
Vector Space Isomorphism

The notion of two vector spaces being isomorphic was defined in Chapter 4 when we investigated the
coordinates of a vector relative to a basis. We now redefine this concept.

DEFINITION: Two vector spaces V and U over K are isomorphic, written V ffi U , if there exists a
bijective (one-to-one and onto) linear mapping F : V ! U . The mapping F is then
called an isomorphism between V and U .

Consider any vector space V of dimension n and let S be any basis of V. Then the mapping

v 7! ½v�S
which maps each vector v 2 V into its coordinate vector ½v�S , is an isomorphism between V and Kn.

5.4 Kernel and Image of a Linear Mapping

We begin by defining two concepts.

DEFINITION: Let F : V ! U be a linear mapping. The kernel of F, written Ker F, is the set of
elements in V that map into the zero vector 0 in U ; that is,

Ker F ¼ fv 2 V : FðvÞ ¼ 0g
The image (or range) of F, written Im F, is the set of image points in U ; that is,

Im F ¼ fu 2 U : there exists v 2 V for which FðvÞ ¼ ug
The following theorem is easily proved (Problem 5.22).

THEOREM 5.3: Let F : V ! U be a linear mapping. Then the kernel of F is a subspace of V and the
image of F is a subspace of U .

Now suppose that v1; v2; . . . ; vm span a vector space V and that F : V ! U is linear. We show that
Fðv1Þ;Fðv2Þ; . . . ;FðvmÞ span Im F. Let u 2 Im F. Then there exists v 2 V such that FðvÞ ¼ u. Because
the vi’s span V and v 2 V, there exist scalars a1; a2; . . . ; am for which

v ¼ a1v1 þ a2v2 þ � � � þ amvm

Therefore,

u ¼ FðvÞ ¼ Fða1v1 þ a2v2 þ � � � þ amvmÞ ¼ a1Fðv1Þ þ a2Fðv2Þ þ � � � þ amFðvmÞ
Thus, the vectors Fðv1Þ;Fðv2Þ; . . . ;FðvmÞ span Im F.

We formally state the above result.

PROPOSITION 5.4: Suppose v1; v2; . . . ; vm span a vector space V, and suppose F : V ! U is linear.
Then Fðv1Þ;Fðv2Þ; . . . ;FðvmÞ span Im F.

EXAMPLE 5.7

(a) Let F : R3 ! R3 be the projection of a vector v into the xy-plane [as pictured in Fig. 5-2(a)]; that is,

Fðx; y; zÞ ¼ ðx; y; 0Þ
Clearly the image of F is the entire xy-plane—that is, points of the form (x; y; 0). Moreover, the kernel of F is
the z-axis—that is, points of the form (0; 0; c). That is,

Im F ¼ fða; b; cÞ : c ¼ 0g ¼ xy-plane and Ker F ¼ fða; b; cÞ : a ¼ 0; b ¼ 0g ¼ z-axis

(b) Let G : R3 ! R3 be the linear mapping that rotates a vector v about the z-axis through an angle y [as pictured in
Fig. 5-2(b)]; that is,

Gðx; y; zÞ ¼ ðx cos y� y sin y; x sin yþ y cos y; zÞ

CHAPTER 5 Linear Mappings 169



Observe that the distance of a vector v from the origin O does not change under the rotation, and so only the zero
vector 0 is mapped into the zero vector 0. Thus, Ker G ¼ f0g. On the other hand, every vector u in R3 is the image
of a vector v in R3 that can be obtained by rotating u back by an angle of y. Thus, Im G ¼ R3, the entire space.

EXAMPLE 5.8 Consider the vector space V ¼ PðtÞ of polynomials over the real field R, and let H : V ! V be the
third-derivative operator; that is, H ½ f ðtÞ� ¼ d3f =dt3. [Sometimes the notation D3 is used for H , where D is the
derivative operator.] We claim that

Ker H ¼ fpolynomials of degree � 2g ¼ P2ðtÞ and Im H ¼ V

The first comes from the fact that Hðat2 þ bt þ cÞ ¼ 0 but HðtnÞ 6¼ 0 for n � 3. The second comes from that fact
that every polynomial gðtÞ in V is the third derivative of some polynomial f ðtÞ (which can be obtained by taking the
antiderivative of gðtÞ three times).

