
Some Basic Experimental Designs

2.1   Introduction
An experimental design is essentially a rule that determines the assignment of treatments to 

the experimental units keeping in mind the principles of randomization, replication and local 
control. The experiments, however, differ from each other greatly in many respects, depending 
upon the variability in the experimental units and how it is taken care of. Generally the process 
of randomization of the experimental units depends upon the way the variability present in the 
experimental units is accounted for. This then dictates what type of design is used in a given 
experimental situation. In some experimental situations, a naïve design, generated keeping in 
mind the experimental conditions and practical considerations, helps answering the objectives 
of the experiment. Nonetheless, there are some basic (or standard) designs that are used 
frequently by the experimenters because of the ease in running these experiments. The purpose 
of this Chapter is to describe such designs.

We begin with a Completely Randomized Design (CRD), which uses the principles of 
randomization and replication. This design is used when there are strong reasons to believe that 
there is no variability in the experimental units. This will be followed by Randomized Complete 
Block (RCB) Design and Latin Square Design, in which all the three principles of randomization, 
replication and local control are applied. RCB design and Latin Square Design are used when 
there are one and two sources of variability, respectively present in the experimental units. 
In both these designs, the treatment replications are equal. There is flexibility in the choice 
of number of replications in RCB design, but in case of Latin square design, the replication 
number is equal to the number of treatments. As would be seen later in this Chapter and in 
other Chapters as well, it is simply the change in the randomization procedure of the treatments 
to the experimental units that gives rise to different designs. There could, however, be more 
sources of variability present in the experimental units and the randomization would be done 
accordingly. It will become obvious through different Chapters that the randomization and 
control of variability through grouping(s) of the experimental units are related to each other 
and help in controlling the experimental error.

2.2   Completely randomized design
Consider an experimental situation where the experimenter is interested (a) in comparing 

four grazing systems (treatments), viz., rotational, deferred rotational, continuous and cut and 
carry, and (b) to study the effect of the grazing systems on the body weight of the animals. 
Suppose that 16 animals are available for conducting the experiment.  Suppose further that 
the choice of 16 animals is such that they do not contribute to the variability in the final body 
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weights of the animals after being subjected to the grazing systems. In other words, it is assumed 
that the experimental units (subjects or animals) do not contribute to the variability in the data 
and the only explainable part of variability present in the data is because of the four different 
grazing systems. The unexplained part of variability is the experimental error. An easy way of 
running this experiment is to allocate the 4 grazing systems randomly to the 16 animals such 
that each grazing system is received by four animals. However, it is not necessary to have equal 
replication of grazing systems. One can have unequal replication of the treatments as well. But 
as far as possible, it is better to have equal, or as equal as possible, replications of the treatments. 
If that be so, then the replications would differ by at most one. This is known as a design for 
zero-way elimination of heterogeneity.

A zero-way heterogeneity setting design or an unblocked design or a CRD is the simplest 
design in which only two principles of design of experiments viz. randomization and replication 
are used. There is no use of local control here, since the experimental units are assumed to be 
homogeneous. The only identifiable cause of variability is the treatments and the remaining part 
of the variability is the experimental error. 

To make the exposition general, suppose that there are v treatments and n homogeneous 
experimental units. The v treatments are allotted at random to the n experimental units. Let the 

ith treatment be replicated ri times (i = 1,2,…, v) such that . Normally the number of 

replications for different treatments should be equal as it ensures equal precision of estimates 
of linear functions of treatment effects. The average replication number is then n/v, which will 
be a positive integer if v divides n. The actual number of replications of treatments is, however, 
determined by the availability of experimental resources and the requirement of precision and 
sensitivity of comparisons. If the experimental material for some treatments is available in 
limited quantities, the number of replications of these treatments is reduced.  If the estimates of 
certain treatment effects are required with more precision, the number of replications of such 
treatments is increased.  

2.2.1   Randomization
There are several methods of random allocation of treatments to the experimental units.  The 

v treatments are first assigned numbers (or labels) randomly from 1 to v.  The n experimental 
units are also numbered randomly. One method of randomization uses the random number 
tables.  Any column (or columns) of a randomly opened page of a random number table is 
taken.  If v is a one-digit number, then only one column is consulted digit by digit.  If v is a two-
digit number, then two columns (or two-digit random numbers) are consulted. All numbers 
greater than v and zero, are ignored.

Let the first number chosen be  ; then the treatment numbered  is allotted to the first 
unit.  If the second number is  which may or may not be equal to  , then the treatment 
numbered   is allotted to the second unit.  This procedure is continued. When the ith treatment 
number has occurred ri times,  this treatment is ignored subsequently. This process 
terminates when all the units are exhausted.
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One drawback of the above procedure is that sometimes a very large number of random 
numbers may have to be ignored because they are greater than v. It may even happen that the 
random number table is exhausted before the allocation is complete. To avoid this difficulty the 
following procedure is adopted.  

Let v be an s-digit number. Choose P as the highest s-digit number divisible by v. For 
instance, if v = 13, then P = 91; when v = 31, then P = 93; when v = 123, then P = 984. All 
numbers greater than P and zero are ignored. If a selected random number is less than v, then 
it is used as such. If it is greater than or equal to v, then it is divided by v and the remainder is 
taken to be the random number and used for allotting treatment to experimental unit. When 
a number is divisible by v (i.e., the remainder is zero), then the random number is v.  For 
example, assume that v = 123 and the random number drawn is 991. This number would be 
rejected because this is greater than 984. If the random number drawn is 95, then the treatment 
labeled 95 is allotted to that experimental unit. Further, if the random number selected is 567, 
then dividing 567 by 123 would leave the remainder as 75. So treatment labeled 75 is allotted 
to that experimental unit. Further, if the random number selected is 615, then dividing 615 by 
123 would leave the remainder as zero. In this case, treatment labeled as 123 is allotted to that 
experimental unit.

Alternative methods of random allocation
If random number tables are not available, treatments can be allotted by drawing lots as 

explained in the sequel. However, these procedures may not help generate strictly random 
numbers. So these procedures need to be adopted with caution.

The number of the ith treatment is written on ri pieces of papers (i = 1,2,...v). The 
 

pieces of papers are then folded individually so that the numbers written on them are not visible. 
These papers are then drawn one by one at random. Before each draw the slips are thoroughly 
shuffled. The treatment that is drawn at the tth draw is allotted to the tth unit (t = 1,2,...,n)

Random allocation is also possible by using a fair coin.  Let there be 5 treatments and 20 
experimental units. Each treatment is to be replicated four times. Suppose that the experimental 
units are labeled by numbers from 1 to 20 randomly.

When a coin is tossed, there are two possible outcomes; either head or tail appears. Denote 
the “head” by H and the “tail” by T. When the coin is tossed twice, there are four possible 
outcomes; these are HH, HT, TH or TT. Similarly, when the coin is flipped three times, there 
are eight possible outcomes; HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. This can be easily 
generalized to n flippings of the coin.

The 5 treatments are now identified not by serial numbers as earlier but by any five of the 
above eight possible outcomes obtainable by flipping a coin three times. If any of the remaining 
three outcomes, say THT, TTH and TTT appear, no treatment is selected for allotment and the 
coin is again flipped thrice. 
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A coin is now thrown three times and the outcome is noted. If the outcome is any of the 
five outcomes HHH, HHT, HTH, HTT, THH, the treatment labeled by it is allotted to the first 
experimental unit. If the event happened is any of the three, THT, TTH, TTT, it is ignored. 
The coin is again tossed three times and this event is used to select a treatment for the second 
experimental unit. If the same outcome appears more than once, do not reject it until the number 
of times it has appeared equals the number of replications of the treatment it represents. This 
process is continued till all the experimental units are exhausted.

It may be worthwhile mentioning here that the labels are also allotted randomly to all the 
treatments.  This would hold everywhere, whether mentioned or not.

The linear model in this case is

Expected response = general mean + effect of treatments.

Since there is no source of variation in the experimental units, the model does not contain 
the effect due to experimental units.

This can also be written as

response = general mean + treatments effect + error,  

where the errors are independently distributed as normal variate with zero mean and constant 
variance . The partitioning of the total variability in this case is 

Source of variation

Due to model

Error

Total

The component “due to model” can be partitioned as 

Source of variation

Due to model

           Due to treatments      

2.2.2   Analysis of CRD
This design provides a one-way classified data according to levels of a single factor, the single 

factor being the treatments with v levels.  Since no variability is expected from the experimental 
units, the only identifiable source of variability is the treatments. We then have the following 
linear model: 
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where the random variable yij is the observation recorded on the jth replicate of the ith treatment, 
 is the general mean,  is the fixed effect of the ith treatment and eij is the random error 

component associated with the (i, j)th observation, i = 1,2,..., v; j = 1,2,...,ri. These are assumed 
to be distributed independently and normally with zero mean and constant variance . We also 
assume that the replication of the ith treatment is ri,  and .

