CHAPTER 1

Infinite

Products

1. Introduction. Two topics, infinite products and asymptotic
series, which are seldom included in standard courses are treated to
some extent in short preliminary chapters.

The variables and parameters encountered are to be considered
complex except where it is specifically stipulated that they are real.

Exercises are included not only to present the reader with an
opportunity to increase his skill but also to make available a few
results for which there scemed to be insufficient space in the text.

A short bibliography is included at the end of the hook. All
references are given in a form such as Fasenmyer [2], meaning item
number two under the listing of references to the work of Sister M.
Celine Fasenmyer, or Brafman [1;944], meaning page 944 of item
number one under the listing of references to the work of Fred Braf-
man. In general, specific reference to material a century or more
old is omitted. The work of the giants in the field, Euler, Gauss,
Legendre, etc., is easily located either in standard treatises or in the
collected works of the pertinent mathematician.

2. Definition of an infinite product. The elementary theory of
infinite products closely parallels that of infinite series. Given a
sequence a, defined for all positive integral k, consider the finite
product

n

(1) P,=Tl14+a) =1+ a)l + a) (1 + a).

k=1
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If Lim P, exists and is equal to P # 0, we say that the infinite
n-Pp o

product
(2) H1 (1 + a,)

converges to the value P. If at least one of the factors of the product
(2) is zero, if only a finite number of the factors of (2) are zero, and
if the infinite product with the zero factors deleted converges to a
value P # 0, we say that the infinite product converges to zero.

If the infinite product is not convergent, it is said to be divergent.

If that divergence is due not to the failure of Iim P, to exist but
to the fact that the limit is zero, the product is said to diverge to zero.
We make no attempt to treat products with an infinity of zero
factors.

The peculiar role which zero plays in multiplication is the reason
for the slight difference between the definition of convergence of an
infinite product and the analogous definition of convergence of an
infinite series.

3. A necessary condition for convergence. The general term
of a convergent infinite series must approach zero as the index of
summation approaches infinity. A similar result will now be ob-
tained for infinite products.

Tueorem 1. If[] (1 + a.) converges,
n=1

Lima, = 0.
npo

Proof: 1If the product converges to P # 0,

Lim ﬁ (1 4+ ay)

1= = =kl — Lim (1 + a.).
Lim[[(1+a)
ny»rx k=1

Hence Lim a. = 0, as desired. If the product converges to zero,
n-pco

remove the zero factors and repeat the argument.

4. The associated series of logarithms. Any product without
zero factors has associated with it the series of principal values of
the logarithms of the separate factors in the following sense.
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THEOREM 2. If no a, = —1, [T (1 + a.) and 3 Log (1 + a,)

n=1

converge or diverge together.

Proof: Let the partial product and partial sum be indicated as
follows:

n

Pn = H (1 + ak), Sn = j; Log(l + (1,;;).

k=1

Then* exp S, = P,.. We know from the theory of complex variables

that Lim exp S, = exp Lim S,. Therefore P, approaches a limit
n-ypowo n-ypo

if and only if S, approaches a limit, and P, cannot approach zero
because the exponential function cannot take on the value zero.

5. Absolute convergence. Assume that the product J] (1 + a,)

Nl
has had its zero factors, if any, deleted. We define absolute con-
vergence of the product by utilizing the associated series of logarithms.

The product [] (1 + a.), with zero factors deleted, is said to be

n=]

absolutely convergent if and only if the series ) Log (1 + a,) is
absolutely convergent. m=l

THEOREM 3. The product [] (1 + a,), with zero factors deleted, s
n=1

absolutely convergent if and only if D a, is absolutely convergent.
n=1

Proof: First throw out any a,’s which are zero; they contribute
only unit factors in the product and zero terms in the sum and thus
have no bearing on convergence.

We know that if either the series or the product in the theorem

converges, Lim a, = 0. Let us then consider n large enough, n > n,,
n-pw
so that |a,| < fforalln > n,. We may now write
Log (1 + a,) _ < (=1)*a,t
2 logbe) _ 5,

from which it follows that

Log(1+ay _ | §lalt 5 1 1
o UEZET C Lo e

*We make frequent use of the common notation exp u = e,
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Thus we have

1_|Log +a)|_3
2 a, 2’
from which
Log (1 +a,)| 3 G
. < 5 and Tog (1 + a.) < 2.

By the comparison test it follows that the absolute convergence of

either of 3 Log (1 + a,) or 2 a, implies the absolute convergence
n=1

n=1

of the other. We then use the definition of absolute convergence
of the product to complete the proof of Theorem 3.

