Vector Space Isomorphism

The notion of two vector spaces being isomorphic was defined in Chapter 4 when we investigated the coordinates of a vector relative to a basis. We now redefine this concept.

DEFINITION: Two vector spaces V and U over K are isomorphic, written $V \cong U$, if there exists a bijective (one-to-one and onto) linear mapping $F: V \rightarrow U$. The mapping F is then called an isomorphism between V and U.
Consider any vector space V of dimension n and let S be any basis of V. Then the mapping

$$
v \mapsto[v]_{S}
$$

which maps each vector $v \in V$ into its coordinate vector $[v]_{S}$, is an isomorphism between V and K^{n}.

5.4 Kernel and Image of a Linear Mapping

We begin by defining two concepts.
definition: Let $F: V \rightarrow U$ be a linear mapping. The kernel of F, written $\operatorname{Ker} F$, is the set of elements in V that map into the zero vector 0 in U; that is,

$$
\operatorname{Ker} F=\{v \in V: F(v)=0\}
$$

The image (or range) of F, written $\operatorname{Im} F$, is the set of image points in U; that is,
$\operatorname{Im} F=\{u \in U$: there exists $v \in V$ for which $F(v)=u\}$
The following theorem is easily proved (Problem 5.22).
THEOREM 5.3: Let $F: V \rightarrow U$ be a linear mapping. Then the kernel of F is a subspace of V and the image of F is a subspace of U.
Now suppose that $v_{1}, v_{2}, \ldots, v_{m}$ span a vector space V and that $F: V \rightarrow U$ is linear. We show that $F\left(v_{1}\right), F\left(v_{2}\right), \ldots, F\left(v_{m}\right)$ span $\operatorname{Im} F$. Let $u \in \operatorname{Im} F$. Then there exists $v \in V$ such that $F(v)=u$. Because the v_{i} 's span V and $v \in V$, there exist scalars $a_{1}, a_{2}, \ldots, a_{m}$ for which
$v=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{m} v_{m}$
Therefore,
$u=F(v)=F\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{m} v_{m}\right)=a_{1} F\left(v_{1}\right)+a_{2} F\left(v_{2}\right)+\cdots+a_{m} F\left(v_{m}\right)$
Thus, the vectors $F\left(v_{1}\right), F\left(v_{2}\right), \ldots, F\left(v_{m}\right)$ span $\operatorname{Im} F$.
We formally state the above result.
PROPOSITION 5.4: Suppose $v_{1}, v_{2}, \ldots, v_{m}$ span a vector space V, and suppose $F: V \rightarrow U$ is linear. Then $F\left(v_{1}\right), F\left(v_{2}\right), \ldots, F\left(v_{m}\right)$ span $\operatorname{Im} F$.

EXAMPLE 5.7

(a) Let $F: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the projection of a vector v into the $x y$-plane [as pictured in Fig. 5-2(a)]; that is,

$$
F(x, y, z)=(x, y, 0)
$$

Clearly the image of F is the entire $x y$-plane-that is, points of the form $(x, y, 0)$. Moreover, the kernel of F is the z-axis-that is, points of the form $(0,0, c)$. That is,

$$
\operatorname{Im} F=\{(a, b, c): c=0\}=x y \text {-plane } \quad \text { and } \quad \operatorname{Ker} F=\{(a, b, c): a=0, b=0\}=z \text {-axis }
$$

(b) Let $G: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear mapping that rotates a vector v about the z-axis through an angle θ [as pictured in Fig. 5-2(b)]; that is,

$$
G(x, y, z)=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta, z)
$$

Figure 5-2

Observe that the distance of a vector v from the origin O does not change under the rotation, and so only the zero vector 0 is mapped into the zero vector 0 . Thus, $\operatorname{Ker} G=\{0\}$. On the other hand, every vector u in \mathbf{R}^{3} is the image of a vector v in \mathbf{R}^{3} that can be obtained by rotating u back by an angle of θ. Thus, $\operatorname{Im} G=\mathbf{R}^{3}$, the entire space.

EXAMPLE 5.8 Consider the vector space $V=\mathbf{P}(t)$ of polynomials over the real field \mathbf{R}, and let $H: V \rightarrow V$ be the third-derivative operator; that is, $H[f(t)]=d^{3} f / d t^{3}$. [Sometimes the notation \mathbf{D}^{3} is used for H, where \mathbf{D} is the derivative operator.] We claim that

Ker $H=\{$ polynomials of degree $\leq 2\}=\mathbf{P}_{2}(t) \quad$ and $\quad \operatorname{Im} H=V$
The first comes from the fact that $H\left(a t^{2}+b t+c\right)=0$ but $H\left(t^{n}\right) \neq 0$ for $n \geq 3$. The second comes from that fact that every polynomial $g(t)$ in V is the third derivative of some polynomial $f(t)$ (which can be obtained by taking the antiderivative of $g(t)$ three times).