Let us define the following:  

Treatment totals, , and Grand total as 
 

.

The following formulae can be employed for analysis of variance:

Correction factor (CF) = 

Total sum of squares (SS) = 

Sum of squares due to treatments (SST) = 

Error sum of squares (SSE) =  –  =  - 

 												          
					      							     
				     = Total SS – Treatment SS.

The interest of the experimenter is in testing the null hypothesis:  
against the alternative that  for at least one pair of treatment effects, say 

 and .  For testing this hypothesis, we set up the analysis of variance Table 2.1.
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Table 2.1: ANOVA table in CRD

Source DF SS MS = SS/DF F

Treatments v –1 SST = 

Error n – v SSE =     

Corrected Total n  – 1

If the calculated value of F is greater than the table value of  at  level of 
significance and (v – 1), (n – v) degrees of freedom, then the null hypothesis  is rejected 
at   level of significance and it can be concluded that equality of all the treatment effects does 
not hold. In that case, the researcher has no knowledge about the treatment effects except that 
there is at least one pair of treatments that differs significantly from each other. In that case the 
researcher has to go for the computation of least significant difference (LSD) or other multiple 
comparison procedures as explained in Annexure-III to make pairwise treatment comparisons. 

It may be seen here that the unbiased estimator of  is  

Further, all the elementary treatment contrasts (or treatment contrasts for pairwise 
treatment comparisons) are estimable through the design. The best linear unbiased estimator 
(BLUE) of any treatment contrast   is 

                           

The variance of   is .  The estimated standard error of the estimated difference 

between the ith  and lth treatment effects is  .

The least significant difference (LSD) is given as .

Here denotes the value of Student’s t at  level of significance and error degrees of 

freedom. The treatment means are given by . The pairwise comparison of 

treatment effects can be made by comparing the difference between any two treatment means 
with the LSD. Any two treatment effects are said to differ significantly if the difference of their 
means is larger than the LSD.  



27

Some Basic Experimental Designs

2.2.3   Example 1
An experiment was conducted in Rabi season on a variety of tomato during 2010-11 

with 5 treatments of integrated nutrient management viz. Trt1 ~ farmers’ practice (2.5 tonnes 
farmyard manure/ha), Trt2 ~ recommended dose of fertilizers (NPK 120:75:100), Trt3 ~ 50% 
recommended dose of fertilizers + vermin-compost 5 tonnes/ha, Trt4 ~ 50% recommended 
dose of fertilizers + vermin-compost 10 tonnes/ha and Trt5 ~ 50% recommended dose of 
fertilizers + vermin-compost 2.5 tonnes/ha + farmyard manures 5 tonnes/ha. The objective of 
the experiment was to find out the most appropriate integrated nutrient management system 
for tomato. The experiment was conducted using a completely randomized design and the dry 
matter accumulation (gm/plant) was recorded after the experiment was over. Table 2.2 gives the 
replicated data on dry matter accumulation in g/plant for each treatment:

Table 2.2: Dry matter accumulation in g/plant

Tr1 Tr2 Tr3 Tr4 Tr5
108.2 225.2 176.5 201.3 214.3
112.7 226.4 195.2 183.6 226.2
116.8 135.2 188.4 197.5 215.0
106.8 227.5 190.3 186.1 230.6
117.9 218.2 210.3 188.6 212.6

229.1 195.1 210.4 230.4
227.6
228.3

In the sequel the data are analyzed to identify the best integrated nutrient management 
system.

2.2.4   Procedure and Calculations
The inference problem being solved here is the testing of the following null hypothesis: H0: 

 (say) against the alternative hypothesis H1: at least two of the ’s 
are different. In the example, v = 5.

First compute the following totals:
Treatment totals
T1 = 108.2 + 112.7 + 116.8 + 106.8 + 117.9 = 562.4
T2 = 225.2+ 226.4 + 135.2 + 227.5 + 218.2+ 229.1 = 1261.6
T3 = 176.5 + 195.2 + 188.4 + 190.3 + 210.3 + 195.1 = 1155.8
T4 = 201.3+ 183.6 + 197.5 + 186.1 + 188.6 + 210.4 = 1167.5
T5 = 214.3 + 226.2 + 215 + 230.6+ 212.6 + 230.4 + 227.6 + 228.3 = 1785.0
Gross total (G) = T1 + T2 + T3 + T4 + T5 = 562.4+ 1261.6 + 1155.8 + 1167.5 + 1785 = 5932.3
Correction factor, CF = G2/n = (5932.3)2/31 = 1135231.719

SS due to treatments, SST =  
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= (562.4)2
 /5+ (1261.6)2/6 + (1155.8)2/6 + (1167.5)2/6 + (1785.0)2/8 – 1135231.719

=  41399.233

Total SS = 

= (108.2)2 + (112.7) 2 + … + (227.6)2 + (228.3)2 – 1135231.719

= 49891.17

Error SS = Total SS – SS due to treatments = SSE

= 49891.17 – 41399.233 = 8491.938

The following Analysis of Variance Table is then formed.

Table 2.3: ANOVA table for data in Example 1

Source DF SS MS F-value Prob > F

Treatments 4 41399.233 10349.808 31.69 <0.0001

Error 26 8491.938 326.613

Total 30 49891.171   

R-square CV RMSE Yield Mean

0.830 9.444 18.072 191.364

The model used has been able to explain 83 per cent of the total variability in the data. Since 
calculated F value = 31.69 is greater than the tabulated F at 4 and 26 degrees of freedom at 5% 
level of significance (= 2.742), the null hypothesis is rejected and at least two treatment effects 
are significantly different from each other at 5% level of significance. In fact, the probability of 
obtaining a value of F greater than 31.69 is smaller than 0.0001, meaning thereby that at least 
two treatments effects differ significantly even at smaller than 0.01% level of significance.

Now, to compare the treatment pairs, we calculate treatment means and LSD values at 5% 
level of significance. The treatment means are given in Table 2.4. 

Table 2.4: Treatment wise mean and standard deviation of dry matter accumulation

Level of treatment N
Dry matter accumulation

Mean Standard Deviation

1 5 112.480 4.967

2 6 210.267 36.967

3 6 192.633 11.031

4 6 194.583 10.316

5 8 223.125 7.740
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We now proceed to test the equality of treatments effects, i.e. H0: , for all 
. This is equivalent to making all the possible pairwise treatment comparisons. 

Table 2.5 gives |difference between two treatment means| and the least significant difference (LSD). 
Here |x| is the absolute value of x. In other words, it is the value of x ignoring the sign. If the 
difference of treatment means is larger than the LSD, then the two treatments are significantly 
different from each other at 5 per cent level of significance.

Table 2.5: Least significant differences of treatment pairs

Treatment Numbers Difference of treatments means Least Significant Difference

1, 2 97.79 22.35

1, 3 80.15 22.35

1, 4 82.1 22.35

1, 5 110.65 21.04

2, 3 17.64 21.31

2, 4 15.69 21.30

2, 5 12.86 19.93

3, 4 1.95 21.31

3, 5 30.5 19.93

4, 5 28.55 19.33

Alternatively, arrange the treatment means in ascending or descending order depending 
upon the character under study. If it is yield, it may be arranged in descending order and if it is 
disease infestation, it may be arranged in ascending order.

Table 2.6: Treatment means arranged in descending order

Dry matter 
accumulation

Treatment Rank

223.125 5 1

210.267 2 2

194.583 4 3

192.633 3 4

112.480 1 5

 
Take the different between two treatment means with consecutive ranks. In Table 2.6, the 
difference Trt5 ‒ Trt2 = 223.125 ‒ 210.267 = 12.858. The LSD at 5% for these two treatments 
is 19.93. Therefore, Trt5 and Trt2 are not significantly different and may be assigned the same 
letter A. Since treatments ranked 1 and 2 are statistically not significant, therefore, now check 
the difference between treatment with rank 1 and rank 3, i.e., Trt5 ‒ Trt4 = 223.125 ‒ 194.583 
= 28.542. The LSD at 5% for these two treatments is 19.33. Therefore, these are statistically 
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different, or we can say that Treatment 5 is statistically better than treatment 3 and we may 
assign a different letter, say B, to treatment rank 3. 

