nomatter how close the initial approximation
p0 is to p, the next iterate p1 is farther away, so the fixed-point iteration does not converge if p0 �= p.
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2.3 Newton’s Method and Its Extensions

Newton’s (or the Newton-Raphson) method is one of the most powerful and well-known
numerical methods for solving a root-finding problem. There are many ways of introducing
Newton’s method.

Newton’s Method

If we only want an algorithm, we can consider the technique graphically, as is often done in
calculus. Another possibility is to derive Newton’s method as a technique to obtain faster
convergence than offered by other types of functional iteration, as is done in Section 2.4. A
third means of introducing Newton’s method, which is discussed next, is based on Taylor
polynomials. We will see there that this particular derivation produces not only the method,
but also a bound for the error of the approximation.

Isaac Newton (1641–1727) was
one of the most brilliant scientists
of all time. The late 17th century
was a vibrant period for science
and mathematics and Newton’s
work touched nearly every aspect
of mathematics. His method for
solving was introduced to find
a root of the equation
y3 − 2y − 5 = 0. Although he
demonstrated the method only for
polynomials, it is clear that he
realized its broader applications.

Suppose that f ∈ C2[a, b]. Let p0 ∈ [a, b] be an approximation to p such that f �( p0) �=
0 and | p− p0| is “small.” Consider the first Taylor polynomial for f (x) expanded about p0
and evaluated at x = p.

f ( p) = f ( p0)+ ( p− p0)f �( p0)+ ( p− p0)
2

2
f ��(ξ( p)),

where ξ( p) lies between p and p0. Since f ( p) = 0, this equation gives

0 = f ( p0)+ ( p− p0)f �( p0)+ ( p− p0)
2

2
f ��(ξ( p)).

Newton’smethod is derived by assuming that since | p−p0| is small, the term involving
( p− p0)2 is much smaller, so

0 ≈ f ( p0)+ ( p− p0)f �( p0).

Solving for p gives

p ≈ p0 − f ( p0)
f �( p0)

≡ p1.

This sets the stage for Newton’s method, which starts with an initial approximation p0
and generates the sequence { pn}∞n=0, by

pn = pn−1 − f ( pn−1)
f �( pn−1)

, for n ≥ 1. (2.7)

Joseph Raphson (1648–1715)
gave a description of the method
attributed to Isaac Newton in
1690, acknowledging Newton as
the source of the discovery.
Neither Newton nor Raphson
explicitly used the derivative in
their description since both
considered only polynomials.
Other mathematicians,
particularly James Gregory
(1636–1675), were aware of the
underlying process at or before
this time.

Figure 2.8 on page 68 illustrates how the approximations are obtained using successive
tangents. (Also see Exercise 15.) Starting with the initial approximation p0, the approx-
imation p1 is the x-intercept of the tangent line to the graph of f at ( p0,f ( p0)). The
approximation p2 is the x-intercept of the tangent line to the graph of f at ( p1, f ( p1)) and
so on. Algorithm 2.3 follows this procedure.
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Figure 2.8
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ALGORITHM

2.3
Newton’s

To find a solution to f (x) = 0 given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.
Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p = p0 − f ( p0)/f �( p0). (Compute pi.)
Step 4 If | p− p0| < TOL then

OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.
Step 6 Set p0 = p. (Update p0.)

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

The stopping-technique inequalities given with the Bisection method are applicable to
Newton’s method. That is, select a tolerance ε > 0, and construct p1, . . . pN until

| pN − pN−1| < ε, (2.8)

| pN − pN−1|
| pN | < ε, pN �= 0, (2.9)

or

|f ( pN)| < ε. (2.10)
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A form of Inequality (2.8) is used in Step 4 of Algorithm 2.3. Note that none of the inequal-
ities (2.8), (2.9), or (2.10) give precise information about the actual error | pN − p|. (See
Exercises 16 and 17 in Section 2.1.)
Newton’s method is a functional iteration technique with pn = g( pn−1), for which

g( pn−1) = pn−1 − f ( pn−1)
f �( pn−1)

, for n ≥ 1. (2.11)

In fact, this is the functional iteration technique that was used to give the rapid convergence
we saw in column (e) of Table 2.2 in Section 2.2.
It is clear fromEquation (2.7) that Newton’s method cannot be continued if f �( pn−1) =

0 for some n. In fact, we will see that the method is most effective when f � is bounded away
from zero near p.

Example 1 Consider the function f (x) = cos x−x = 0. Approximate a root of f using (a) a fixed-point
method, and (b) Newton’s Method

Solution (a) A solution to this root-finding problem is also a solution to the fixed-point
problem x = cos x, and the graph in Figure 2.9 implies that a single fixed-point p lies in
[0,π/2].

Figure 2.9
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Table 2.3 shows the results of fixed-point iteration with p0 = π/4. The best we could
conclude from these results is that p ≈ 0.74.

Table 2.3

n pn

0 0.7853981635
1 0.7071067810
2 0.7602445972
3 0.7246674808
4 0.7487198858
5 0.7325608446
6 0.7434642113
7 0.7361282565

Note that the variable in the
trigonometric function is in
radian measure, not degrees. This
will always be the case unless
specified otherwise.

(b) To apply Newton’s method to this problem we need f �(x) = − sin x − 1. Starting
again with p0 = π/4, we generate the sequence defined, for n ≥ 1, by

pn = pn−1 − f ( pn−1)
f ( p�n−1)

= pn−1 − cos pn−1 − pn−1− sin pn−1 − 1 .

This gives the approximations in Table 2.4. An excellent approximation is obtained with
n = 3. Because of the agreement of p3 and p4 we could reasonably expect this result to be
accurate to the places listed.

Table 2.4
Newton’s Method

n pn

0 0.7853981635
1 0.7395361337
2 0.7390851781
3 0.7390851332
4 0.7390851332

Convergence using Newton’s Method

Example 1 shows that Newton’s method can provide extremely accurate approximations
with very few iterations. For that example, only one iteration of Newton’s method was
needed to give better accuracy than 7 iterations of the fixed-point method. It is now time to
examine Newton’s method more carefully to discover why it is so effective.
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The Taylor series derivation of Newton’s method at the beginning of the section points
out the importance of an accurate initial approximation. The crucial assumption is that the
term involving ( p − p0)2 is, by comparison with | p − p0|, so small that it can be deleted.
This will clearly be false unless p0 is a good approximation to p. If p0 is not sufficiently
close to the actual root, there is little reason to suspect that Newton’s method will converge
to the root. However, in some instances, even poor initial approximations will produce
convergence. (Exercises 20 and 21 illustrate some of these possibilities.)
The following convergence theorem for Newton’s method illustrates the theoretical

importance of the choice of p0.

Theorem 2.6 Let f ∈ C2[a, b]. If p ∈ (a, b) is such that f ( p) = 0 and f �( p) �= 0, then there exists a
δ > 0 such that Newton’s method generates a sequence { pn}∞n=1 converging to p for any
initial approximation p0 ∈ [p− δ, p+ δ].

Proof The proof is based on analyzing Newton’s method as the functional iteration scheme
pn = g( pn−1), for n ≥ 1, with

g(x) = x − f (x)
f �(x)

.

Let k be in (0, 1). We first find an interval [p− δ, p+ δ] that gmaps into itself and for which
|g�(x)| ≤ k, for all x ∈ ( p− δ, p+ δ).
Since f � is continuous and f �( p) �= 0, part (a) of Exercise 29 in Section 1.1 implies

that there exists a δ1 > 0, such that f �(x) �= 0 for x ∈ [p − δ1, p + δ1] ⊆ [a, b]. Thus g is
defined and continuous on [p− δ1, p+ δ1]. Also

g�(x) = 1− f
�(x)f �(x)− f (x)f ��(x)

[f �(x)]2 = f (x)f
��(x)

[f �(x)]2 ,

for x ∈ [p− δ1, p+ δ1], and, since f ∈ C2[a, b], we have g ∈ C1[p− δ1, p+ δ1].
By assumption, f ( p) = 0, so

g�( p) = f ( p)f
��( p)

[f �( p)]2 = 0.

Since g� is continuous and 0 < k < 1, part (b) of Exercise 29 in Section 1.1 implies that
there exists a δ, with 0 < δ < δ1, and

|g�(x)| ≤ k, for all x ∈ [p− δ, p+ δ].
It remains to show that g maps [p− δ, p+ δ] into [p− δ, p+ δ]. If x ∈ [p− δ, p+ δ],

theMean Value Theorem implies that for some number ξ between x and p, |g(x)−g( p)| =
|g�(ξ)||x − p|. So

|g(x)− p| = |g(x)− g( p)| = |g�(ξ)||x − p| ≤ k|x − p| < |x − p|.
Since x ∈ [p− δ, p+ δ], it follows that |x− p| < δ and that |g(x)− p| < δ. Hence, gmaps
[p− δ, p+ δ] into [p− δ, p+ δ].
All the hypotheses of the Fixed-Point Theorem 2.4 are now satisfied, so the sequence

{ pn}∞n=1, defined by

pn = g( pn−1) = pn−1 − f ( pn−1)
f �( pn−1)

, for n ≥ 1,

converges to p for any p0 ∈ [p− δ, p+ δ].
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Theorem 2.6 states that, under reasonable assumptions, Newton’s method converges
provided a sufficiently accurate initial approximation is chosen. It also implies that the con-
stant k that bounds the derivative of g, and, consequently, indicates the speed of convergence
of the method, decreases to 0 as the procedure continues. This result is important for the
theory of Newton’s method, but it is seldom applied in practice because it does not tell us
how to determine δ.
In a practical application, an initial approximation is selected and successive approx-

imations are generated by Newton’s method. These will generally either converge quickly
to the root, or it will be clear that convergence is unlikely.

The Secant Method

Newton’s method is an extremely powerful technique, but it has a major weakness: the need
to know the value of the derivative of f at each approximation. Frequently, f �(x) is far more
difficult and needs more arithmetic operations to calculate than f (x).
To circumvent the problem of the derivative evaluation in Newton’s method, we intro-

duce a slight variation. By definition,

f �( pn−1) = lim
x→pn−1

f (x)− f ( pn−1)
x − pn−1 .

If pn−2 is close to pn−1, then

f �( pn−1) ≈ f ( pn−2)− f ( pn−1)
pn−2 − pn−1 = f ( pn−1)− f ( pn−2)

pn−1 − pn−2 .

Using this approximation for f �( pn−1) in Newton’s formula gives

pn = pn−1 − f ( pn−1)( pn−1 − pn−2)
f ( pn−1)− f ( pn−2) . (2.12)

The word secant is derived from
the Latin word secan, which
means to cut. The secant method
uses a secant line, a line joining
two points that cut the curve, to
approximate a root.

This technique is called the Secant method and is presented in Algorithm 2.4. (See
Figure 2.10.) Starting with the two initial approximations p0 and p1, the approximation p2 is
the x-intercept of the line joining ( p0,f ( p0)) and ( p1, f ( p1)). The approximation p3 is the
x-intercept of the line joining ( p1, f ( p1)) and ( p2,f ( p2)), and so on. Note that only one
function evaluation is needed per step for the Secant method after p2 has been determined.
In contrast, each step of Newton’s method requires an evaluation of both the function and
its derivative.