Because of Theorem 2 it follows at once that an infinite product
which is absolutely convergent is also convergent.

ExampLE (a): Show that the following product converges and
find its value:

11 [1 tor l)l(n T 3)]’

The series of positive numbers

— 1
E; (n + 1)(n + 3)
i1s known to be convergent. It can easily be tested by the poly-

. . . . =1
nomial test or by comparison with the series ) 5 Hence our

n=1
product is absolutely convergent by Theorem 3.

The partial products are often useful in evaluating an infinite
product. When the following method is employed, there is no need
for the separate testing for convergence made in the preceding
paragraph. Consider the partial products

T 1 o (k42
P"“E[1+(k+1)(/{+3j‘k=1(k+1)(k+3J
3-4-5--(n+ 2T it2 3

T2 34 m+D]d-5-6---n+3)] 2 "nx3

At once Lim P, =&, from which we conclude both that the in-
n-pco

finite product converges and that its value is 2.
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ExampLE (b): Show that if z is not a negative integer,
(n — 1! n:

Li
e G+ DE+29E+3)E+n—D
exists.
We shall form an infinite product for which the expression

_ (n — 1) n:

T e+ DE+DE+3) = 1)

is a partial product, prove that the infinite produet converges, and
thus conclude that Lim P, exists.

P,

nyo
Write
P = n! (n + 1)2
T 4+ D+ 2) (24 n)
n! 2: 3 4+  (n+4 1):
G+ DE+2) (z4+n 1 2: 3 n

-l G ) G )]

Consider now the product*

(2) fl [(1 + ;)(1 + %)]
Since
tim e[ (142) (14 2) - 1]

R T IO U o Ll WP U D) e el
>0 B B>0 B

- L A O Z p, 2E DA ATy,
B0 21@ Br0 2

we conclude with the aid of the comparison test and the convergence

of > 7%‘zthat the product (2) converges. Therefore Lim P, exists.

n=1 n-pow

6. Uniform convergence. Let the factors in the product

II[1 + a.(2)] be dependent upon a complex variable z. Let R

na=]

*We shall find in Chapter 2 that this product has the value zI'(z).
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be a closed region in the z-plane. If the product converges in such
a way that, given any e > 0, there exists an ny independent of z for
all zin R such that

no+p no
g[l + ax(z)] — kI=I] 1+ ak(Z)]! < e

for all positive integral p, we say that the product [] [1 + a.(z)] is
no=]

uniformly convergent in the region R.
Again the convergence properties parallel those of infinite series.
We need a Weierstrass M-test.

THEOREM 4. If there exist positive constants M, such that 3, M,

n=l

is convergent and |a.(z)| < M, for all z in the closed region R, the

product [] [1 + a.(2)] is uniformly convergent in R.

n=]
Proof: Since Y M, is convergent and M, > 0, J] (1 + M,) is
=1 n=1

convergent and Lim [] (1 + M,) exists. Therefore, given any
nypwx k=1

e > 0, there exists an 7, such that

no+p

H(1+xwk)—;j(1+Mk)<e

k=1

for all positive integers p. For all z in R, each a,(z) is such that
law(z)| < M,. Hence

H 1+ @] =TT + a.(e)

ﬂff [1 4+ aiz)] — 1’

k=rn,+1

111+ o] -

<§(1+MQ[ 1 (1+Mk)—1]

k=ne+1
not+p no
< p(1+Mk)—H(l+ﬂfk)<e,
=1 k=1

which was to be proved.
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EXERCISES

1. Show that the following product converges, and find its value:

o 6
H[l tTaF 1)(.m+9)] Ans.

o 1 1
2. Show thatﬂl:[?(l — ?) =3

3. Show that [] (1 - }1) diverges to zero.

n=2

4. Investigate the product [T (1 4+ %) in [2]| < 1.
n=0

Ans. Abs. conv. to —é—

1 z
5. Show that H exp(l> diverges.
n=|
6. Show that H exp(——l) diverges to zero.
n=l
7. Test H (I — —) Ans. Abs. conv. for all finite 2.
ne=l

(_1 n+l1

8. Show that J] I:l + —n—)—] converges to unity.
=l

9. Test for convergence: H (1 - J) for real p = 0.

Ans. Conv. for p > 1 div. for p £ 1.

10. Show that II sin 5’;/ O

convention at z = 0. Hini: Show first that

11. Show that if ¢ is not a negative integer,

il ( - ) enl(?)]

is absolutely convergent for all finite z.  Hint: Show first that

. ; z NEARE _ _1
nL;n;n{(l - c_—i_-_n) exp(n) 1:? = z(c 22).

is absolutely convergent for all finite z with the usual