Since treatment with rank 1 is statistically significant compared to treatment with rank 3, 
now significance of treatment with rank 1 need not be tested with treatments with rank 4 and 5. 
Treatment with rank 1 will automatically be significantly different from treatments with ranks 
4 and 5. 

The procedure of making pairwise treatment comparisons just explained always holds 
when the estimated variance of the estimated difference of every possible pair of treatments 
is same as happens in CRD with equal replication, RCB design, LSD or any other variance 
balanced design. In case the estimated variance of the estimated difference of every possible pair 
of treatments is different, then we may need to check the significance of all treatment contrasts. 

In this example, however, estimated variances of the estimated difference of all other pairs 
of treatments is less than that between treatments with rank 1 and rank 3. Therefore, we may 
stop checking significance of treatment with rank 1 with treatments with ranks 4 and 5. Now, 
start with treatment with rank 2 and test the significance of difference of treatment effects with 
rank 2 and 3 as Trt2 ‒ Trt4 = 210.267 ‒ 194.583 = 15.684, which is less than corresponding LSD 
at 5% level of significance (21.30). Therefore, we assign a second letter to treatment with rank 
2 same as that was assigned to treatment with rank 3 earlier, i.e., B. Now, treatment with rank 
2 has two symbols A and B depicting that it is not significantly different from treatments with 
rank 1 and 3. Now, we proceed to test the significance of difference of treatment effects with 
ranks 2 and 4 as Trt2 ‒ Trt3 = 210.267 ‒ 192.633 = 17.634, which is less than corresponding LSD 
at 5% level of significance (21.31). Therefore, now treatment 3 with rank 4 may also be assigned 
the same letter B. Next, proceed to test the significance of difference of treatment effects with 
ranks 2 and 5 as Trt2 ‒ Trt1 = 210.267 ‒ 112.480 = 97.787, which is more than corresponding 
LSD at 5% level of significance (22.35). Therefore, now treatment with rank 5 may be assigned 
a different letter, say C.  Next, proceed to test significance of difference of effects of treatments 
with ranks 3 and 4, i.e., Trt4 ‒ Trt3 = 194.583 ‒ 192.533 = 2.050, which is less than the LSD at 
5%. Therefore, these two treatments are statistically at par and already assigned same letter B. 
We proceed with testing the same way and will get the Table 2.7.

Table 2.7: Treatments with letter display 

Dry matter accumulation Treatment Rank

223.125A 5 1

210.267A,B 2 2

194.583B 4 3

192.633B 3 4

112.480C 1 5
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Another way of presenting this Table is

Tr5 Tr2 Tr4 Tr3 Tr1

223.125 210.267 194.583 192.633 112.480

As per the Table 2.7, one can say that treatment 5 is significantly better than treatments 4, 3 
and 1. Treatment 2 although statistically not significant with treatments 5, 4 and 3, is significantly 
different from treatment 1. Similarly treatments 4 and 3 are significantly different from treatment 
1. Therefore, if treatment with highest mean is best, then any one of the treatments Tr5 or Tr2 
may be used as they are statistically at par.

It may be noted that LSD controls only individual error rate and should be used only when 
null hypothesis of equality of treatment effects through ANOVA is rejected. Other commonly 
used multiple comparison procedure test that controls only individual error rate is Duncan’s 
Multiple range Test. Some tests which control family error rate are Bonferroni correction and 
Tukey’s Honestly Significant Differences (HSD) test and can be used even when null hypothesis 
through ANOVA is not rejected. More details on multiple comparison procedures may be seen 
in Annexure-III.
2.2.5   Analysis using SAS

The design is a CRD with v = 5 treatments and n = 31 observations. The data has been 
analyzed using SAS software. The commands and the data preparation are given in the sequel.

DATA crd;
INPUT trt dma;
/* trt denotes the treatment number and dma denotes the dry matter accumulation 
in g/plant*/;
CARDS;
1	 108.2
1     	 112.7
1	 116.8
1	 106.8
1	 117.9
2	 225.2
2	 226.4
2	 135.2
2	 227.5
2     	 218.2
2	 229.1
3	 176.5
3	 195.2
3	 188.4
3     	 190.3
3     	 210.3
3     	 195.1
4     	 201.3
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4	 183.6
4	 197.5
4	 186.1
4	 188.6
4	 210.4
5	 214.3
5	 226.2
5	 215.0
5	 230.6
5	 212.6
5     	 230.4
5	 227.6
5	 228.3
;
PROC GLM DATA=crd;
CLASS trt;
MODEL dma = trt;
MEANS trt;
LSMEANS trt/PDIFF  LINES;
RUN;

Remark 2.1 It may be worthwhile mentioning here that in the INPUT statement, CLASS 
statement and MODEL statement etc. the terms like trt, rep, etc. have been used to represent 
treatments, replications, etc.  The output of analysis will also be using these notations. But while 
giving the results of analysis, the abbreviated forms are not used. Instead, the full forms are used 
for clarity and better understanding. 

2.2.6   Output of analysis
The results obtained by the analysis using SAS are given in Table 2.8. This output is same 

as described earlier. The model with treatment effects only has been able to explain 83 per cent 
of the total variation. It is seen from the analysis of variance table that the treatment effects are 
significantly different (p-value < 0.0001).

Table 2.8: SAS output for data in Example 1

ANOVA

Source SS DF MS F-value Prob > F

Model 41399.233 4 10349.808 31.69 <0.0001

Error 8491.938 26 326.613

Total 49891.171 30    

R-square CV RMSE dma Mean

0.830 9.444 18.072 191.364
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ANOVA

Source Type I SS DF MS F value Prob > F

Treatments 41399.233 4 10349.808 31.69 <0.0001

Error 8491.938 26 326.613

Total 49891.171 30    

The distribution of the observations for each treatment is given in the Figure 2.1.

Figure 2.1: Treatment wise Box plot of dry matter accumulation

The mean and standard deviation of the dry matter accumulation for each of the treatments 
is given in Table 2.9.

Table 2.9: Treatment wise mean and standard deviation of dry matter accumulation

Level of treatment N
Dry matter accumulation

Mean Standard Deviation

1 5 112.480 4.967

2 6 210.267 36.967

3 6 192.633 11.031

4 6 194.583 10.317

5 8 223.125 7.7434

Table 2.10 gives the p-values for making pairwise treatment comparisons. These comparisons 
are similar to the one made above using LSD table. A p-value smaller than 0.05 implies that the 
pair of treatment effects is significantly different.  For example, a p-value < 0.0001 indicates that 
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the treatment effects 1 and 2; 1 and 3; 1 and 4; 1 and 5; are significantly different. A p-value of 
0.1030 suggests that the treatment effects 2 and 3 are not significantly different at 5 per cent level 
of significance. Similarly, a p-value of 0.1990 suggests that the treatment effects 2 and 5 are not 
significantly different at 5 per cent level of significance

Table 2.10: P-values for pairwise comparison of the treatments 

Least Squares Means for effect treatment 
Pr > |t| for H0: LSMean(i)=LSMean(j) 

Dependent Variable: Dry Matter Accumulation

i/j 1 2 3 4 5

1 <0.0001 <0.0001 <0.0001 <0.0001

2 <0.0001 0.1030 0.1450 0.1990

3 <0.0001 0.1030 0.8530 0.0040

4 <0.0001 0.1450 0.8530 0.0070

5 <0.0001 0.1990 0.0040 0.0070

It may be noted from Table 2.11 that in this case the LS means are the same as the unadjusted 
means. Table 2.11 is another way of explaining the significance of difference of two treatment 
effects. Treatments with same letter are not significantly different. 

Table 2.11: Treatments with letter display

t Comparison Lines for Least Squares Means of Treatments

LS-means with the same letter are not significantly different

DMA LSMEAN Treatment Rank of Treatment

A 223.125 5 5

B A 210.267 2 4

B 194.583 4 3

B 192.633 3 2

C 112.480 1 1

Since dry matter accumulation  is highest for Trt5 and is significantly different from all 
other treatment effects, except treatment 2, so Trt5 i.e., 50% recommended dose of fertilizers 
+ vermicompost 2.5 tonnes/ha + farmyard manures 5 tonnes/ha is the best integrated nutrient 
management system, which is at par with 100% NPK (Trt2)  so far as dry matter accumulation 
in tomato is concerned. 