Figure 2.10
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ALGORITHM

2.4
Secant

To find a solution to f (x) = 0 given initial approximations p0 and p1:

INPUT initial approximations p0, p1; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 2;
q0 = f ( p0);
q1 = f ( p1).

Step 2 While i ≤ N0 do Steps 3–6.
Step 3 Set p = p1 − q1( p1 − p0)/(q1 − q0). (Compute pi.)
Step 4 If | p− p1| < TOL then

OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1.
Step 6 Set p0 = p1; (Update p0, q0, p1, q1.)

q0 = q1;
p1 = p;
q1 = f ( p).

Step 7 OUTPUT (‘The method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

The next example involves a problem considered in Example 1, where we used New-
ton’s method with p0 = π/4.

Example 2 Use the Secant method to find a solution to x = cos x, and compare the approximations
with those given in Example 1 which applied Newton’s method.

Solution In Example 1 we compared fixed-point iteration and Newton’s method starting
with the initial approximation p0 = π/4. For the Secant method we need two initial ap-
proximations. Suppose we use p0 = 0.5 and p1 = π/4. Succeeding approximations are
generated by the formula

pn = pn−1 − ( pn−1 − pn−2)(cos pn−1 − pn−1)
(cos pn−1 − pn−1)− (cos pn−2 − pn−2) , for n ≥ 2.

These give the results in Table 2.5.

Table 2.5
Secant

n pn

0 0.5
1 0.7853981635
2 0.7363841388
3 0.7390581392
4 0.7390851493
5 0.7390851332

Newton
n pn

0 0.7853981635
1 0.7395361337
2 0.7390851781
3 0.7390851332
4 0.7390851332

Comparing the results in Table 2.5 from the Secant method and Newton’s method, we
see that the Secant method approximation p5 is accurate to the tenth decimal place, whereas
Newton’s method obtained this accuracy by p3. For this example, the convergence of the
Secant method is much faster than functional iteration but slightly slower than Newton’s
method. This is generally the case. (See Exercise 14 of Section 2.4.)
Newton’s method or the Secant method is often used to refine an answer obtained by

another technique, such as the Bisection method, since these methods require good first
approximations but generally give rapid convergence.
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The Method of False Position

Each successive pair of approximations in the Bisection method brackets a root p of the
equation; that is, for each positive integer n, a root lies between an and bn. This implies that,
for each n, the Bisection method iterations satisfy

| pn − p| < 12 |an − bn|,
which provides an easily calculated error bound for the approximations.
Root bracketing is not guaranteed for either Newton’s method or the Secant method.

In Example 1, Newton’s method was applied to f (x) = cos x− x, and an approximate root
was found to be 0.7390851332. Table 2.5 shows that this root is not bracketed by either p0
and p1 or p1 and p2. The Secant method approximations for this problem are also given in
Table 2.5. In this case the initial approximations p0 and p1 bracket the root, but the pair of
approximations p3 and p4 fail to do so.

The term Regula Falsi, literally a
false rule or false position, refers
to a technique that uses results
that are known to be false, but in
some specific manner, to obtain
convergence to a true result. False
position problems can be found
on the Rhind papyrus, which
dates from about 1650 b.c.e.

The method of False Position (also called Regula Falsi) generates approximations
in the same manner as the Secant method, but it includes a test to ensure that the root is
always bracketed between successive iterations. Although it is not a method we generally
recommend, it illustrates how bracketing can be incorporated.
First choose initial approximations p0 and p1 with f ( p0) · f ( p1) < 0. The approxi-

mation p2 is chosen in the same manner as in the Secant method, as the x-intercept of the
line joining ( p0, f ( p0)) and ( p1,f ( p1)). To decide which secant line to use to compute p3,
consider f ( p2) · f ( p1), or more correctly sgn f ( p2) · sgn f ( p1).
• If sgnf ( p2) · sgn f ( p1) < 0, then p1 and p2 bracket a root. Choose p3 as the x-intercept
of the line joining ( p1,f ( p1)) and ( p2, f ( p2)).

• If not, choose p3 as the x-intercept of the line joining ( p0, f ( p0)) and ( p2, f ( p2)), and
then interchange the indices on p0 and p1.

In a similar manner, once p3 is found, the sign of f ( p3) · f ( p2) determines whether we
use p2 and p3 or p3 and p1 to compute p4. In the latter case a relabeling of p2 and p1 is
performed. The relabeling ensures that the root is bracketed between successive iterations.
The process is described in Algorithm 2.5, and Figure 2.11 shows how the iterations can
differ from those of the Secant method. In this illustration, the first three approximations
are the same, but the fourth approximations differ.

Figure 2.11
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ALGORITHM

2.5
False Position

To find a solution to f (x) = 0 given the continuous function f on the interval [ p0, p1]
where f ( p0) and f ( p1) have opposite signs:

INPUT initial approximations p0, p1; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 2;
q0 = f ( p0);
q1 = f ( p1).

Step 2 While i ≤ N0 do Steps 3–7.
Step 3 Set p = p1 − q1( p1 − p0)/(q1 − q0). (Compute pi.)
Step 4 If | p− p1| < TOL then

OUTPUT (p); (The procedure was successful.)
STOP.

Step 5 Set i = i + 1;
q = f ( p).

Step 6 If q · q1 < 0 then set p0 = p1;
q0 = q1.

Step 7 Set p1 = p;
q1 = q.

Step 8 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure unsuccessful.)
STOP.

Example 3 Use the method of False Position to find a solution to x = cos x, and compare the approx-
imations with those given in Example 1 which applied fixed-point iteration and Newton’s
method, and to those found in Example 2 which applied the Secant method.

Solution To make a reasonable comparison we will use the same initial approximations as
in the Secant method, that is, p0 = 0.5 and p1 = π/4. Table 2.6 shows the results of the
method of False Position applied to f (x) = cos x−x together with those we obtained using
the Secant and Newton’smethods. Notice that the False Position and Secant approximations
agree through p3 and that the method of False Position requires an additional iteration to
obtain the same accuracy as the Secant method.

Table 2.6 False Position Secant Newton
n pn pn pn
0 0.5 0.5 0.7853981635
1 0.7853981635 0.7853981635 0.7395361337
2 0.7363841388 0.7363841388 0.7390851781
3 0.7390581392 0.7390581392 0.7390851332
4 0.7390848638 0.7390851493 0.7390851332
5 0.7390851305 0.7390851332
6 0.7390851332
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The added insurance of the method of False Position commonly requires more calcula-
tion than the Secant method, just as the simplification that the Secant method provides over
Newton’s method usually comes at the expense of additional iterations. Further examples
of the positive and negative features of these methods can be seen by working Exercises 17
and 18.
Maple has Newton’s method, the Secant method, and the method of False Position

implemented in its NumericalAnalysis package. The options that were available for the
Bisection method are also available for these techniques. For example, to generate the
results in Tables 2.4, 2.5, and 2.6 we could use the commands

with(Student[NumericalAnalysis])

f := cos(x)− x
Newton

�
f , x = π

4.0
, tolerance = 10−8, output = sequence,maxiterations = 20

�
Secant

�
f , x =

�
0.5,

π

4.0

�
, tolerance = 10−8, output = sequence,maxiterations = 20

�
and

FalsePosition
�
f , x =

�
0.5,

π

4.0

�
, tolerance=10−8, output=sequence,maxiterations=20

�

E X E R C I S E S E T 2.3

1. Let f (x) = x2 − 6 and p0 = 1. Use Newton’s method to find p2.
2. Let f (x) = −x3 − cos x and p0 = −1. Use Newton’s method to find p2. Could p0 = 0 be used?
3. Let f (x) = x2 − 6. With p0 = 3 and p1 = 2, find p3.

a. Use the Secant method.

b. Use the method of False Position.

c. Which of a. or b. is closer to
√
6?

4. Let f (x) = −x3 − cos x. With p0 = −1 and p1 = 0, find p3.
a. Use the Secant method. b. Use the method of False Position.

5. Use Newton’s method to find solutions accurate to within 10−4 for the following problems.
a. x3 − 2x2 − 5 = 0, [1, 4] b. x3 + 3x2 − 1 = 0, [−3,−2]
c. x − cos x = 0, [0,π/2] d. x − 0.8− 0.2 sin x = 0, [0,π/2]

6. Use Newton’s method to find solutions accurate to within 10−5 for the following problems.
a. ex + 2−x + 2 cos x − 6 = 0 for 1 ≤ x ≤ 2
b. ln(x − 1)+ cos(x − 1) = 0 for 1.3 ≤ x ≤ 2
c. 2x cos 2x − (x − 2)2 = 0 for 2 ≤ x ≤ 3 and 3 ≤ x ≤ 4
d. (x − 2)2 − ln x = 0 for 1 ≤ x ≤ 2 and e ≤ x ≤ 4
e. ex − 3x2 = 0 for 0 ≤ x ≤ 1 and 3 ≤ x ≤ 5
f. sin x − e−x = 0 for 0 ≤ x ≤ 1 3 ≤ x ≤ 4 and 6 ≤ x ≤ 7

7. Repeat Exercise 5 using the Secant method.

8. Repeat Exercise 6 using the Secant method.

9. Repeat Exercise 5 using the method of False Position.

10. Repeat Exercise 6 using the method of False Position.

11. Use all three methods in this Section to find solutions to within 10−5 for the following problems.
a. 3xex = 0 for 1 ≤ x ≤ 2
b. 2x + 3 cos x − ex = 0 for 0 ≤ x ≤ 1
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12. Use all three methods in this Section to find solutions to within 10−7 for the following problems.
a. x2 − 4x + 4− ln x = 0 for 1 ≤ x ≤ 2 and for 2 ≤ x ≤ 4
b. x + 1− 2 sin πx = 0 for 0 ≤ x ≤ 1/2 and for 1/2 ≤ x ≤ 1

13. Use Newton’s method to approximate, to within 10−4, the value of x that produces the point on the
graph of y = x2 that is closest to (1, 0). [Hint:Minimize [d(x)]2, where d(x) represents the distance
from (x, x2) to (1, 0).]

14. Use Newton’s method to approximate, to within 10−4, the value of x that produces the point on the
graph of y = 1/x that is closest to (2, 1).

15. The following describes Newton’s method graphically: Suppose that f �(x) exists on [a, b] and that
f �(x) �= 0 on [a, b]. Further, suppose there exists one p ∈ [a, b] such that f ( p) = 0, and let p0 ∈ [a, b]
be arbitrary. Let p1 be the point at which the tangent line to f at ( p0, f ( p0)) crosses the x-axis. For
each n ≥ 1, let pn be the x-intercept of the line tangent to f at ( pn−1, f ( pn−1)). Derive the formula
describing this method.

16. Use Newton’s method to solve the equation

0 = 1
2
+ 1
4
x2 − x sin x − 1

2
cos 2x, with p0 = π2 .

Iterate using Newton’s method until an accuracy of 10−5 is obtained. Explain why the result seems
unusual for Newton’s method. Also, solve the equation with p0 = 5π and p0 = 10π .