Kernel and Image of Matrix Mappings

Consider, say, a 3×4 matrix A and the usual basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ of K^{4} (written as columns):

$$
A=\left[\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4}
\end{array}\right], \quad e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad e_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad e_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Recall that A may be viewed as a linear mapping $A: K^{4} \rightarrow K^{3}$, where the vectors in K^{4} and K^{3} are viewed as column vectors. Now the usual basis vectors span K^{4}, so their images $A e_{1}, A e_{2}, A e_{3}, A e_{4}$ span the image of A. But the vectors $A e_{1}, A e_{2}, A e_{3}, A e_{4}$ are precisely the columns of A :

$$
A e_{1}=\left[a_{1}, b_{1}, c_{1}\right]^{T}, \quad A e_{2}=\left[a_{2}, b_{2}, c_{2}\right]^{T}, \quad A e_{3}=\left[a_{3}, b_{3}, c_{3}\right]^{T}, \quad A e_{4}=\left[a_{4}, b_{4}, c_{4}\right]^{T}
$$

Thus, the image of A is precisely the column space of A.

On the other hand, the kernel of A consists of all vectors v for which $A v=0$. This means that the kernel of A is the solution space of the homogeneous system $A X=0$, called the null space of A.

We state the above results formally.

PROPOSITION 5.5: Let A be any $m \times n$ matrix over a field K viewed as a linear map $A: K^{n} \rightarrow K^{m}$. Then

$$
\operatorname{Ker} A=\operatorname{nullsp}(A) \quad \text { and } \quad \operatorname{Im} A=\operatorname{colsp}(A)
$$

Here $\operatorname{colsp}(A)$ denotes the column space of A, and nullsp (A) denotes the null space of A.

Rank and Nullity of a Linear Mapping

Let $F: V \rightarrow U$ be a linear mapping. The rank of F is defined to be the dimension of its image, and the nullity of F is defined to be the dimension of its kernel; namely,

$$
\operatorname{rank}(F)=\operatorname{dim}(\operatorname{Im} F) \quad \text { and } \quad \operatorname{nullity}(F)=\operatorname{dim}(\operatorname{Ker} F)
$$

The following important theorem (proved in Problem 5.23) holds.

THEOREM 5.6 Let V be of finite dimension, and let $F: V \rightarrow U$ be linear. Then

$$
\operatorname{dim} V=\operatorname{dim}(\operatorname{Ker} F)+\operatorname{dim}(\operatorname{Im} F)=\operatorname{nullity}(F)+\operatorname{rank}(F)
$$

Recall that the rank of a matrix A was also defined to be the dimension of its column space and row space. If we now view A as a linear mapping, then both definitions correspond, because the image of A is precisely its column space.

EXAMPLE 5.9 Let $F: \mathbf{R}^{4} \rightarrow \mathbf{R}^{3}$ be the linear mapping defined by

$$
F(x, y, z, t)=(x-y+z+t, \quad 2 x-2 y+3 z+4 t, \quad 3 x-3 y+4 z+5 t)
$$

(a) Find a basis and the dimension of the image of F.

First find the image of the usual basis vectors of \mathbf{R}^{4},

$$
\begin{array}{ll}
F(1,0,0,0)=(1,2,3), & F(0,0,1,0)=(1,3,4) \\
F(0,1,0,0)=(-1,-2,-3), & F(0,0,0,1)=(1,4,5)
\end{array}
$$

By Proposition 5.4, the image vectors span $\operatorname{Im} F$. Hence, form the matrix M whose rows are these image vectors and row reduce to echelon form:

$$
M=\left[\begin{array}{rrr}
1 & 2 & 3 \\
-1 & -2 & -3 \\
1 & 3 & 4 \\
1 & 4 & 5
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus, $(1,2,3)$ and $(0,1,1)$ form a basis of $\operatorname{Im} F$. Hence, $\operatorname{dim}(\operatorname{Im} F)=2$ and $\operatorname{rank}(F)=2$.
(b) Find a basis and the dimension of the kernel of the map F.

Set $F(v)=0$, where $v=(x, y, z, t)$,

$$
F(x, y, z, t)=(x-y+z+t, \quad 2 x-2 y+3 z+4 t, \quad 3 x-3 y+4 z+5 t)=(0,0,0)
$$

Set corresponding components equal to each other to form the following homogeneous system whose solution space is $\operatorname{Ker} F$:

$$
\begin{array}{rlrlrl}
x-y+z+t & =0 & x-y+z+t & =0 & & \\
2 x-2 y+3 z+4 t & =0 & \text { or } & z+2 t & =0 & \text { or }
\end{array} \quad x-y+z+t=0
$$

The free variables are y and t. Hence, $\operatorname{dim}(\operatorname{Ker} F)=2$ or nullity $(F)=2$.
(i) Set $y=1, t=0$ to obtain the solution $(-1,1,0,0)$,
(ii) Set $y=0, t=1$ to obtain the solution $(1,0,-2,1)$.

Thus, $(-1,1,0,0)$ and $(1,0,-2,1)$ form a basis for $\operatorname{Ker} F$.
As expected from Theorem 5.6, $\operatorname{dim}(\operatorname{Im} F)+\operatorname{dim}(\operatorname{Ker} F)=4=\operatorname{dim} \mathbf{R}^{4}$.

Application to Systems of Linear Equations

Let $A X=B$ denote the matrix form of a system of m linear equations in n unknowns. Now the matrix A may be viewed as a linear mapping

$$
A: K^{n} \rightarrow K^{m}
$$