The pairwise treatment comparisons can also be made without writing the treatments in 
descending order of the treatments LS Mean values. The results are given in Table 2.12.
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Table 2.12: Treatments with letter display

Treatment DMA LS Mean Rank of Treatment

1 112.480C 5

2 210.267A,B 2

3 192.633B 4

4 194.583B 3

5 233.125A 1

General Mean 191.364

In Table 2.12, any two treatments whose LS Means have at least one letter common 
are not statistically significant using LSD at given level of significance. Therefore, it follows 
that treatment 1 is significantly different from treatments 2, 3, 4, 5. Similarly, treatment 5 is 
significantly different from treatments 1, 3 and 4 but is not significantly different from treatment 
2.  On the other hand, treatment 2 is not significantly different from treatments 3, 4 and 5. 

It may be worthwhile mentioning here that all comparisons are made at 5 per cent level of 
significance.

2.2.7   Analysis using R
The purpose of this section is to give the R code for analysis of data generated from a CRD 

for the benefit of the readers who would like to use R software. It may be mentioned here that 
the output obtained from R code is not given to avoid repetition.

d1=read.table(“crd.txt”,header=TRUE)
attach(d1) 
names(d1)
#Treatment means and standard deviations
aggregate(dma, by=list(trt), mean)
aggregate(dma, by=list(trt), sd)
#Treatment wise box plot of dma 
boxplot(dma~trt)
#ANOVA
trt=factor(trt)
crdout<-aov(dma~trt)
summary(crdout)
#Tukey’s honest significant difference test is inbuilt part of Base R
TukeyHSD(crdout)
#LSD test, download and install agricolae package
library(agricolae)
lsd.result <- LSD.test(crdout,“trt”)
lsd.result
detach(d1)
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2.3   Randomized complete block design
A CRD assumes that there is no variability in the experimental units. The only source 

of variability in the data is the treatments. However, the experimental units selected for 
experimentation may exhibit variability because of many reasons. If the experimental units are 
the animals and the treatments are the grazing systems, then the initial body weight of the animal 
may be a major source of variability. Similarly, if the experimental units are plots in a field, and 
the treatments are the various levels of fertilizers and or irrigation, then the soil fertility may be 
a source of variability. Similarly with feeding trials in animal experiments, the lactation number 
may be a source of variability.  Litter mates of animals may be source of variability in animal 
experiments. The salinity patches in the soil may be source of variability in field experiments. 
The variability in the experimental units needs to be accounted for, otherwise the experimental 
error will be unduly large and the Coefficient of variation (CV) would be overly large, which 
may lead to not rejecting the null hypothesis.  

The focus of this Section is on designs useful for situations when there is heterogeneity 
in the experimental units and it is expected that there is only one source of variability in the 
experimental units. All the three principles of experimentation, viz., randomization, replication 
and local control are used in these designs. In these designs, the experimental units are 
partitioned into groups (called blocks) in such a way that experimental units within each block 
are as homogeneous as possible.  As the name itself suggests, a Randomized Complete Block 
(RCB) design is a complete block design in the sense that each block is a complete replication.  
In other words, all the treatments in the experiment appear once in each block.  Consequently, 
the block size, or the number of experimental units in each block is equal to the number of 
treatments.  Further, since each block is a complete replication, the number of blocks is also 
equal to the replication number of treatments.

The randomization procedure in a RCB design is the following: (i) the treatments are 
randomly allocated the treatment labels, (ii) the treatments are assigned randomly to the 
experimental units within each block, and (iii) a separate randomization is done in each block.

The linear model in this case is

Expected response = general mean + effect of treatments + effect due to experimental units 
(grouped as blocks)

Since there is only one source of variation in the experimental units, the model can be rewritten 
as 

Expected response = general mean + effect of treatments + effect of blocks (or replications).

This can also be written as

response = general mean + treatments effect + block (or replication) effect + error,  

where the errors are independently distributed as normal variate with zero mean and constant 
variance . The split of the total variability in this case is 
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Source of variation

Due to model

Error

Total

The component “due to model” can be split as 

Source of variation

Due to model

            Due to treatments

            Due to blocks (or replications)

2.3.1     Analysis of RCB design
Suppose that an experiment is run in a RCB design with v treatments and b replications (or 

complete blocks).  Suppose that the observation generated on the response variable from the 
ith treatment in the jth block is represented by yij, i = 1,2,....,v; j = 1,2,....,b.  The observations are 
represented by the following linear, additive model 

       

where  is the general mean effect;  is the effect of the ith treatment (fixed);  is the effect of 
the  jth block (fixed);  is random error associated with , assumed to be mutually independent 

and distributed identically as normal variable with mean zero and common variance , i.e., 

Let the treatment totals and the block totals be denoted as respectively,  

and , and grand total as    .

The following formulae can be employed for analysis of variance:

Correction factor (CF) = 

Total sum of squares = 
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Sum of squares due to treatments (SST) = 

Sum of squares due to blocks (or replications) (SSB) = 

Error sum of squares (SSE) = 

 = Total SS – Treatment SS – Block SS.

The interest of the experimenter is in testing the null hypothesis:  
against the alternative that  for at least one pair of treatment effects, say τi 
and .  For testing this hypothesis we set up the analysis of variance Table 2.13.

 Table 2.13: ANOVA table for RCB design

Source DF SS MS = SS/DF F

Treatments v – 1 SST = 

Blocks (or 
Replications)

b – 1 SSB =

Error (v – 1)(b – 1) SSE = 

Total vb – 1

If the calculated value of F is greater than the table value of  at  level of 
significance and (v – 1), (v – 1)(b – 1) degrees of freedom, then the null hypothesis  is rejected 
at  level of significance and it can be concluded that the treatment effects are significantly 
different from one another.
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It may be seen here that the unbiased estimator of  is .

Further, all the elementary treatment contrasts are estimable through the design. The Best 
Linear Unbiased Estimator (BLUE) of any treatment contrast   is

 . 

The variance of  is .  The estimated standard error of the estimated difference 

between the ith  and lth treatment effects is .

The Least Significant Difference (LSD) at  level of significance is given as  

Here  denotes the value of Student’s t at  level of significance and error degrees 

of freedom. The treatment means are given by .  The pairwise comparison of 

treatment effects can be made by comparing the difference between any two treatment means 
with the LSD. Any two treatment effects are said to differ significantly if the difference of their 
means is larger than the LSD.  

2.3.2   Example 2
An initial varietal trial (Late Sown, irrigated) was conducted to study the performance 

of 20 new strains of mustard vis-a-vis four checks (Swarna Jyoti: ZC; Vardan: NC; Varuna: 
NC; and Kranti: NC) using a Randomized Complete Block Design (RCB) design at Bhatinda 
with 3 replications under the aegis of All India Coordinated Research Project on Rapeseed and 
Mustard. The seed yield in kg/ha was recorded. The details of the experiment are given in Table 
2.14.

In the sequel, the data are analyzed (a) to test whether or not there is any difference among 
the treatment effects, (b) to make all the possible pairwise treatment comparisons to identify the 
best treatment i.e. the treatment giving highest yield, and (c) to test whether or not the average 
performance of check varieties (i) Swarna Jyoti (MCN-04-128), (ii) Vardan (MCN-04-129), (iii) 
Varuna (MCN-04-131), and (iv) Kranti (MCN-04-133) is significantly different from average 
performance of remaining strains. 
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Table 2.14:  Seed yield (kg/ha) data

Treatment 
Number Strain Code

Replications

1 2 3

1 RK-04-3 MCN-04-110 1539.69 1412.35 1319.73

2 RK-04-4 MCN-04-111 1261.85 1065.05 1111.36

3 RGN-124 MCN-04-112 1389.19 1516.54 1203.97

4 HYT-27 MCN-04-113 1192.39 1215.55 1157.66

5 PBR-275 MCN-04-114 1250.27 1203.97 1366.04

6 HUJM-03-03 MCN-04-115 1296.58 1273.43 1308.16

7 RGN-123 MCN-04-116 1227.12 1018.74 937.71

8 BIO-13-01 MCN-04-117 1273.43 1157.66 1088.20

9 RH-0115 MCN-04-118 1180.82 1203.97 1041.90

10 RH-0213 MCN-04-119 1296.58 1458.65 1250.27

11 NRCDR-05 MCN-04-120 1122.93 1065.05 1018.74

12 NRC-323-1 MCN-04-121 1250.27 926.13 1030.32

13 RRN-596 MCN-04-122 1180.82 1053.47 717.75

14 RRN-597 MCN-04-123 1146.09 1180.82 856.67

15 CS-234-2 MCN-04-124 1574.42 1412.35 1597.57

16 RM-109 MCN-04-125 914.55 972.44 659.87

17 BAUSM-2000 MCN-04-126 891.40 937.71 798.79

18 NPJ-99 MCN-04-127 1227.12 1203.97 1389.19

19 SWARNA JYOTI(ZC) MCN-04-128 1389.19 1180.82 1273.43

20 VARDAN(NC) MCN-04-129 1331.31 1157.66 1180.82

21 PR-2003-27 MCN-04-130 1250.27 1250.27 1296.58

22 VARUNA(NC) MCN-04-131 717.75 740.90 578.83

23 PR-2003-30 MCN-04-132 1169.24 1157.66 1111.36

24 KRANTI-(NC) MCN-04-133 1203.97 1296.58 1250.27

Note: Strains of mustard in bold are the four checks.