17. The fourth-degree polynomial

f (x) = 230x4 + 18x3 + 9x2 − 221x − 9

has two real zeros, one in [−1, 0] and the other in [0, 1]. Attempt to approximate these zeros to within
10−6 using the
a. Method of False Position

b. Secant method

c. Newton’s method

Use the endpoints of each interval as the initial approximations in (a) and (b) and the midpoints as
the initial approximation in (c).

18. The function f (x) = tan πx − 6 has a zero at (1/π) arctan 6 ≈ 0.447431543. Let p0 = 0 and
p1 = 0.48, and use ten iterations of each of the following methods to approximate this root. Which
method is most successful and why?

a. Bisection method

b. Method of False Position

c. Secant method

19. The iteration equation for the Secant method can be written in the simpler form

pn = f ( pn−1)pn−2 − f ( pn−2)pn−1
f ( pn−1)− f ( pn−2) .

Explain why, in general, this iteration equation is likely to be less accurate than the one given in
Algorithm 2.4.

20. The equation x2−10 cos x = 0 has two solutions,±1.3793646.Use Newton’s method to approximate
the solutions to within 10−5 with the following values of p0.
a. p0 = −100 b. p0 = −50 c. p0 = −25
d. p0 = 25 e. p0 = 50 f. p0 = 100

21. The equation 4x2 − ex − e−x = 0 has two positive solutions x1 and x2. Use Newton’s method to
approximate the solution to within 10−5 with the following values of p0.
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a. p0 = −10 b. p0 = −5 c. p0 = −3
d. p0 = −1 e. p0 = 0 f. p0 = 1
g. p0 = 3 h. p0 = 5 i. p0 = 10

22. Use Maple to determine how many iterations of Newton’s method with p0 = π/4 are needed to find
a root of f (x) = cos x − x to within 10−100.

23. The function described by f (x) = ln(x2 + 1)− e0.4x cosπx has an infinite number of zeros.
a. Determine, within 10−6, the only negative zero.
b. Determine, within 10−6, the four smallest positive zeros.
c. Determine a reasonable initial approximation to find the nth smallest positive zero of f . [Hint:

Sketch an approximate graph of f .]

d. Use part (c) to determine, within 10−6, the 25th smallest positive zero of f .
24. Find an approximation for λ, accurate to within 10−4, for the population equation

1,564,000 = 1,000,000eλ + 435,000
λ

(eλ − 1),

discussed in the introduction to this chapter. Use this value to predict the population at the end of the
second year, assuming that the immigration rate during this year remains at 435,000 individuals per
year.

25. The sum of two numbers is 20. If each number is added to its square root, the product of the two sums
is 155.55. Determine the two numbers to within 10−4.

26. The accumulated value of a savings account based on regular periodic payments can be determined
from the annuity due equation,

A = P
i
[(1+ i)n − 1].

In this equation, A is the amount in the account, P is the amount regularly deposited, and i is the rate
of interest per period for the n deposit periods. An engineer would like to have a savings account
valued at $750,000 upon retirement in 20 years and can afford to put $1500 per month toward this
goal. What is the minimal interest rate at which this amount can be invested, assuming that the interest
is compounded monthly?

27. Problems involving the amount of money required to pay off a mortgage over a fixed period of time
involve the formula

A = P
i
[1− (1+ i)−n],

known as an ordinary annuity equation. In this equation, A is the amount of the mortgage, P is the
amount of each payment, and i is the interest rate per period for the n payment periods. Suppose that a
30-year home mortgage in the amount of $135,000 is needed and that the borrower can afford house
payments of at most $1000 per month. What is the maximal interest rate the borrower can afford to
pay?

28. A drug administered to a patient produces a concentration in the blood stream given by c(t) = Ate−t/3
milligrams per milliliter, t hours after A units have been injected. The maximum safe concentration
is 1 mg/mL.

a. What amount should be injected to reach this maximum safe concentration, and when does this
maximum occur?

b. An additional amount of this drug is to be administered to the patient after the concentration falls
to 0.25 mg/mL. Determine, to the nearest minute, when this second injection should be given.

c. Assume that the concentration from consecutive injections is additive and that 75% of the amount
originally injected is administered in the second injection. When is it time for the third injection?

29. Let f (x) = 33x+1 − 7 · 52x.
a. Use the Maple commands solve and fsolve to try to find all roots of f .

b. Plot f (x) to find initial approximations to roots of f .
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c. Use Newton’s method to find roots of f to within 10−16.
d. Find the exact solutions of f (x) = 0 without using Maple.

30. Repeat Exercise 29 using f (x) = 2x2 − 3 · 7x+1.
31. The logistic population growth model is described by an equation of the form

P(t) = PL
1− ce−kt ,

where PL , c, and k > 0 are constants, and P(t) is the population at time t. PL represents the limiting
value of the population since limt→∞ P(t) = PL . Use the census data for the years 1950, 1960, and
1970 listed in the table on page 105 to determine the constants PL , c, and k for a logistic growthmodel.
Use the logistic model to predict the population of the United States in 1980 and in 2010, assuming
t = 0 at 1950. Compare the 1980 prediction to the actual value.

32. The Gompertz population growth model is described by

P(t) = PLe−ce−kt ,
where PL, c, and k > 0 are constants, and P(t) is the population at time t. Repeat Exercise 31 using
the Gompertz growth model in place of the logistic model.

33. Player A will shut out (win by a score of 21–0) player B in a game of racquetball with probability

P = 1+ p
2

�
p

1− p+ p2
�21
,

where p denotes the probability A will win any specific rally (independent of the server). (See
[Keller, J], p. 267.) Determine, to within 10−3, the minimal value of p that will ensure that A will shut
out B in at least half the matches they play.

34. In thedesign of all-terrain vehicles, it is necessary to consider the failure of thevehicle when attempting
to negotiate two types of obstacles. One type of failure is called hang-up failure and occurs when the
vehicle attempts to cross an obstacle that causes the bottom of the vehicle to touch the ground. The
other type of failure is called nose-in failure and occurs when the vehicle descends into a ditch and
its nose touches the ground.

The accompanying figure, adapted from [Bek], shows the components associated with the nose-
in failure of a vehicle. In that reference it is shown that the maximum angle α that can be negotiated by
a vehicle when β is the maximum angle at which hang-up failure does not occur satisfies the equation

A sin α cosα + B sin2 α − C cosα − E sin α = 0,
where

A = l sin β1, B = l cosβ1, C = (h + 0.5D) sin β1 − 0.5D tan β1,
and E = (h+ 0.5D) cos β1 − 0.5D.

a. It is stated that when l = 89 in., h = 49 in., D = 55 in., and β1 = 11.5◦, angle α is approximately
33◦. Verify this result.

b. Find α for the situation when l, h, and β1 are the same as in part (a) but D = 30 in.

�

�

�

� �
�
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2.4 Error Analysis for Iterative Methods

In this section we investigate the order of convergence of functional iteration schemes and,
as a means of obtaining rapid convergence, rediscover Newton’s method. We also consider
ways of accelerating the convergence of Newton’s method in special circumstances. First,
however, we need a new procedure for measuring how rapidly a sequence converges.

Order of Convergence

Definition 2.7 Suppose { pn}∞n=0 is a sequence that converges to p, with pn �= p for alln. If positive constants
λ and α exist with

lim
n→∞

| pn+1 − p|
| pn − p|α = λ,

then { pn}∞n=0 converges to p of order α, with asymptotic error constant λ.

An iterative technique of the form pn = g( pn−1) is said to be of order α if the sequence
{ pn}∞n=0 converges to the solution p = g( p) of order α.
In general, a sequence with a high order of convergence converges more rapidly than a

sequence with a lower order. The asymptotic constant affects the speed of convergence but
not to the extent of the order. Two cases of order are given special attention.

(i) If α = 1 (and λ < 1), the sequence is linearly convergent.

(ii) If α = 2, the sequence is quadratically convergent.

The next illustration compares a linearly convergent sequence to one that is quadrati-
cally convergent. It shows why we try to find methods that produce higher-order convergent
sequences.

Illustration Suppose that { pn}∞n=0 is linearly convergent to 0 with

lim
n→∞

| pn+1|
| pn| = 0.5

and that { p̃n}∞n=0 is quadratically convergent to 0 with the same asymptotic error constant,

lim
n→∞

|p̃n+1|
|p̃n|2 = 0.5.

For simplicity we assume that for each n we have

| pn+1|
| pn| ≈ 0.5 and

|p̃n+1|
|p̃n|2 ≈ 0.5.

For the linearly convergent scheme, this means that

| pn − 0| = | pn| ≈ 0.5| pn−1| ≈ (0.5)2| pn−2| ≈ · · · ≈ (0.5)n| p0|,
whereas the quadratically convergent procedure has

|p̃n − 0| = |p̃n| ≈ 0.5|p̃n−1|2 ≈ (0.5)[0.5|p̃n−2|2]2 = (0.5)3|p̃n−2|4

≈ (0.5)3[(0.5)|p̃n−3|2]4 = (0.5)7|p̃n−3|8

≈ · · · ≈ (0.5)2n−1|p̃0|2n .
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Table2.7 illustrates the relative speed of convergence of the sequences to 0 if | p0|= |p̃0|= 1.

Table 2.7 Linear Convergence Quadratic Convergence
Sequence { pn}∞n=0 Sequence { p̃n}∞n=0

n (0.5)n (0.5)2
n−1

1 5.0000 × 10−1 5.0000× 10−1
2 2.5000 × 10−1 1.2500× 10−1
3 1.2500 × 10−1 7.8125× 10−3
4 6.2500× 10−2 3.0518× 10−5
5 3.1250× 10−2 4.6566× 10−10
6 1.5625× 10−2 1.0842× 10−19
7 7.8125× 10−3 5.8775× 10−39

The quadratically convergent sequence is within 10−38 of 0 by the seventh term. At least
126 terms are needed to ensure this accuracy for the linearly convergent sequence.

Quadratically convergent sequences are expected to converge much quicker than those
that converge only linearly, but the next result implies that an arbitrary technique that
generates a convergent sequences does so only linearly.

Theorem 2.8 Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all x ∈ [a, b]. Suppose, in addition, that g� is
continuous on (a, b) and a positive constant k < 1 exists with

|g�(x)| ≤ k, for all x ∈ (a, b).

If g�( p) �= 0, then for any number p0 �= p in [a, b], the sequence

pn = g( pn−1), for n ≥ 1,

converges only linearly to the unique fixed point p in [a, b].

Proof We know from the Fixed-Point Theorem 2.4 in Section 2.2 that the sequence con-
verges to p. Since g� exists on (a, b), we can apply the Mean Value Theorem to g to show
that for any n,

pn+1 − p = g( pn)− g( p) = g�(ξn)( pn − p),

where ξn is between pn and p. Since { pn}∞n=0 converges to p, we also have {ξn}∞n=0 converging
to p. Since g� is continuous on (a, b), we have

lim
n→∞ g

�(ξn) = g�( p).

Thus

lim
n→∞

pn+1 − p
pn − p = limn→∞ g

�(ξn) = g�( p) and lim
n→∞

| pn+1 − p|
| pn − p| = |g

�( p)|.