2.3.3    Analysis of data

Treatment Totals
T1 = 1539.69 + 1412.35+ 1319.73 = 4271.77

T2 = 1261.85 + 1065.05 + 1111.36 = 3438.26

T3 = 1389.19 + 1516.54 + 1203.97 = 4109.70

T4 = 1192.39 + 1215.55 + 1157.66 = 3565.60

T5 = 1250.27 + 1203.97 + 1366.04 = 3820.28
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T6 = 1296.58 + 1273.43 + 1308.16 = 3878.17

T7 = 1227.12 + 1018.74 + 937.71 = 3183.57

T8 = 1273.43 + 1157.66 + 1088.20 = 3519.29

T9 = 1180.82 + 1203.97 + 1041.90 = 3426.69

T10 = 1296.58 + 1458.65 + 1250.27 = 4005.50

T11 = 1122.93 + 1065.05 + 1018.74 = 3206.72

T12 = 1250.27 + 926.13 + 1030.32 = 3206.72

T13 = 1180.82 + 1053.47 + 717.75 = 2952.04

T14 = 1146.09 + 1180.82 + 856.67 = 3183.58

T15 = 1574.42+ 1412.35 + 1597.57 = 4584.34

T16 = 914.55 + 972.44 + 659.87 = 2546.86

T17 = 891.40 + 937.71 + 798.79 = 2627.90

T18 = 1227.12 + 1203.97 + 1389.19 = 3820.28

T19 = 1389.19 + 1180.82 + 1273.43 = 3843.44

T20 = 1331.31 + 1157.66 + 1180.82 = 3669.79

T21 = 1250.27 + 1250.27 + 1296.58 = 3797.12

T22 = 717.75 + 740.90 + 578.83 = 2037.48

T23 = 1169.24 + 1157.66 + 1111.36 = 3438.26

T24 = 1203.97 + 1296.58 + 1250.27 = 3750.82

Block Totals
B1 = 1539.69 + 1261.85 + 1389.19 + ... + 717.75 + 1169.24 + 1203.97 = 29277.25

B2 = 1412.35 + 1065.05 + 1516.54 + ... + 740.90 + 1157.66 + 1296.58 = 28061.74

B3 = 1319.73 + 1111.36 + 1203.97 + ... + 578.83 + 1111.36 + 1250.27 = 26545.19

Grand Total, G = 29277.25 + 28061.74 + 26545.19 = 4271.77 + 3438.26 + 4109.70 + ... + 
2037.48 + 3438.26 + 3750.82 = 83884.18

Correction Factor, CF =  = = 97729939.64

Treatments SS (SST) = 

	 = 100244098.93 - 97729939.64 = 2514159.29
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Block (or Replication) SS (SSB) = 

= 97886072.15 - 97729939.64 = 156132.51

Total SS =  

	 =100863347.59 - 97729939.64 = 3133407.95

Error SS (SSE) = Total SS - Treatments SS - Replication (or Block) SS 

	 = 3133407.95 - 2514159.29 - 156132.51 = 463116.15

We then have the analysis of variance as shown in Table 2.15.

Table 2.15: ANOVA table for the data in Example 2

Source DF SS MS F-value Prob > F

Treatments 23 2514159.289 109311.273 10.86 <0.0001

Blocks (or Replications) 2 156132.504 78066.250      7.75 0.0013

Error 46 463116.156 10067.743

Total 71 3133407.949

This analysis reveals that the treatment differences are highly significant (p-value < 0.0001). 
Similarly, the block effects are also highly significant (p-value = 0.0013) meaning thereby that the 
block formation has proved to be very effective. The blocks formation was genuinely required 
and blocks formation has been proper.

2.3.4   Analysis using SAS
The design is a RCB design with v = 24 treatments, b = 3 blocks (or replications) and n = 

72 observations. The data has been analyzed using SAS software. The commands and the data 
preparation are given in the sequel.

DATA rbd; /*one can enter any other name for Data*/;
INPUT trt $ 11. trtn rep syield;
*here 11. represents that the value of the variable trt is upto 11 columns;
/*trtn denotes the treatment number, rep the replication number and syield
the seed yield in kg/hectare*/;
CARDS; 
MCN-04-110	 1	 1	 1539.69
MCN-04-111	 2	 1	 1261.85 
MCN-04-112	 3	 1	 1389.19 
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MCN-04-113	 4	 1	 1192.39 
MCN-04-114	 5	 1	 1250.27 
MCN-04-115	 6	 1	 1296.58 
MCN-04-116	 7	 1	 1227.12 
MCN-04-117	 8	 1	 1273.43 
MCN-04-118	 9	 1	 1180.82 
MCN-04-119	 10	 1	 1296.58 
MCN-04-120	 11	 1	 1122.93 
MCN-04-121	 12	 1	 1250.27 
MCN-04-122	 13	 1	 1180.82 
MCN-04-123	 14	 1   	 1146.09 
MCN-04-124	 15	 1	 1574.42 
MCN-04-125	 16	 1	 914.55 
MCN-04-126	 17	 1	 891.40 
MCN-04-127	 18	 1	 1227.12 
MCN-04-128	 19	 1	 1389.19 
MCN-04-129	 20	 1	 1331.31 
MCN-04-130	 21	 1	 1250.27 
MCN-04-131	 22	 1	 717.75 
MCN-04-132	 23	 1	 1169.24 
MCN-04-133	 24	 1	 1203.97 
MCN-04-110	 1	 2	 1412.35 
MCN-04-111	 2	 2	 1065.05 
MCN-04-112	 3	 2	 1516.54 
MCN-04-113	 4    	 2	 1215.55 
MCN-04-114	 5	 2	 1203.97 
MCN-04-115	 6	 2 	 1273.43 
MCN-04-116	 7	 2	 1018.74 
MCN-04-117	 8	 2	 1157.66 
MCN-04-118	 9	 2	 1203.97 
MCN-04-119	 10	 2	 1458.65 
MCN-04-120	 11	 2	 1065.05 
MCN-04-121	 12	 2	 926.13 
MCN-04-122	 13	 2	 1053.47 
MCN-04-123	 14	 2	 1180.82 
MCN-04-124	 15	 2	 1412.35 
MCN-04-125	 16	 2	 972.44 
MCN-04-126	 17	 2	 937.71 
MCN-04-127	 18	 2	 1203.97 
MCN-04-128	 19	 2	 1180.82 
MCN-04-129	 20	 2   	 1157.66 
MCN-04-130	 21	 2	 1250.27 
MCN-04-131     	 22	 2	 740.90 
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MCN-04-132	 23	 2	 1157.66 
MCN-04-133	 24	 2	 1296.58 
MCN-04-110	 1	 3	 1319.73 
MCN-04-111	 2	 3	 1111.36 
MCN-04-112	 3	 3	 1203.97 
MCN-04-113	 4	 3	 1157.66 
MCN-04-114	 5	 3	 1366.04 
MCN-04-115	 6	 3	 1308.16 
MCN-04-116	 7	 3	 937.71 
MCN-04-117	 8	 3	 1088.20 
MCN-04-118	 9	 3	 1041.90 
MCN-04-119	 10	 3	 1250.27 
MCN-04-120	 11	 3	 1018.74 
MCN-04-121	 12	 3 	 1030.32 
MCN-04-122	 13	 3	 717.75 
MCN-04-123	 14	 3	 856.67 
MCN-04-124	 15	 3	 1597.57 
MCN-04-125	 16	 3	 659.87 
MCN-04-126	 17	 3	 798.79 
MCN-04-127	 18	 3	 1389.19 
MCN-04-128	 19	 3	 1273.43 
MCN-04-129	 20	 3	 1180.82 
MCN-04-130	 21	 3	 1296.58 
MCN-04-131	 22	 3	 578.83 
MCN-04-132	 23	 3	 1111.36 
MCN-04-133	 24	 3	 1250.27
; 
RUN;

PROC GLM ;
CLASS trtn rep;
MODEL syield = trtn rep;
LSMEANS trtn/PDIFF LINES;
CONTRAST ‘check vs strains’ trtn 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 -20 -20 4 -20 4 -20; 
RUN;

In order to compare the check varieties with the strains, the null hypothesis to be tested 
is that the average effect of strains is same as the average effect of check varieties. The null 
hypothesis H0:  is 
tested against

H1: .
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For testing the hypothesis H0, one needs to perform contrast analysis. The problem of 
contrast analysis has been dealt with in Chapter 3.  However, here we have given the SAS steps 
to perform the contrast analysis. 