Hence, if g�( p) �= 0, fixed-point iteration exhibits linear convergence with asymptotic error
constant |g�( p)|.
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Theorem 2.8 implies that higher-order convergence for fixed-pointmethods of the form
g( p) = p can occur only when g�( p) = 0. The next result describes additional conditions
that ensure the quadratic convergence we seek.

Theorem 2.9 Let p be a solution of the equation x = g(x). Suppose that g�( p) = 0 and g�� is continuous
with |g��(x)| < M on an open interval I containing p. Then there exists a δ > 0 such that,
for p0 ∈ [p − δ, p + δ], the sequence defined by pn = g( pn−1), when n ≥ 1, converges at
least quadratically to p. Moreover, for sufficiently large values of n,

| pn+1 − p| < M2 | pn − p|
2.

Proof Choose k in (0, 1) and δ > 0 such that on the interval [p−δ, p+δ], contained in I , we
have |g�(x)| ≤ k and g�� continuous. Since |g�(x)| ≤ k < 1, the argument used in the proof
of Theorem 2.6 in Section 2.3 shows that the terms of the sequence { pn}∞n=0 are contained
in [p− δ, p+ δ]. Expanding g(x) in a linear Taylor polynomial for x ∈ [p− δ, p+ δ] gives

g(x) = g( p)+ g�( p)(x − p)+ g
��(ξ)
2
(x − p)2,

where ξ lies between x and p. The hypotheses g( p) = p and g�( p) = 0 imply that

g(x) = p+ g
��(ξ)
2
(x − p)2.

In particular, when x = pn,

pn+1 = g( pn) = p+ g
��(ξn)
2
( pn − p)2,

with ξn between pn and p. Thus,

pn+1 − p = g
��(ξn)
2
( pn − p)2.

Since |g�(x)| ≤ k < 1 on [p− δ, p+ δ] and gmaps [p− δ, p+ δ] into itself, it follows from
the Fixed-Point Theorem that { pn}∞n=0 converges to p. But ξn is between p and pn for each
n, so {ξn}∞n=0 also converges to p, and

lim
n→∞

| pn+1 − p|
| pn − p|2 =

|g��( p)|
2
.

This result implies that the sequence { pn}∞n=0 is quadratically convergent if g��( p) �= 0 and
of higher-order convergence if g��( p) = 0.
Because g�� is continuous and strictly bounded by M on the interval [p− δ, p+ δ], this

also implies that, for sufficiently large values of n,

| pn+1 − p| < M
2
| pn − p|2.

Theorems 2.8 and 2.9 tell us that our search for quadratically convergent fixed-point
methods should point in the direction of functions whose derivatives are zero at the fixed
point. That is:

• For a fixed point method to converge quadratically we need to have both g( p) = p, and
g�( p) = 0.
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The easiest way to construct a fixed-point problem associated with a root-finding prob-
lem f (x) = 0 is to add or subtract a multiple of f (x) from x. Consider the sequence

pn = g( pn−1), for n ≥ 1,
for g in the form

g(x) = x − φ(x)f (x),
where φ is a differentiable function that will be chosen later.
For the iterative procedure derived from g to be quadratically convergent, we need to

have g�( p) = 0 when f ( p) = 0. Because
g�(x) = 1− φ�(x)f (x)− f �(x)φ(x),

and f ( p) = 0, we have
g�( p) = 1− φ�( p)f ( p)− f �( p)φ( p) = 1− φ�( p) · 0− f �( p)φ( p) = 1− f �( p)φ( p),
and g�( p) = 0 if and only if φ( p) = 1/f �( p).
If we let φ(x) = 1/f �(x), then we will ensure that φ( p) = 1/f �( p) and produce the

quadratically convergent procedure

pn = g( pn−1) = pn−1 − f ( pn−1)
f �( pn−1)

.

This, of course, is simply Newton’s method. Hence

• If f ( p) = 0 and f �( p) �= 0, then for starting values sufficiently close to p, Newton’s
method will converge at least quadratically.

Multiple Roots

In the preceding discussion, the restriction wasmade that f �( p) �= 0,where p is the solution
to f (x) = 0. In particular, Newton’s method and the Secant method will generally give
problems if f �( p) = 0 when f ( p) = 0. To examine these difficulties in more detail, we
make the following definition.

Definition 2.10 A solution p of f (x) = 0 is a zero of multiplicity m of f if for x �= p, we can write
f (x) = (x − p)mq(x), where limx→p q(x) �= 0.

In essence, q(x) represents that portion of f (x) that does not contribute to the zero of
f . The following result gives a means to easily identify simple zeros of a function, those
that have multiplicity one.

For polynomials, p is a zero
of multiplicity m of f if
f (x) = (x − p)mq(x), where
q( p) �= 0.

Theorem 2.11 The function f ∈ C1[a, b] has a simple zero at p in (a, b) if and only if f ( p) = 0, but
f �( p) �= 0.

Proof If f has a simple zero at p, then f ( p) = 0 and f (x) = (x − p)q(x), where
limx→p q(x) �= 0. Since f ∈ C1[a, b],

f �( p) = lim
x→p f

�(x) = lim
x→p[q(x)+ (x − p)q

�(x)] = lim
x→p q(x) �= 0.

Conversely, if f ( p) = 0, but f �( p) �= 0, expand f in a zeroth Taylor polynomial about p.
Then

f (x) = f ( p)+ f �(ξ(x))(x − p) = (x − p)f �(ξ(x)),
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where ξ(x) is between x and p. Since f ∈ C1[a, b],
lim
x→p f

�(ξ(x)) = f �
�
lim
x→p ξ(x)

�
= f �( p) �= 0.

Letting q = f � ◦ ξ gives f (x) = (x− p)q(x), where limx→p q(x) �= 0. Thus f has a simple
zero at p.

The following generalization of Theorem 2.11 is considered in Exercise 12.

Theorem 2.12 The function f ∈ Cm[a, b] has a zero of multiplicity m at p in (a, b) if and only if
0 = f ( p) = f �( p) = f ��( p) = · · · = f (m−1)( p), but f (m)( p) �= 0.

The result in Theorem 2.12 implies that an interval about p exists where Newton’s
method converges quadratically to p for any initial approximation p0 = p, provided that p
is a simple zero. The following example shows that quadratic convergence might not occur
if the zero is not simple.

Example 1 Let f (x) = ex − x− 1. (a) Show that f has a zero of multiplicity 2 at x = 0. (b) Show that
Newton’s method with p0 = 1 converges to this zero but not quadratically.
Solution (a)We have

f (x) = ex − x − 1, f �(x) = ex − 1 and f ��(x) = ex,
so

f (0) = e0 − 0− 1 = 0, f �(0) = e0 − 1 = 0 and f ��(0) = e0 = 1.
Theorem 2.12 implies that f has a zero of multiplicity 2 at x = 0.
(b) The first two terms generated by Newton’s method applied to f with p0 = 1 are

p1 = p0 − f ( p0)
f �( p0)

= 1− e− 2
e− 1 ≈ 0.58198,

and

p2 = p1 − f ( p1)
f �( p1)

≈ 0.58198− 0.20760
0.78957

≈ 0.31906.

The first sixteen terms of the sequence generated by Newton’s method are shown in Table
2.8. The sequence is clearly converging to 0, but not quadratically. The graph of f is shown
in Figure 2.12.

Table 2.8

n pn

0 1.0
1 0.58198
2 0.31906
3 0.16800
4 0.08635
5 0.04380
6 0.02206
7 0.01107
8 0.005545
9 2.7750× 10−3
10 1.3881× 10−3
11 6.9411× 10−4
12 3.4703× 10−4
13 1.7416× 10−4
14 8.8041× 10−5
15 4.2610× 10−5
16 1.9142× 10−6

Figure 2.12
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One method of handling the problem of multiple roots of a function f is to define

µ(x) = f (x)
f �(x)

.

If p is a zero of f of multiplicity m with f (x) = (x − p)mq(x), then

µ(x) = (x − p)mq(x)
m(x − p)m−1q(x)+ (x − p)mq�(x)

= (x − p) q(x)

mq(x)+ (x − p)q�(x)
also has a zero at p. However, q( p) �= 0, so

q( p)

mq( p)+ ( p− p)q�( p) =
1

m
�= 0,

and p is a simple zero of µ(x). Newton’s method can then be applied to µ(x) to give

g(x) = x − µ(x)
µ�(x)

= x − f (x)/f �(x)
{[f �(x)]2 − [f (x)][f ��(x)]}/[f �(x)]2

which simplifies to

g(x) = x − f (x)f �(x)
[f �(x)]2 − f (x)f ��(x) . (2.13)

If g has the required continuity conditions, functional iteration applied to g will be
quadratically convergent regardless of the multiplicity of the zero of f . Theoretically, the
only drawback to this method is the additional calculation of f ��(x) and the more laborious
procedure of calculating the iterates. In practice, however, multiple roots can cause serious
round-off problems because the denominator of (2.13) consists of the difference of two
numbers that are both close to 0.

Example 2 In Example 1 it was shown that f (x) = ex − x− 1 has a zero of multiplicity 2 at x = 0 and
that Newton’smethodwith p0 = 1 converges to this zero but not quadratically. Show that the
modification of Newton’s method as given in Eq. (2.13) improves the rate of convergence.

Solution Modified Newton’s method gives

p1 = p0 − f ( p0)f �( p0)
f �( p0)2 − f ( p0)f ��( p0) = 1−

(e− 2)(e− 1)
(e− 1)2 −( e− 2)e ≈ −2.3421061× 10

−1.

This is considerably closer to 0 than the first term using Newton’s method, which was
0.58918. Table 2.9 lists the first five approximations to the double zero at x = 0. The results
were obtained using a systemwith ten digits of precision. The relative lack of improvement
in the last two entries is due to the fact that using this system both the numerator and the
denominator approach 0. Consequently there is a loss of significant digits of accuracy as
the approximations approach 0.

Table 2.9

n pn

1 −2.3421061× 10−1
2 −8.4582788× 10−3
3 −1.1889524× 10−5
4 −6.8638230× 10−6
5 −2.8085217× 10−7

The following illustrates that the modified Newton’s method converges quadratically
even when in the case of a simple zero.

Illustration In Section 2.2 we found that a zero of f (x) = x3 + 4x2 − 10 = 0 is p = 1.36523001.
Here we will compare convergence for a simple zero using both Newton’s method and the
modified Newton’s method listed in Eq. (2.13). Let
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(i) pn = pn−1 − p
3
n−1 + 4p2n−1 − 10
3p2n−1 + 8pn−1

, from Newton’s method

and, from the Modified Newton’s method given by Eq. (2.13),

(ii) pn = pn−1 − ( p3n−1 + 4p2n−1 − 10)(3p2n−1 + 8pn−1)
(3p2n−1 + 8pn−1)2 − ( p3n−1 + 4p2n−1 − 10)(6pn−1 + 8)

.

With p0 = 1.5, we have

Newton’s method

p1 = 1.37333333, p2 = 1.36526201, and p3 = 1.36523001.
Modified Newton’s method

p1 = 1.35689898, p2 = 1.36519585, and p3 = 1.36523001.
Both methods are rapidly convergent to the actual zero, which is given by both methods as
p3. Note, however, that in the case of a simple zero the original Newton’s method requires
substantially less computation.

Maple contains Modified Newton’s method as described in Eq. (2.13) in itsNumerical-
Analysis package. The options for this command are the same as those for the Bisection
method. To obtain results similar to those in Table 2.9 we can use

with(Student[NumericalAnalysis])

f := ex − x − 1
ModifiedNewton

�
f , x = 1.0, tolerance = 10−10, output = sequence,maxiterations = 20�

Remember that there is sensitivity to round-off error in these calculations, so you might
need to reset Digits in Maple to get the exact values in Table 2.9.

E X E R C I S E S E T 2.4

1. Use Newton’s method to find solutions accurate to within 10−5 to the following problems.
a. x2 − 2xe−x + e−2x = 0, for 0 ≤ x ≤ 1
b. cos(x +√2)+ x(x/2+√2) = 0, for −2 ≤ x ≤ −1
c. x3 − 3x2(2−x)+ 3x(4−x)− 8−x = 0, for 0 ≤ x ≤ 1
d. e6x + 3(ln 2)2e2x − (ln 8)e4x − (ln 2)3 = 0, for −1 ≤ x ≤ 0

2. Use Newton’s method to find solutions accurate to within 10−5 to the following problems.
a. 1− 4x cos x + 2x2 + cos 2x = 0, for 0 ≤ x ≤ 1
b. x2 + 6x5 + 9x4 − 2x3 − 6x2 + 1 = 0, for −3 ≤ x ≤ −2
c. sin 3x + 3e−2x sin x − 3e−x sin 2x − e−3x = 0, for 3 ≤ x ≤ 4
d. e3x − 27x6 + 27x4ex − 9x2e2x = 0, for 3 ≤ x ≤ 5

3. Repeat Exercise 1 using the modified Newton’s method described in Eq. (2.13). Is there an improve-
ment in speed or accuracy over Exercise 1?
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4. Repeat Exercise 2 using the modified Newton’s method described in Eq. (2.13). Is there an improve-
ment in speed or accuracy over Exercise 2?

5. Use Newton’s method and the modified Newton’s method described in Eq. (2.13) to find a solution
accurate to within 10−5 to the problem

e6x + 1.441e2x − 2.079e4x − 0.3330 = 0, for − 1 ≤ x ≤ 0.
This is the same problem as 1(d) with the coefficients replaced by their four-digit approximations.
Compare the solutions to the results in 1(d) and 2(d).

6. Show that the following sequences converge linearly to p = 0. How large must n be before |pn − p| ≤
5× 10−2?
a. pn = 1

n
, n ≥ 1 b. pn = 1

n2
, n ≥ 1

7. a. Show that for any positive integer k, the sequence defined by pn = 1/nk converges linearly to
p = 0.

b. For each pair of integers k and m, determine a number N for which 1/Nk < 10−m .
8. a. Show that the sequence pn = 10−2n converges quadratically to 0.

b. Show that the sequence pn = 10−nk does not converge to 0 quadratically, regardless of the size
of the exponent k > 1.

9. a. Construct a sequence that converges to 0 of order 3.

b. Suppose α > 1. Construct a sequence that converges to 0 zero of order α.

10. Suppose p is a zero of multiplicity m of f , where f (m) is continuous on an open interval containing
p. Show that the following fixed-point method has g�( p) = 0:

g(x) = x − mf (x)
f �(x)

.

11. Show that the Bisection Algorithm 2.1 gives a sequence with an error bound that converges linearly
to 0.

12. Suppose that f has m continuous derivatives. Modify the proof of Theorem 2.11 to show that f has
a zero of multiplicity m at p if and only if

0 = f ( p) = f �( p) = · · · = f (m−1)( p), but f (m)( p) �= 0.
13. The iterative method to solve f (x) = 0, given by the fixed-point method g(x) = x, where

pn = g( pn−1) = pn−1 − f ( pn−1)
f �( pn−1)

− f
��( pn−1)
2f �( pn−1)

�
f ( pn−1)
f �( pn−1)

�2
, for n = 1, 2, 3, . . . ,

has g�( p) = g��( p) = 0. This will generally yield cubic (α = 3) convergence. Expand the analysis of
Example 1 to compare quadratic and cubic convergence.

14. It can be shown (see, for example, [DaB], pp. 228–229) that if { pn}∞n=0 are convergent Secant
method approximations to p, the solution to f (x) = 0, then a constant C exists with |pn+1 − p| ≈
C |pn − p| |pn−1 − p| for sufficiently large values of n. Assume { pn} converges to p of order α, and
show that α = (1+√5)/2. (Note: This implies that the order of convergence of the Secant method
is approximately 1.62).

2.5 Accelerating Convergence

Theorem 2.8 indicates that it is rare to have the luxury of quadratic convergence. We now
consider a technique called Aitken’s�2 method that can be used to accelerate the conver-
gence of a sequence that is linearly convergent, regardless of its origin or application.
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Aitken’s 2 Method
Alexander Aitken (1895-1967)
used this technique in 1926 to
accelerate the rate of convergence
of a series in a paper on algebraic
equations [Ai]. This process is
similar to one used much earlier
by the Japanese mathematician
Takakazu Seki Kowa
(1642-1708).

Suppose { pn}∞n=0 is a linearly convergent sequencewith limit p. Tomotivate the construction
of a sequence {p̂n}∞n=0 that converges more rapidly to p than does { pn}∞n=0, let us first assume
that the signs of pn − p, pn+1 − p, and pn+2 − p agree and that n is sufficiently large that

pn+1 − p
pn − p ≈

pn+2 − p
pn+1 − p .

Then

( pn+1 − p)2 ≈ ( pn+2 − p)( pn − p),
so

p2n+1 − 2pn+1p+ p2 ≈ pn+2pn − ( pn + pn+2)p+ p2

and

( pn+2 + pn − 2pn+1)p ≈ pn+2pn − p2n+1.
Solving for p gives

p ≈ pn+2pn − p2n+1
pn+2 − 2pn+1 + pn .

Adding and subtracting the terms p2n and 2pnpn+1 in the numerator and grouping terms
appropriately gives

p ≈ pnpn+2 − 2pnpn+1 + p
2
n − p2n+1 + 2pnpn+1 − p2n

pn+2 − 2pn+1 + pn

= pn( pn+2 − 2pn+1 + pn)− ( p
2
n+1 − 2pnpn+1 + p2n)

pn+2 − 2pn+1 + pn

= pn − ( pn+1 − pn)2
pn+2 − 2pn+1 + pn .

Aitken’s�2 method is based on the assumption that the sequence { p̂n}∞n=0, defined by

p̂n = pn − ( pn+1 − pn)2
pn+2 − 2pn+1 + pn , (2.14)

converges more rapidly to p than does the original sequence { pn}∞n=0.

Example 1 The sequence { pn}∞n=1, where pn = cos(1/n), converges linearly to p = 1. Determine the
first five terms of the sequence given by Aitken’s �2 method.

Solution In order to determine a term p̂n of the Aitken’s �2 method sequence we need to
have the terms pn, pn+1, and pn+2 of the original sequence. So to determine p̂5 we need
the first 7 terms of { pn}. These are given in Table 2.10. It certainly appears that { p̂n}∞n=1
converges more rapidly to p = 1 than does { pn}∞n=1.

Table 2.10

n pn p̂n

1 0.54030 0.96178
2 0.87758 0.98213
3 0.94496 0.98979
4 0.96891 0.99342
5 0.98007 0.99541
6 0.98614
7 0.98981

The� notation associated with this technique has its origin in the following definition.
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Definition 2.13 For a given sequence { pn}∞n=0, the forward difference �pn (read “delta pn”) is defined by

�pn = pn+1 − pn, for n ≥ 0.
Higher powers of the operator � are defined recursively by

�kpn = �(�k−1pn), for k ≥ 2.

The definition implies that

�2pn = �( pn+1 − pn) = �pn+1 −�pn = ( pn+2 − pn+1)− ( pn+1 − pn).
So�2pn = pn+2 − 2pn+1 + pn, and the formula for p̂n given in Eq. (2.14) can be written as

p̂n = pn − (�pn)
2

�2pn
, for n ≥ 0. (2.15)

To this point in our discussion of Aitken’s�2 method, we have stated that the sequence
{p̂n}∞n=0, converges to p more rapidly than does the original sequence { pn}∞n=0, but we have
not said what is meant by the term “more rapid” convergence. Theorem 2.14 explains and
justifies this terminology. The proof of this theorem is considered in Exercise 16.

Theorem 2.14 Suppose that { pn}∞n=0 is a sequence that converges linearly to the limit p and that

lim
n→∞

pn+1 − p
pn − p < 1.

Then the Aitken’s�2 sequence {p̂n}∞n=0 converges to p faster than { pn}∞n=0 in the sense that

lim
n→∞

p̂n − p
pn − p = 0.

Steffensen’s Method
Johan Frederik Steffensen
(1873–1961) wrote an influential
book entitled Interpolation in
1927.

By applying a modification of Aitken’s �2 method to a linearly convergent sequence ob-
tained from fixed-point iteration, we can accelerate the convergence to quadratic. This
procedure is known as Steffensen’s method and differs slightly from applying Aitken’s
�2 method directly to the linearly convergent fixed-point iteration sequence. Aitken’s �2

method constructs the terms in order:

p0, p1 = g( p0), p2 = g( p1), p̂0 = {�2}( p0),
p3 = g( p2), p̂1 = {�2}( p1), . . . ,

where {�2} indicates that Eq. (2.15) is used. Steffensen’s method constructs the same
first four terms, p0, p1, p2, and p̂0. However, at this step we assume that p̂0 is a better
approximation to p than is p2 and apply fixed-point iteration to p̂0 instead of p2. Using this
notation, the sequence is

p(0)0 , p
(0)
1 = g( p(0)0 ), p(0)2 = g( p(0)1 ), p(1)0 = {�2}( p(0)0 ), p(1)1 = g( p(1)0 ), . . . .

Every third term of the Steffensen sequence is generated by Eq. (2.15); the others use
fixed-point iteration on the previous term. The process is described in Algorithm 2.6.
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ALGORITHM

2.6
Steffensen’s

To find a solution to p = g( p) given an initial approximation p0:

INPUT initial approximation p0; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set i = 1.
Step 2 While i ≤ N0 do Steps 3–6.

Step 3 Set p1 = g( p0); (Compute p(i−1)1 .)

p2 = g( p1); (Compute p(i−1)2 .)

p = p0 − ( p1 − p0)2/( p2 − 2p1 + p0). (Compute p(i)0 .)
Step 4 If | p− p0| < TOL then

OUTPUT (p); (Procedure completed successfully.)
STOP.

Step 5 Set i = i+ 1.
Step 6 Set p0 = p. (Update p0.)

Step 7 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(Procedure completed unsuccessfully.)
STOP.

Note that �2pn might be 0, which would introduce a 0 in the denominator of the next
iterate. If this occurs, we terminate the sequence and select p(n−1)2 as the best approximation.

Illustration To solve x3+ 4x2 − 10 = 0 using Steffensen’s method, let x3+ 4x2 = 10, divide by x+ 4,
and solve for x. This procedure produces the fixed-point method

g(x) =
�
10

x + 4
�1/2
.