	 The output of analysis using SAS is given in Table  2.16.

Table 2.16: Output of analysis using SAS

 ANOVA

Source DF SS MS F-value Prob > F

Model 25 2670291.793 106811.672 10.61 <0.0001

Error 46 463116.156 10067.743

Corrected Total 71 3133407.949

R-square CV Root MSE Yield Mean

0.852 8.612 100.34 1165.06

ANOVA

Source DF SS MS F-value Prob > F

Treatments 23 2514159.289 109311.273 10.86 <0.0001

Blocks 2 156132.504 78066.252     7.75 0.0013

Error 46 463116.156 10067.743

Corrected Total 71 3133407.949

The model with treatment effects and block effects explains about 85 per cent of the total 
variability in the data. The treatment effects are highly significant (p-value < 0.0001) meaning 
thereby that the null hypothesis is rejected. It is interesting to note that the block effects are also 
highly significant (p-value = 0.0013).

The mean and standard deviation of the treatments are given in Table 2.17.

Table 2.17: Treatment wise mean and standard deviation of seed yield

Level of treatment N SYIELD

Mean Standard Deviation

1 3 1423.92 110.44

2 3 1146.09 102.89

3 3 1369.90 157.18

4 3 1188.53 29.14

5 3 1273.43 83.48

6 3 1292.72 17.68

7 3 1061.19 149.30
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8 3 1173.10 93.57

9 3 1142.23 87.66

10 3 1335.17 109.42

11 3 1068.91 52.20

12 3 1068.91 165.48

13 3 984.01 239.22

14 3 1061.19 177.97

15 3 1528.11 100.92

16 3 848.95 166.29

17 3 875.97 70.73

18 3 1273.43 100.92

19 3 1281.15 26.74

20 3 1223.26 30.63

21 3 1265.71 104.40

22 3 679.16 94.28

23 3 1146.09 87.66

24 3 1250.27 46.31

The distribution of observations over replications for each treatment is given in Figure 2.2. 

Figure 2.2: Treatment wise Box plot of seed yield

Similarly, the Figure 2.3 gives the plot of observations in each block. It is quite evident from 
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here that the blocks differ in their effects, i.e. mean square between blocks is high as compared 
to mean square error, a fact supported by the ANOVA as well. 

            
Figure 2.3: Plot of observations in each block

The pairwise comparison of treatment effects is made and is presented in Table 2.18. 
Treatments having at least one letter common are not significantly different in their effects. The 
strain CS-234-2 and coded as MCN-04-124 (treatment 15) is the highest seed yielding strain. 
This strain produces significantly higher seed yield than all other treatments produce except 
treatment numbers 1 and 3, which produce seed yield statistically at par with the produce of 
treatment 15. So this strain may be recommended as the best among the lot. 
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Table 2.18: Treatments in descending order with letter display

Means with the same letter are not significantly different

Duncan Grouping Mean Treatment 
Number

Replication

A 1528.11      15 3

A B 1423.92      1 3

A B C 1369.90      3 3

B C D 1335.17      10 3

B C D 1292.72      6 3

B C D 1281.15      19 3

B C D 1273.43      18 3

B C D 1273.43 5 3

B C D 1265.71 21 3

B C D E 1250.27      24 3

C D E 1223.26      20 3

C D E 1188.53      4 3

F D E 1173.10      8 3

F D E 1146.09 23 3

F D E 1146.09 2 3

F D E 1142.23 9 3

F E 1068.91 11 3

F E 1068.91 12 3

F E 1061.19 14 3

F E 1061.19 7 3

F G 984.01      13 3

G 875.97 17 3

G 848.95      16 3

H 679.16 22 3

From Table 2.18 it is also evident that check variety (Treatment 19: best performing check) 
is significantly different from strains at Treatment 7, 11, 12, 13, 14, 15, 16, 17. Similarly, check 
variety (Treatment 20) is significantly different from strains at Treatment 1, 13, 15, 16, 17. 
Further, check variety (Treatment 24) is significantly different from strains at Treatment 13, 
15, 16, 17. The check variety (Treatment 22) is, however, the lowest yielding and is significantly 
different from all the strains.

The contrast analysis for testing the null hypothesis that the average effect of strains is same 
as the average effect of check varieties was done and the result is given in Table 2.19.
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Table 2.19: Result of contrast analysis

Contrast DF Type III SS MS F-value Prob > F

Check vs Strains 1 46126.736 46126.736 4.58 0.0377

It may be noted that the check varieties differ significantly from the strains (p-value = 
0.0377).

The pairwise treatment comparisons can also be presented without writing the treatments 
in descending order of the treatments LS Mean values. The results are given in Table 2.20.

Table 2.20: Treatments with letter display

Treatment 
Name

LS Mean of Syield Rank of Treatment Treatment 
Name

LS Mean of Syield Rank of 
Treatment

1 1423.92A,B                2 13 984.01G,H                21

2 1146.09E,F,G               15 14 1061.19F,G                19

3 1369.90A,B,C               3 15 1528.11A                 1

4 1188.53D,E,F               12 16 848.95H                 23

5 1273.43B,C,D,E              7 17 875.97H                 22

6 1292.72B,C,D,E              5 18 1273.43B,C,D,E              8

7 1061.19F,G                20 19 1281.15B,C,D,E              6

8 1173.10D,E,F               13 20 1223.26C,D,E,F              11

9 1142.23E,F,G               16 21 1265.71B,C,D,E              9

10 1335.17B,C,D               4 22 679.16I                 24

11 1068.91F,G                17 23 1146.09E,F,G               14

12 1068.91F,G                18 24 1250.27C,D,E               10

General Mean 1165.06

 81.927

LSD at 5% 164.91

It may be mentioned here that the SAS commands given in Section 2.3.4 do not compute 
LSD at 5%. This may, therefore, be computed by using the formula given in Section 2.3.1. One 
may also compute it by adding a SAS command “MEANS trtn/LSD;”. In Table 2.20, any two 
treatments whose LS Means have at least one letter common are not statistically significant 
using LSD. Therefore, it follows that treatment 15 is the one that produces highest seed yield 
and is not significantly different from treatments 1 and 3. It is significantly different from all the 
remaining treatments. Similarly, treatment 22, a control variety, produces the lowest seed yield 
and has in fact statistically significant lower seed yield from all other strains. The other three 
control varieties (Treatments 19, 20 and 24) are statistically at par with each other.
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2.3.5   Analysis of RCB design using R
R code
d2=read.table(“rbd.txt”,header=TRUE)
attach(d2)
names(d2)
#Treatment means and standard deviations
aggregate(syield, by=list(trt), mean)
aggregate(syield, by=list(trt), sd)
#Treatment wise box plot of yield 
boxplot(syield~trtn)
#ANOVA
trtn=factor(trtn)
rep=factor(rep)
aov.out=aov(syield~trtn+rep)
summary(aov.out)
library(lsmeans)
lsm <- lsmeans(aov.out, “trtn”)
contrast(lsm, list(con1 = c(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,-20,-20,4,-20,4,-20)))
#Tukey’s honest significant difference test
TukeyHSD(rbdout)
#LSD
library(agricolae)
lsd.result <- LSD.test(aov.out,“trtn”)
lsd.result
detach(d2)