We considered this fixed-point method in Table 2.2 column (d) of Section 2.2.

Applying Steffensen’s procedure with p0 = 1.5 gives the values in Table 2.11. The iterate
p(2)0 = 1.365230013 is accurate to the ninth decimal place. In this example, Steffensen’s
method gave about the same accuracy as Newton’s method applied to this polynomial.
These results can be seen in the Illustration at the end of Section 2.4.

Table 2.11 k p(k)0 p(k)1 p(k)2

0 1.5 1.348399725 1.367376372
1 1.365265224 1.365225534 1.365230583
2 1.365230013

From the Illustration, it appears that Steffensen’s method gives quadratic convergence
without evaluating a derivative, and Theorem 2.14 states that this is the case. The proof of
this theorem can be found in [He2], pp. 90–92, or [IK], pp. 103–107.
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Theorem 2.15 Suppose that x = g(x) has the solution p with g�( p) �= 1. If there exists a δ > 0 such
that g ∈ C3[p − δ, p + δ], then Steffensen’s method gives quadratic convergence for any
p0 ∈ [p− δ, p+ δ].

Steffensen’s method can be implemented in Maple with the NumericalAnalysis pack-
age. For example, after entering the function

g :=
�
10

x + 4
the Maple command

Steffensen( fixedpointiterator = g, x = 1.5, tolerance = 10−8, output = information,
maxiterations = 20)
produces the results in Table 2.11, as well as an indication that the final approximation has
a relative error of approximately 7.32× 10−10.

E X E R C I S E S E T 2.5

1. The following sequences are linearly convergent. Generate the first five terms of the sequence {p̂n}
using Aitken’s �2 method.

a. p0 = 0.5, pn = (2− epn−1 + p2n−1)/3, n ≥ 1
b. p0 = 0.75, pn = (epn−1/3)1/2, n ≥ 1
c. p0 = 0.5, pn = 3−pn−1 , n ≥ 1
d. p0 = 0.5, pn = cos pn−1, n ≥ 1

2. Consider the function f (x) = e6x+3(ln 2)2e2x−(ln 8)e4x−(ln 2)3. UseNewton’smethodwith p0 = 0
to approximate a zero of f . Generate terms until | pn+1 − pn| < 0.0002. Construct the sequence {p̂n}.
Is the convergence improved?

3. Let g(x) = cos(x − 1) and p(0)0 = 2. Use Steffensen’s method to find p(1)0 .
4. Let g(x) = 1+ (sin x)2 and p(0)0 = 1. Use Steffensen’s method to find p(1)0 and p(2)0 .
5. Steffensen’s method is applied to a function g(x) using p(0)0 = 1 and p(0)2 = 3 to obtain p(1)0 = 0.75.

What is p(0)1 ?

6. Steffensen’smethod is applied to a function g(x) using p(0)0 = 1 and p(0)1 =
√
2 to obtain p(1)0 = 2.7802.

What is p(0)2 ?

7. Use Steffensen’s method to find, to an accuracy of 10−4, the root of x3 − x− 1 = 0 that lies in [1, 2],
and compare this to the results of Exercise 6 of Section 2.2.

8. Use Steffensen’s method to find, to an accuracy of 10−4, the root of x − 2−x = 0 that lies in [0, 1],
and compare this to the results of Exercise 8 of Section 2.2.

9. Use Steffensen’s method with p0 = 2 to compute an approximation to
√
3 accurate to within 10−4.

Compare this result with those obtained in Exercise 9 of Section 2.2 and Exercise 12 of Section 2.1.

10. Use Steffensen’s method with p0 = 3 to compute an approximation to 3
√
25 accurate to within 10−4.

Compare this result with those obtained in Exercise 10 of Section 2.2 and Exercise 13 of Section 2.1.

11. Use Steffensen’s method to approximate the solutions of the following equations to within 10−5.
a. x = (2− ex + x2)/3, where g is the function in Exercise 11(a) of Section 2.2.
b. x = 0.5(sin x + cos x), where g is the function in Exercise 11(f) of Section 2.2.
c. x = (ex/3)1/2, where g is the function in Exercise 11(c) of Section 2.2.
d. x = 5−x, where g is the function in Exercise 11(d) of Section 2.2.

12. Use Steffensen’s method to approximate the solutions of the following equations to within 10−5.
a. 2+ sin x − x = 0, where g is the function in Exercise 12(a) of Section 2.2.
b. x3 − 2x − 5 = 0, where g is the function in Exercise 12(b) of Section 2.2.



2.6 Zeros of Polynomials and Müller’s Method 91

c. 3x2 − ex = 0, where g is the function in Exercise 12(c) of Section 2.2.
d. x − cos x = 0, where g is the function in Exercise 12(d) of Section 2.2.

13. The following sequencesconverge to 0.UseAitken’s�2 method to generate {p̂n} until |p̂n| ≤ 5×10−2:
a. pn = 1

n
, n ≥ 1 b. pn = 1

n2
, n ≥ 1

14. A sequence { pn} is said to be superlinearly convergent to p if

lim
n→∞

| pn+1 − p|
| pn − p| = 0.

a. Show that if pn → p of order α for α > 1, then { pn} is superlinearly convergent to p.
b. Show that pn = 1

nn is superlinearly convergent to 0 but does not converge to 0 of order α for any
α > 1.

15. Suppose that { pn} is superlinearly convergent to p. Show that

lim
n→∞

| pn+1 − pn|
| pn − p| = 1.

16. Prove Theorem 2.14. [Hint: Let δn = ( pn+1 − p)/( pn − p)− λ, and show that limn→∞ δn = 0. Then
express (p̂n+1 − p)/( pn − p) in terms of δn, δn+1, and λ.]

17. Let Pn(x) be the nth Taylor polynomial for f (x) = ex expanded about x0 = 0.
a. For fixed x, show that pn = Pn(x) satisfies the hypotheses of Theorem 2.14.
b. Let x = 1, and use Aitken’s �2 method to generate the sequence p̂0, . . . , p̂8.
c. Does Aitken’s method accelerate convergence in this situation?

2.6 Zeros of Polynomials and Müller’s Method

A polynomial of degree n has the form

P(x) = anxn + an−1xn−1 + · · · + a1x + a0,
where the ai’s, called the coefficients of P, are constants and an �= 0. The zero function,
P(x) = 0 for all values of x, is considered a polynomial but is assigned no degree.

Algebraic Polynomials

Theorem 2.16 (Fundamental Theorem of Algebra)
If P(x) is a polynomial of degree n ≥ 1 with real or complex coefficients, then P(x) = 0
has at least one ( possibly complex) root.

Although the Fundamental Theorem of Algebra is basic to any study of elementary
functions, the usual proof requires techniques from the study of complex function theory.
The reader is referred to [SaS], p. 155, for the culmination of a systematic development of
the topics needed to prove the Theorem.

Example 1 Determine all the zeros of the polynomial P(x) = x3 − 5x2 + 17x − 13.
Solution It is easily verified that P(1) = 1− 5+ 17− 13 = 0. so x = 1 is a zero of P and
(x − 1) is a factor of the polynomial. Dividing P(x) by x − 1 gives

P(x) = (x − 1)(x2 − 4x + 13).
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To determine the zeros of x2 − 4x + 13 we use the quadratic formula in its standard form,
which gives the complex zeros

−(−4)±�(−4)2 − 4(1)(13)
2(1)

= 4±
√−36
2

= 2± 3i.

Hence the third-degree polynomial P(x) has three zeros, x1 = 1, x2 = 2 − 3i, and
x2 = 2+ 3i.

Carl Friedrich Gauss
(1777–1855), one of the greatest
mathematicians of all time,
proved the Fundamental Theorem
of Algebra in his doctoral
dissertation and published it in
1799. He published different
proofs of this result throughout
his lifetime, in 1815, 1816, and as
late as 1848. The result had been
stated, without proof, by Albert
Girard (1595–1632), and partial
proofs had been given by Jean
d’Alembert (1717–1783), Euler,
and Lagrange.

In the preceding example we found that the third-degree polynomial had three distinct
zeros. An important consequence of the Fundamental Theorem of Algebra is the following
corollary. It states that this is always the case, provided that when the zeros are not distinct
we count the number of zeros according to their multiplicities.

Corollary 2.17 If P(x) is a polynomial of degree n ≥ 1 with real or complex coefficients, then there exist
unique constants x1, x2, . . ., xk , possibly complex, and unique positive integers m1, m2, . . .,
mk , such that

�k
i=1 mi = n and

P(x) = an(x − x1)m1(x − x2)m2 · · · (x − xk)mk .

By Corollary 2.17 the collection of zeros of a polynomial is unique and, if each zero
xi is counted as many times as its multiplicity mi, a polynomial of degree n has exactly n
zeros.
The following corollary of the Fundamental Theorem of Algebra is used often in this

section and in later chapters.

Corollary 2.18 Let P(x) and Q(x) be polynomials of degree at most n. If x1, x2, . . . , xk, with k > n, are
distinct numbers with P(xi) = Q(xi) for i = 1, 2, . . . , k, then P(x) = Q(x) for all values
of x.

This result implies that to show that two polynomials of degree less than or equal to n
are the same, we only need to show that they agree at n+ 1 values. This will be frequently
used, particularly in Chapters 3 and 8.

Horner’s Method

To use Newton’s method to locate approximate zeros of a polynomial P(x), we need to
evaluate P(x) and P�(x) at specified values. Since P(x) and P�(x) are both polynomials,
computational efficiency requires that the evaluation of these functions be done in the nested
manner discussed in Section 1.2. Horner’s method incorporates this nesting technique, and,
as a consequence, requires only n multiplications and n additions to evaluate an arbitrary
nth-degree polynomial.

William Horner (1786–1837) was
a child prodigy who became
headmaster of a school in Bristol
at age 18. Horner’s method for
solving algebraic equations
was published in 1819 in the
Philosophical Transactions of the
Royal Society.

Theorem 2.19 (Horner’s Method)
Let

P(x) = anxn + an−1xn−1 + · · · + a1x + a0.
Define bn = an and

bk = ak + bk+1x0, for k = n− 1, n− 2, . . . , 1, 0.
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Then b0 = P(x0). Moreover, if
Q(x) = bnxn−1 + bn−1xn−2 + · · · + b2x + b1,

then

P(x) = (x − x0)Q(x)+ b0.
Paolo Ruffini (1765–1822) had
described a similar method which
won him the gold medal from the
Italian Mathematical Society for
Science. Neither Ruffini nor
Horner was the first to discover
this method; it was known in
China at least 500 years earlier.

Proof By the definition of Q(x),

(x − x0)Q(x)+ b0 = (x − x0)(bnxn−1 + · · · + b2x + b1)+ b0
= (bnxn + bn−1xn−1 + · · · + b2x2 + b1x)
− (bnx0xn−1 + · · · + b2x0x + b1x0)+ b0
= bnxn + (bn−1 − bnx0)xn−1 + · · · + (b1 − b2x0)x + (b0 − b1x0).

By the hypothesis, bn = an and bk − bk+1x0 = ak, so
(x − x0)Q(x)+ b0 = P(x) and b0 = P(x0).

Example 2 Use Horner’s method to evaluate P(x) = 2x4 − 3x2 + 3x − 4 at x0 = −2.
Solution When we use hand calculation in Horner’s method, we first construct a table,
which suggests the synthetic division name that is often applied to the technique. For this
problem, the table appears as follows:

Coefficient Coefficient Coefficient Coefficient Constant
of x4 of x3 of x2 of x term

x0 = −2 a4 = 2 a3 = 0 a2 = −3 a1 = 3 a0 = −4
b4x0 = −4 b3x0 = 8 b2x0 = −10 b1x0 = 14

b4 = 2 b3 = −4 b2 = 5 b1 = −7 b0 = 10

So,

P(x) = (x + 2)(2x3 − 4x2 + 5x − 7)+ 10.The word synthetic has its roots
in various languages. In standard
English it generally provides the
sense of something that is “false”
or “substituted”. But in
mathematics it takes the form of
something that is “grouped
together”. Synthetic geometry
treats shapes as whole, rather
than as individual objects, which
is the style in analytic geometry.
In synthetic division of
polynomials, the various powers
of the variables are not explicitly
given but kept grouped together.

An additional advantage of using the Horner (or synthetic-division) procedure is that,
since

P(x) = (x − x0)Q(x)+ b0,
where

Q(x) = bnxn−1 + bn−1xn−2 + · · · + b2x + b1,
differentiating with respect to x gives

P�(x) = Q(x)+ (x − x0)Q�(x) and P�(x0) = Q(x0). (2.16)

When the Newton-Raphson method is being used to find an approximate zero of a polyno-
mial, P(x) and P�(x) can be evaluated in the same manner.
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Example 3 Find an approximation to a zero of

P(x) = 2x4 − 3x2 + 3x − 4,

using Newton’s method with x0 = −2 and synthetic division to evaluate P(xn) and P�(xn)
for each iterate xn.

Solution With x0 = −2 as an initial approximation, we obtained P(−2) in Example 1 by

x0 = −2 2 0 −3 3 −4
−4 8 −10 14

2 −4 5 −7 10 = P(−2).

Using Theorem 2.19 and Eq. (2.16),

Q(x) = 2x3 − 4x2 + 5x − 7 and P�(−2) = Q(−2),

so P�(−2) can be found by evaluating Q(−2) in a similar manner:

x0 = −2 2 −4 5 −7
−4 16 −42

2 −8 21 −49 = Q(−2) = P�(−2)

and

x1 = x0 − P(x0)
P�(x0)

= x0 − P(x0)
Q(x0)

= −2− 10

−49 ≈ −1.796.

Repeating the procedure to find x2 gives

−1.796 2 0 −3 3 −4
−3.592 6.451 −6.197 5.742

2 −3.592 3.451 −3.197 1.742 = P(x1)
−3.592 12.902 −29.368

2 −7.184 16.353 −32.565 = Q(x1) = P�(x1).

So P(−1.796) = 1.742, P�(−1.796) = Q(−1.796) = −32.565, and

x2 = −1.796− 1.742

−32.565 ≈ −1.7425.

In a similar manner, x3 = −1.73897, and an actual zero to five decimal places is−1.73896.
Note that the polynomial Q(x) depends on the approximation being used and changes

from iterate to iterate.

Algorithm 2.7 computes P(x0) and P�(x0) using Horner’s method.
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ALGORITHM

2.7
Horner’s

To evaluate the polynomial

P(x) = anxn + an−1xn−1 + · · · + a1x + a0 = (x − x0)Q(x)+ b0
and its derivative at x0:

INPUT degree n; coefficients a0, a1, . . . , an; x0.

OUTPUT y = P(x0); z = P�(x0).
Step 1 Set y = an; (Compute bn for P.)

z = an. (Compute bn−1 for Q.)
Step 2 For j = n− 1, n− 2, . . . , 1

set y = x0y+ aj; (Compute bj for P.)
z = x0z + y. (Compute bj−1 for Q.)

Step 3 Set y = x0y+ a0. (Compute b0 for P.)
Step 4 OUTPUT (y, z);

STOP.

If the N th iterate, xN , in Newton’s method is an approximate zero for P, then

P(x) = (x − xN )Q(x)+ b0 = (x − xN)Q(x)+ P(xN) ≈ (x − xN)Q(x),
so x − xN is an approximate factor of P(x). Letting x̂1 = xN be the approximate zero of P
and Q1(x) ≡ Q(x) be the approximate factor gives

P(x) ≈ (x − x̂1)Q1(x).
We can find a second approximate zero of P by applying Newton’s method to Q1(x).
If P(x) is an nth-degree polynomial with n real zeros, this procedure applied repeatedly

will eventually result in (n−2) approximate zeros ofP and an approximate quadratic factor
Qn−2(x). At this stage, Qn−2(x) = 0 can be solved by the quadratic formula to find the last
two approximate zeros of P. Although this method can be used to find all the approximate
zeros, it depends on repeated use of approximations and can lead to inaccurate results.
The procedure just described is called deflation. The accuracy difficulty with deflation

is due to the fact that, when we obtain the approximate zeros of P(x), Newton’s method is
used on the reduced polynomial Qk(x), that is, the polynomial having the property that

P(x) ≈ (x − x̂1)(x − x̂2) · · · (x − x̂k)Qk(x).
An approximate zero x̂k+1 of Qk will generally not approximate a root of P(x) = 0 as well
as it does a root of the reduced equationQk(x) = 0, and inaccuracy increases as k increases.
Oneway to eliminate this difficulty is to use the reduced equations tofind approximations x̂2,
x̂3, . . . , x̂k to the zeros of P, and then improve these approximations by applying Newton’s
method to the original polynomial P(x).

Complex Zeros: Müller’s Method

One problem with applying the Secant, False Position, or Newton’s method to polynomials
is the possibility of the polynomial having complex roots even when all the coefficients are
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real numbers. If the initial approximation is a real number, all subsequent approximations
will also be real numbers. One way to overcome this difficulty is to begin with a complex
initial approximation and do all the computations using complex arithmetic. An alternative
approach has its basis in the following theorem.

Theorem 2.20 If z = a+bi is a complex zero ofmultiplicitym of the polynomialP(x)with real coefficients,
then z = a − bi is also a zero of multiplicity m of the polynomial P(x), and (x2 − 2ax +
a2 + b2)m is a factor of P(x).

A synthetic division involving quadratic polynomials can be devised to approximately
factor the polynomial so that one term will be a quadratic polynomial whose complex roots
are approximations to the roots of the original polynomial. This technique was described
in some detail in our second edition [BFR]. Instead of proceeding along these lines, we
will now consider a method first presented by D. E. Müller [Mu]. This technique can be
used for any root-finding problem, but it is particularly useful for approximating the roots
of polynomials.

Müller’s method is similar to the
Secant method. But whereas the
Secant method uses a line
through two points on the curve
to approximate the root, Müller’s
method uses a parabola through
three points on the curve for the
approximation.

The Secant method begins with two initial approximations p0 and p1 and determines
the next approximation p2 as the intersection of the x-axis with the line through ( p0, f ( p0))
and ( p1, f ( p1)). (See Figure 2.13(a).) Müller’s method uses three initial approximations,
p0, p1, and p2, and determines the next approximation p3 by considering the intersection
of the x-axis with the parabola through ( p0,f ( p0)), ( p1,f ( p1)), and ( p2, f ( p2)). (See
Figure 2.13(b).)

Figure 2.13
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The derivation of Müller’s method begins by considering the quadratic polynomial

P(x) = a(x − p2)2 + b(x − p2)+ c
that passes through ( p0, f ( p0)), ( p1, f ( p1)), and ( p2, f ( p2)). The constants a, b, and c
can be determined from the conditions

f ( p0) = a( p0 − p2)2 + b( p0 − p2)+ c, (2.17)

f ( p1) = a( p1 − p2)2 + b( p1 − p2)+ c, (2.18)

and

f ( p2) = a · 02 + b · 0+ c = c (2.19)
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to be

c = f ( p2), (2.20)

b = ( p0 − p2)
2[f ( p1)− f ( p2)] − ( p1 − p2)2[f ( p0)− f ( p2)]

( p0 − p2)( p1 − p2)( p0 − p1) , (2.21)

and

a = ( p1 − p2)[f ( p0)− f ( p2)] − ( p0 − p2)[f ( p1)− f ( p2)]
( p0 − p2)( p1 − p2)( p0 − p1) . (2.22)

To determine p3, a zero ofP, we apply the quadratic formula toP(x) = 0. However, because
of round-off error problems caused by the subtraction of nearly equal numbers, we apply
the formula in the manner prescribed in Eq (1.2) and (1.3) of Section 1.2:

p3 − p2 = −2c
b±√b2 − 4ac .

This formula gives two possibilities for p3, depending on the sign preceding the radical term.
In Müller’s method, the sign is chosen to agree with the sign of b. Chosen in this manner,
the denominator will be the largest in magnitude and will result in p3 being selected as the
closest zero of P to p2. Thus

p3 = p2 − 2c

b+ sgn(b)√b2 − 4ac ,

where a, b, and c are given in Eqs. (2.20) through (2.22).
Once p3 is determined, the procedure is reinitialized using p1, p2, and p3 in place of p0,

p1, and p2 todetermine the next approximation, p4. Themethod continues until a satisfactory
conclusion is obtained. At each step, the method involves the radical

√
b2 − 4ac, so the

method gives approximate complex roots when b2 − 4ac < 0. Algorithm 2.8 implements
this procedure.

ALGORITHM

2.8
Müller’s

To find a solution to f (x) = 0 given three approximations, p0, p1, and p2:

INPUT p0, p1, p2; tolerance TOL; maximum number of iterations N0.

OUTPUT approximate solution p or message of failure.

Step 1 Set h1 = p1 − p0;
h2 = p2 − p1;
δ1 = (f ( p1)− f ( p0))/h1;
δ2 = (f ( p2)− f ( p1))/h2;
d = (δ2 − δ1)/(h2 + h1);
i = 3.

Step 2 While i ≤ N0 do Steps 3–7.
Step 3 b = δ2 + h2d;

D = (b2 − 4f ( p2)d)1/2. (Note: May require complex arithmetic.)
Step 4 If |b− D| < |b+ D| then set E = b+ D

else set E = b− D.
Step 5 Set h = −2f ( p2)/E;

p = p2 + h.
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Step 6 If |h| < TOL then
OUTPUT (p); (The procedure was successful.)
STOP.

Step 7 Set p0 = p1; (Prepare for next iteration.)
p1 = p2;
p2 = p;
h1 = p1 − p0;
h2 = p2 − p1;
δ1 = (f ( p1)− f ( p0))/h1;
δ2 = (f ( p2)− f ( p1))/h2;
d = (δ2 − δ1)/(h2 + h1);
i = i + 1.

Step 8 OUTPUT (‘Method failed after N0 iterations, N0 =’, N0);
(The procedure was unsuccessful.)
STOP.

Illustration Consider the polynomial f (x) = x4 − 3x3 + x2 + x + 1, part of whose graph is shown in
Figure 2.14.