2.4   Latin square design
A CRD assumes that there is no variability in the experimental units. The only source of 

variability in the data is the treatments and the remaining variability is the error. On the other 
hand, an RCB design assumes that other than the treatments, there is one source of variability 
in the experimental units and this variability in the experimental units is controlled by forming 
blocks of homogeneous experimental units. In this case, the sources of variability in the data are 
the treatments and the blocks (or replications) and the remaining part of the variability is the 
experimental error. This section is devoted to designs which control two sources of variability in 
the experimental units. When there are two sources of variability in the experimental units, we 
need to form blocks in two directions, perpendicular to each other. The two blocking systems 
are cross classified as rows and columns and the intersection of rows and columns is a cell or 
the experimental unit. Following on the example of four grazing systems and 16 experimental 
units (animals), one source of variability in the animals could be the initial body weight. The 
other source of variability could be their physiological behavior. For instance, the calving age 
or the number of lactations could be another source of variability in the experimental material. 
The physiological behavior and the initial body weights are the two sources of variability in 
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the animals and need to be controlled by proper designing of experiment. In the insecticide 
field trial where the insect migration has a predictable direction that is perpendicular to the 
dominant fertility gradient of the experimental field, there are two sources of variability in the 
experimental units. In order to control two-way heterogeneity in the experimental material, we 
use designs known as Latin Square obtained from Latin square arrangement. The following are 
examples of 4×4 and 5×5 Latin square designs:  

        

In such designs two restrictions are imposed by forming blocks in two directions, row-wise 
and column-wise. A Latin square arrangement is an arrangement of v Latin letters in a v×v 
square in such a way that each row and each column has all the v Latin letters appearing exactly 
once. A design based upon a Latin square arrangement is called a Latin square design. Ignoring 
rows and considering columns as blocks gives an RCB design. Similarly, ignoring columns and 
treating rows as blocks gives an RCB design. So a Latin square design is an RCB design in rows 
as well as columns. Treatments are allocated in such a way that every treatment occurs once and 
only once in each row and each column. In this design, the replication number of treatments is 
same as the number of treatments.

Latin squares have been classified as reduced and standard. The Latin squares have also 
been classified as squares with normalized or standard and semi-standard form, whereby 
reduced Latin square is synonym to normalized or standard form and standard Latin square 
is synonym to semi-standard form. Latin square is considered reduced if its first row and first 
column contains elements in the numerical (1,2,…,v) or lexicographic order (A,B,C,…).  On 
the other hand, it is considered standard if only its first row contains elements in the natural 
order. In the examples of Latin squares given earlier, the first two Latin squares of order 4 and 
5, respectively are the reduced squares (or Latin squares in standard form) while the third Lain 
square of order 4 is in standard (or semi-standard) form.

The randomization of the v treatments over the v2 experimental units arranged in a v×v 
square is difficult. The design obtained after randomization should be a Latin square design. In 
actual field arrangement during experimentation, first we select a v×v reduced or normalized or 
standard Latin square randomly from the Fisher and Yates Tables. Having selected the square, 
column-wise randomization is carried out first, followed by row-wise randomization. Of course, 
the treatments labels (or the Latin letters) are randomized separately before starting the actual 
randomization in the design. 
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The linear model in this case is

Expected response = general mean + effect of treatments + effect due to experimental units 

Since there are two sources of variation in the experimental material, the model can be rewritten 
as 

Expected response = general mean + effect of treatments+ effect of rows + effect of columns 

This can also be written as:

Response = general mean + treatments effect + rows effect + columns effect + error,

where the errors are distributed independently as normal variate with zero mean and constant 
variance . The partitioning of the total variability in this case is 

Source of Variation

Due to model

Error

Total

The component “due to model” can be split as

Source of Variation

Due to model

                     Due to Treatments

                     Due to Rows

                     Due to Columns

2.4.1   Analysis of Latin square design
The v2 observations generated from a Latin square design of order v are represented by the 

following linear, additive, fixed effects model:

 ;  ,

where  is the observation pertaining to the ith treatment appearing in the (j, k)th cell,  μ 
is the grand mean, τi is the ith treatment effect, βj is the effect of the jth row, γk is the effect of 
the kth column, and  is the random error associated with , assumed to be mutually 
independent and distributed normally with mean zero and common variance . 

Let the treatment totals, rows totals, column totals be denoted as, respectively,

, ; sum of observations over cells containing treatment i;

 sum of observations in the jth row;   
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; sum of observations in the kth column.

The grand total is, 

The following formulae can be employed for analysis of variance:

 Correction factor (CF) 

Total sum of squares 

Sum of Squares due to treatments (SST) = 

Sum of Squares due to rows (SSR) = 

Sum of Squares due to columns (SSC) = 

Error sum of squares (SSE)

= Total SS – Row SS – Column SS – Treatment SS

If the calculated value of F is greater than the table value of  at α level of 
significance and (v ‒ 1),(v ‒ 1)(v ‒ 2) degrees of freedom, then the null hypothesis  is rejected 
at α level of significance and it can be concluded that the treatment effects are significantly 
different from one another.

It may be seen here that an unbiased estimator of  is .

Further, all the elementary treatment contrasts are estimable through the design. The Best 
Linear Unbiased Estimator (BLUE) of any treatment contrast  

. 
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Table 2.21: ANOVA table in Latin square design

Source DF SS MS F

Treatments v – 1

 

Rows v – 1

Columns v – 1

Error (v-1) (v-2)

Total v2 – 1

The variance of  is .  The estimated standard error of the difference between the 

estimated ith  and lth treatment effects is .

The Least Significant Difference (LSD) is given as .

Here  denotes the value of Student’s t at  level of significance and error degrees 

of freedom. The treatment means are given by . The pairwise comparison of 

treatment effects can be made by comparing the difference between any two treatment means 
with the LSD. Any two treatment effects are said to differ significantly if the difference of their 
means is larger than the LSD.  

2.4.2   Example 3
An experiment was conducted at Agricultural Research Station, Kopurgaon, Maharashtra 

on Cotton using a Latin Square Design to study the effects of foliar application of urea in 
combination with insecticidal sprays on the cotton yield. The 6 treatments were { : Control 
(i.e. no N and no insecticides), : 100kg N/ha applied as urea (half at final thinning and half at 
flowering as top dressing), : 100kg N/ha applied as urea (80 kg N/ha in 4 equal split doses as 
spray and 20 kg N/ha at final thinning), : 100 kg. N/ha applied as CAN (half at final thinning 
and half at flowering as top dressing), : + six insecticidal sprays, :  + six insecticidal 
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sprays}. There were 6 replications, and the data of Cotton yield in kg per plot is given in Table 
2.22.

Table 2.22: Cotton yield data (kg/plot)

T3  3.10 T6  5.95 T1  1.75 T5  6.40 T2  3.85 T4  5.30
T2  4.80 T1  2.70 T3  3.30 T6  5.95 T4  3.70 T5  5.40
T1  3.00 T2  2.95 T5  6.70 T4  5.95 T6  7.75 T3  7.10
T5  6.40  T4  5.80 T2  3.80 T3  6.55 T1  4.80 T6  9.40
T6  5.20 T3  4.85 T4  6.60 T2  4.60 T5  7.00 T1  5.00 
T4  4.25 T5  6.65 T6  9.30 T1  4.95 T3  9.30 T2  8.40

In the sequence, the data are analyzed (a) to identify the best treatment, (b) to test whether 
or not the average effect of T3  (100kg N/ha applied as urea) and T4  (100 kg N/ha) is same as the 
average effect of T5  (T2  + six insecticidal sprays) and T6  (T4  +six insecticidal sprays).

2.4.3   Analysis of data
We compute the following totals in Table 2.23.

Table 2.23: Treatment, row and column totals 

Treatments Totals (Ti)                                                           Rows Totals (Rj)                             Columns Totals (Ck)

Grand Total, 

Correction factor (CF) 

Treatments SS = 
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Rows SS = 

                    

Columns SS = 
 

                     

Total 
  

                    

Error SS = Total SS – Treatments SS – Rows SS – Columns SS

                   

We now form the Analysis of Variance Table 2.24.

Table 2.24: ANOVA table for cotton yield data 

Source DF SS MS F-value Prob > F

Treatments 5 47.211 9.442 7.53 0.0004

Rows 5 34.442 6.883 5.49 0.0024

Columns 5 21.586 4.317 3.44 0.0210

Error 20 25.095 1.255  

Corrected Total 35 128.333   

From Table 2.24, one can easily see that the treatment effects are highly significant (p-value 
= 0.0004) meaning thereby that the null hypothesis of equal treatment effects is rejected. The 
treatments, therefore, influence the cotton yield. The rows and columns effects are also highly 
significant with respective p-values as 0.0024 and 0.0210. This is an evidence to the fact that the 
formation of rows and columns have been effective. 

2.4.4   Analysis using SAS 
The design is a LSD with v = 6 treatments and n = 36 observations. In this design the 

number of rows is same as the number of columns, which in turn is same as the number of 
treatments. So in this design the replication number of treatments is equal to the number of 
treatments.  The data has been analyzed using SAS. The commands and the data preparation are 
given in the sequel.