Figure 2.14
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Three sets of three initial points will be used with Algorithm 2.8 and TOL = 10−5 to
approximate the zeros of f . The first set will use p0 = 0.5, p1 = −0.5, and p2 = 0. The
parabola passing through these points has complex roots because it does not intersect the
x-axis. Table 2.12 gives approximations to the corresponding complex zeros of f .

Table 2.12 p0 = 0.5, p1 = −0.5, p2 = 0
i pi f ( pi)

3 −0.100000+ 0.888819i −0.01120000 + 3.014875548i
4 −0.492146+ 0.447031i −0.1691201− 0.7367331502i
5 −0.352226+ 0.484132i −0.1786004+ 0.0181872213i
6 −0.340229+ 0.443036i 0.01197670 − 0.0105562185i
7 −0.339095+ 0.446656i −0.0010550+ 0.000387261i
8 −0.339093+ 0.446630i 0.000000 + 0.000000i
9 −0.339093+ 0.446630i 0.000000 + 0.000000i
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Table 2.13 gives the approximations to the two real zeros of f . The smallest of these uses
p0 = 0.5, p1 = 1.0, and p2 = 1.5, and the largest root is approximated when p0 = 1.5,
p1 = 2.0, and p2 = 2.5.

Table 2.13 p0 = 0.5, p1 = 1.0, p2 = 1.5 p0 = 1.5, p1 = 2.0, p2 = 2.5
i pi f ( pi) i pi f ( pi)

3 1.40637 −0.04851 3 2.24733 −0.24507
4 1.38878 0.00174 4 2.28652 −0.01446
5 1.38939 0.00000 5 2.28878 −0.00012
6 1.38939 0.00000 6 2.28880 0.00000

7 2.28879 0.00000

The values in the tables are accurate approximations to the places listed.

We usedMaple to generate the results in Table 2.12. To find the first result in the table,
define f (x) with

f := x→ x4 − 3x3 + x2 + x + 1
Then enter the initial approximations with

p0 := 0.5; p1 := −0.5; p2 := 0.0
and evaluate the function at these points with

f 0 := f ( p0); f 1 := f ( p1); f 2 := f ( p2)
To determine the coefficients a, b, c, and the approximate solution, enter

c := f 2;

b :=
�
( p0− p2)2 · (f 1− f 2)− ( p1− p2)2 · (f 0− f 2)�

( p0− p2) · ( p1− p2) · ( p0− p1)

a := (( p1− p2) · (f 0− f 2)− ( p0− p2) · (f 1− f 2))
( p0− p2) · ( p1− p2) · ( p0− p1)

p3 := p2− 2c

b+
�

b
abs(b)

�√
b2 − 4a · c

This produces the final Maple output

−0.1000000000+ 0.8888194418I
and evaluating at this approximation gives f ( p3) as

−0.0112000001+ 3.014875548I
This is our first approximation, as seen in Table 2.12.
The illustration shows that Müller’s method can approximate the roots of polynomials

with a variety of starting values. In fact, Müller’smethod generally converges to the root of a
polynomial for any initial approximation choice, although problems can be constructed for
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which convergence will not occur. For example, suppose that for some i we have f ( pi) =
f ( pi+1) = f ( pi+2) �= 0. The quadratic equation then reduces to a nonzero constant
function and never intersects the x-axis. This is not usually the case, however, and general-
purpose software packages using Müller’s method request only one initial approximation
per root and will even supply this approximation as an option.

E X E R C I S E S E T 2.6

1. Find the approximations to within 10−4 to all the real zeros of the following polynomials using
Newton’s method.

a. f (x) = x3 − 2x2 − 5
b. f (x) = x3 + 3x2 − 1
c. f (x) = x3 − x − 1
d. f (x) = x4 + 2x2 − x − 3
e. f (x) = x3 + 4.001x2 + 4.002x + 1.101
f. f (x) = x5 − x4 + 2x3 − 3x2 + x − 4

2. Find approximations to within 10−5 to all the zeros of each of the following polynomials by first
finding the real zeros using Newton’s method and then reducing to polynomials of lower degree to
determine any complex zeros.

a. f (x) = x4 + 5x3 − 9x2 − 85x − 136
b. f (x) = x4 − 2x3 − 12x2 + 16x − 40
c. f (x) = x4 + x3 + 3x2 + 2x + 2
d. f (x) = x5 + 11x4 − 21x3 − 10x2 − 21x − 5
e. f (x) = 16x4 + 88x3 + 159x2 + 76x − 240
f. f (x) = x4 − 4x2 − 3x + 5
g. f (x) = x4 − 2x3 − 4x2 + 4x + 4
h. f (x) = x3 − 7x2 + 14x − 6

3. Repeat Exercise 1 using Müller’s method.

4. Repeat Exercise 2 using Müller’s method.

5. Use Newton’s method to find, within 10−3, the zeros and critical points of the following functions.
Use this information to sketch the graph of f .

a. f (x) = x3 − 9x2 + 12 b. f (x) = x4 − 2x3 − 5x2 + 12x − 5
6. f (x) = 10x3 − 8.3x2 + 2.295x − 0.21141 = 0 has a root at x = 0.29. Use Newton’s method with an

initial approximation x0 = 0.28 to attempt to find this root. Explain what happens.
7. Use Maple to find a real zero of the polynomial f (x) = x3 + 4x − 4.
8. Use Maple to find a real zero of the polynomial f (x) = x3 − 2x − 5.
9. Use each of the following methods to find a solution in [0.1, 1] accurate to within 10−4 for

600x4 − 550x3 + 200x2 − 20x − 1 = 0.

a. Bisection method

b. Newton’s method

c. Secant method

d. method of False Position

e. Müller’s method
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10. Two ladders crisscross an alley of width W . Each ladder reaches from the base of one wall to some
point on the opposite wall. The ladders cross at a height H above the pavement. Find W given that
the lengths of the ladders are x1 = 20 ft and x2 = 30 ft, and that H = 8 ft.

�

�

�

�

11. A can in the shape of a right circular cylinder is to be constructed to contain 1000 cm3. The circular
top and bottom of the can must have a radius of 0.25 cm more than the radius of the can so that the
excess can be used to form a seal with the side. The sheet of material being formed into the side of
the can must also be 0.25 cm longer than the circumference of the can so that a seal can be formed.
Find, to within 10−4, the minimal amount of material needed to construct the can.

��� 

�

�

12. In 1224, Leonardo of Pisa, better known as Fibonacci, answered a mathematical challenge of John of
Palermo in the presence of Emperor Frederick II: find a root of the equation x3+ 2x2+ 10x = 20. He
first showed that the equation had no rational roots and no Euclidean irrational root—that is, no root

in any of the forms a±√b,√a±√b,
�
a ±√b, or

�√
a±√b, where a and b are rational numbers.

He then approximated the only real root, probably using an algebraic technique of Omar Khayyam
involving the intersection of a circle and a parabola. His answer was given in the base-60 number
system as

1+ 22
�
1

60

�
+ 7
�
1

60

�2
+ 42

�
1

60

�3
+ 33

�
1

60

�4
+ 4
�
1

60

�5
+ 40

�
1

60

�6
.

How accurate was his approximation?
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2.7 Survey of Methods and Software

In this chapter we have considered the problem of solving the equation f (x) = 0, where
f is a given continuous function. All the methods begin with initial approximations and
generate a sequence that converges to a root of the equation, if the method is successful.
If [a, b] is an interval on which f (a) and f (b) are of opposite sign, then the Bisection
method and the method of False Position will converge. However, the convergence of these
methods might be slow. Faster convergence is generally obtained using the Secant method
or Newton’s method. Good initial approximations are required for these methods, two for
the Secant method and one for Newton’s method, so the root-bracketing techniques such
as Bisection or the False Position method can be used as starter methods for the Secant or
Newton’s method.
Müller’s methodwill give rapid convergencewithout a particularly good initial approx-

imation. It is not quite as efficient as Newton’s method; its order of convergence near a root
is approximately α = 1.84, compared to the quadratic, α = 2, order of Newton’s method.
However, it is better than the Secant method, whose order is approximately α = 1.62, and
it has the added advantage of being able to approximate complex roots.
Deflation is generally used with Müller’s method once an approximate root of a poly-

nomial has been determined. After an approximation to the root of the deflated equation has
been determined, use eitherMüller’smethod orNewton’smethod in the original polynomial
with this root as the initial approximation. This procedure will ensure that the root being
approximated is a solution to the true equation, not to the deflated equation. We recom-
mended Müller’s method for finding all the zeros of polynomials, real or complex. Müller’s
method can also be used for an arbitrary continuous function.
Other high-order methods are available for determining the roots of polynomials. If

this topic is of particular interest, we recommend that consideration be given to Laguerre’s
method, which gives cubic convergence and also approximates complex roots (see [Ho],
pp. 176–179 for a complete discussion), the Jenkins-Traub method (see [JT]), and Brent’s
method (see [Bre]).
Another method of interest, Cauchy’s method, is similar toMüller’s method but avoids

the failure problem of Müller’s method when f (xi) = f (xi+1) = f (xi+2), for some i. For
an interesting discussion of this method, as well as more detail on Müller’s method, we
recommend [YG], Sections 4.10, 4.11, and 5.4.
Given a specified function f and a tolerance, an efficient program should produce an

approximation to one or more solutions of f (x) = 0, each having an absolute or relative
error within the tolerance, and the results should be generated in a reasonable amount
of time. If the program cannot accomplish this task, it should at least give meaningful
explanations of why success was not obtained and an indication of how to remedy the cause
of failure.
IMSL has subroutines that implement Müller’s method with deflation. Also included

in this package is a routine due to R. P. Brent that uses a combination of linear interpolation,
an inverse quadratic interpolation similar to Müller’s method, and the Bisection method.
Laguerre’smethod is also used to find zeros of a real polynomial. Another routine forfinding
the zeros of real polynomials uses a method of Jenkins-Traub, which is also used to find
zeros of a complex polynomial.
The NAG library has a subroutine that uses a combination of the Bisection method,

linear interpolation, and extrapolation to approximate a real zero of a function on a
given interval. NAG also supplies subroutines to approximate all zeros of a real poly-
nomial or complex polynomial, respectively. Both subroutines use a modified Laguerre
method.



2.7 Survey of Methods and Software 103

The netlib library contains a subroutine that uses a combination of the Bisection and
Secant method developed by T. J. Dekker to approximate a real zero of a function in the
interval. It requires specifying an interval that contains a root and returns an interval with
a width that is within a specified tolerance. Another subroutine uses a combination of the
bisection method, interpolation, and extrapolation to find a real zero of the function on the
interval.
MATLABhas a routine to compute all the roots, both real and complex, of a polynomial,

and one that computes a zero near a specified initial approximation to within a specified
tolerance.
Notice that in spite of the diversity of methods, the professionally written packages

are based primarily on the methods and principles discussed in this chapter. You should be
able to use these packages by reading the manuals accompanying the packages to better
understand the parameters and the specifications of the results that are obtained.
There are three books that we consider to be classics on the solution of nonlinear

equations: those by Traub [Tr], by Ostrowski [Os], and by Householder [Ho]. In addition,
the book by Brent [Bre] served as the basis for many of the currently used root-finding
methods.