DATA lsd;
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INPUT row col trt cyield;
/*the first column ‘row’ denotes the row number; the second column ‘col’ denotes the column 
number; the third column “trt’ represents the treatment number and the last column ‘cyield’ 
represents the cotton yield*/
CARDS;
1  1  3  3.10
1  2  6  5.95
1  3  1  1.75
1  4  5  6.40
1  5  2  3.85
1  6  4  5.30
2  1  2  4.80
2  2  1  2.70
2  3  3  3.30
2  4  6  5.95
2  5  4  3.70
2  6  5  5.40
3  1  1  3.00
3  2  2  2.95
3  3  5  6.70
3  4  4  5.95
3  5  6  7.75
3  6  3  7.10
4  1  5  6.40
4  2  4  5.80
4  3  2  3.80
4  4  3  6.55
4  5  1  4.80
4  6  6  9.40
5  1  6  5.20
5  2  3  4.85
5  3  4  6.60
5  4  2  4.60
5  5  5  7.00
5  6  1  5.00
6  1  4  4.25
6  2  5  6.65
6  3  6  9.30
6  4  1  4.95
6  5  3  9.30
6  6  2  8.40
;
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PROC GLM data = lsd;
CLASS row col trt;
MODEL cyield = trt row col;
MEANS trt/tukey;
CONTRAST ‘T3 T4 vs T5 T6’ trt 0 0 1 1 -1 -1;
RUN;

2.4.5   Output of analysis
The results obtained from the analysis of data are described in the sequel.

Table 2.25: Output using SAS

ANOVA

Source DF SS MS F Value Prob > F

Model 15 103.238 6.882 5.49 0.0003

Error 20 25.095 1.255

Corrected Total 35 128.333

R-Square CV Root MSE cyield Mean

0.804 20.315 1.120 5.514

ANOVA

Source DF Type III SS MS F Value Prob > F

Treatment 5 47.211 9.442 7.53 0.0004

Row 5 34.442 6.888 5.49 0.0024

Column 5 21.586 4.317 3.44 0.0210

Error 20 25.095 1.255

Corrected Total 35 128.33

It is worthwhile noting that the model with treatments effects, row effects and column 
effects explains about 80 per cent of the total variability in the data. As mentioned earlier also, 
this analysis of variance table divulges that the treatment effects are highly significant (p-value = 
0.0004) meaning thereby that the null hypothesis of equal treatment effects is rejected. The rows 
and columns effects are also highly significant with respective p-values as 0.0024 and 0.0210. So 
running this experiment as a row-column design is justified and it is very apparent that there 
were two sources of variability in the experimental units.

The distribution of observations for each treatment is given Figure in 2.4. It is easily 
seen from the Figure also that the distribution of observations is very different for different 
treatments. The Figure clearly reveals that treatment number 3 is most variable and treatment 
number 5 is least variable.
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Figure 2.4: Treatment wise Box plot of seed yield

A pairwise comparison of treatment effects is made and the results are summarized in 
Table 2.26. Treatment 6 is the maximum yielding and is significantly different from treatment 1, 
which is the lowest yielding. Treatment 6 is, however, statistically at par with treatments 5, 3 and 
4. Similarly, treatment 1 is statistically at par with treatments 2, 4 and 3. On the basis of yield, 
treatment 6 may be recommended as the best for cotton yield.

Table 2.26: Treatments in descending order with letter display

Means with the same letter are not significantly different

Tukey Grouping Mean N Treatment

A 7.258 6 6

B A 6.425 6 5

B A C 5.700 6 3

B A C 5.267 6 4

B C 4.733 6 2
C 3.700 6 1

A comparison of treatments 3 and 4 with treatments 5 and 6 (null hypothesis that the 
average effect of treatments 3 and 4 is the same as the average effect of treatments 5 and 6) 
reveals that the difference is significant (p-value = 0.0076).

Table 2.27: Contrast analysis result

Contrast DF Contrast SS Mean Square F Value Prob > F

3 4 vs 5 6 1 11.070 11.070 8.82 0.0076
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The pairwise treatment comparisons can also be made without writing the treatments in 
descending order of the treatments LS Mean values. The results are given in Table 2.28.

Table 2.28: Treatments with letter display

Treatment 
Name Treatment Description Mean of ‘cyield’ Rank of 

Treatment
1 Control 3.70C 6

2 100kg N/ha applied as urea (half at final thinning and half at 
flowering as top dressing) 4.73B,C 5

3 100kg N/ha applied as urea (80 kg N/ha in 4 equal split doses 
as spray and 20 kg N/ha at final thinning) 5.70A,B,C 3

4 100 kg. N/ha applied as CAN (half at final thinning and half 
at flowering as top dressing) 5.27A,B,C 4

5 T5 : T2  + six insecticidal sprays 6.43A,B 2
6 T4 + six insecticidal sprays 7.26A 1

General Mean 5.51

0.647

Tukey HSD at 5% 2.033

In Table 2.28, any two treatments whose Means have at least one letter common are not 
statistically significant using Fisher’s Least Square Difference. Therefore, it follows that treatment 
1 is significantly different from treatments 3, 4, 5 and 6, but is not significantly different from 
treatment 2. Similarly, treatment 6 is significantly different from treatments 1, 2, 3 and 4, but 
is not significantly different from treatment 5. Also treatment 2 is significantly different from 
treatments 5 and 6. Following the Table 2.28, it is also evident that treatment 3 is significantly 
different from treatments 1 and 6. Treatment 4, however, is not significantly different from 
treatments 2, 3 and 5.

Further, 100 kg. N/ha applied as CAN (half at final thinning and half at flowering as top 
dressing) along with six insecticidal sprays produces the maximum yield, though it is at par 
with 100kg N/ha applied as urea (half at final thinning and half at flowering as top dressing) 
coupled with six insecticidal sprays. It may be worthwhile mentioning here that all comparisons 
are made at 5 per cent level of significance.

2.4.6   Analysis using R
R code
d3=read.table(“lsd.txt”,header=TRUE)
attach(d3)
names(d3)
#Treatment means and standard deviations
aggregate(cyield, by=list(trt), mean)
aggregate(cyield, by=list(trt), sd)
#Treatment wise box plot of yield 
boxplot(cyield~trt)
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#set the contrast coefficients for testing average of treatments 3 and 4 with average of treatments 
5 and 6
trt=factor(trt)
row=factor(row)
col=factor(col)
aov.out=aov(cyield~trt+row+col)
summary(aov.out)
library(lsmeans)
lsm <- lsmeans(aov.out, “trt”)
contrast(lsm, list(con1 = c(0,0,1,1,-1,-1)))
#Tukey’s honest significant diffence test
TukeyHSD(aov.out,“trt”)
#LSD
library(agricolae)
lsd.result <- LSD.test(aov.out,“trt”)
lsd.result
detach(d3)

2.5   Conclusion
This Chapter has been devoted to introducing the basic designs like CRD, RCB design and 

Latin square design. SAS has been used for the analysis of data. The PROC GLM has been the 
major procedure used for analysis of data. The R code for the analysis of data has also been 
given.

It has been observed that in many experiments conducted as an RCB design (very few 
experiments are conducted as Latin square design), the block mean square is not high as 
compared to mean square error. In other words, block mean square is smaller than the error 
mean square. This is not a healthy situation. The basic purpose of forming blocks (or two 
systems of blocks as in Latin square design) is that there was variability in the experimental 
units. It is expected that the between blocks variability would be large and the within block 
variability would be small. But if the block effects are not significant, it means that substantial 
part of variability arising in the experimental units has not been accounted for by forming 
blocks. Obviously then the CV would also be large. 

It may be re-emphasized that the variability in the experimental units is a very disturbing 
factor and it needs to be taken care of properly so as to enable a proper conduct of experiment.

For the benefit of the experimenters, a utility has been created at the “Design Resources 
Server” hosted at www.iasri.res.in/design to generate a randomized layout of these basic designs. 
There is also a provision for generating a data entry sheet based on the randomized plan either 
in TXT (Text file) or CSV (Comma Separated Values) formats.  CSV/TXT files can be opened 
using any text editor or in MS®-Excel®. The experimenter may use “Datasheet” hyperlink for 
downloading / opening generated datasheet. Besides randomized layout, an outline of ANOVA 
is also shown for the benefit of the experimenters. The users may visit http://iasri.res.in/design/
Basic Designs/basicdesign.aspx and take advantage of this utility.