Kernel and Image of Matrix Mappings

Consider, say, a 3	 4 matrix A and the usual basis fe1; e2; e3; e4g of K4 (written as columns):

A ¼
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

24 35; e1 ¼
1
0
0
0

2664
3775; e2 ¼

1
0
0
0

2664
3775; e3 ¼

1
0
0
0

2664
3775; e4 ¼

1
0
0
0

2664
3775

Recall that A may be viewed as a linear mapping A : K4 ! K3, where the vectors in K4 and K3 are
viewed as column vectors. Now the usual basis vectors span K4, so their images Ae1, Ae2, Ae3, Ae4 span
the image of A. But the vectors Ae1, Ae2, Ae3, Ae4 are precisely the columns of A:

Ae1 ¼ ½a1; b1; c1�T ; Ae2 ¼ ½a2; b2; c2�T ; Ae3 ¼ ½a3; b3; c3�T ; Ae4 ¼ ½a4; b4; c4�T

Thus, the image of A is precisely the column space of A.

On the other hand, the kernel of A consists of all vectors v for which Av ¼ 0. This means that the
kernel of A is the solution space of the homogeneous system AX ¼ 0, called the null space of A.

We state the above results formally.

PROPOSITION 5.5: Let A be anym	 nmatrix over a field K viewed as a linear map A : Kn ! Km. Then

Ker A ¼ nullspðAÞ and Im A ¼ colspðAÞ
Here colsp(A) denotes the column space of A, and nullsp(A) denotes the null space of A.

Figure 5-2
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Rank and Nullity of a Linear Mapping

Let F : V ! U be a linear mapping. The rank of F is defined to be the dimension of its image, and the
nullity of F is defined to be the dimension of its kernel; namely,

rankðFÞ ¼ dimðIm FÞ and nullityðFÞ ¼ dimðKer FÞ
The following important theorem (proved in Problem 5.23) holds.

THEOREM 5.6 Let V be of finite dimension, and let F : V ! U be linear. Then

dimV ¼ dimðKer FÞ þ dimðIm FÞ ¼ nullityðFÞ þ rankðFÞ
Recall that the rank of a matrix A was also defined to be the dimension of its column space and row

space. If we now view A as a linear mapping, then both definitions correspond, because the image of A is
precisely its column space.

EXAMPLE 5.9 Let F : R4 ! R3 be the linear mapping defined by

Fðx; y; z; tÞ ¼ ðx� yþ zþ t; 2x� 2yþ 3zþ 4t; 3x� 3yþ 4zþ 5tÞ

(a) Find a basis and the dimension of the image of F.
First find the image of the usual basis vectors of R4,

Fð1; 0; 0; 0Þ ¼ ð1; 2; 3Þ; Fð0; 0; 1; 0Þ ¼ ð1; 3; 4Þ
Fð0; 1; 0; 0Þ ¼ ð�1;�2;�3Þ; Fð0; 0; 0; 1Þ ¼ ð1; 4; 5Þ

By Proposition 5.4, the image vectors span Im F. Hence, form the matrix M whose rows are these image vectors
and row reduce to echelon form:

M ¼
1 2 3
�1 �2 �3
1 3 4
1 4 5

2664
3775 �

1 2 3
0 0 0
0 1 1
0 2 2

2664
3775 �

1 2 3
0 1 1
0 0 0
0 0 0

2664
3775

Thus, (1, 2, 3) and (0, 1, 1) form a basis of Im F. Hence, dimðIm FÞ ¼ 2 and rankðFÞ ¼ 2.

(b) Find a basis and the dimension of the kernel of the map F.
Set FðvÞ ¼ 0, where v ¼ ðx; y; z; tÞ,

Fðx; y; z; tÞ ¼ ðx� yþ zþ t; 2x� 2yþ 3zþ 4t; 3x� 3yþ 4zþ 5tÞ ¼ ð0; 0; 0Þ
Set corresponding components equal to each other to form the following homogeneous system whose solution
space is Ker F:

x� yþ zþ t ¼ 0
2x� 2yþ 3zþ 4t ¼ 0
3x� 3yþ 4zþ 5t ¼ 0

or
x� yþ zþ t ¼ 0

zþ 2t ¼ 0
zþ 2t ¼ 0

or
x� yþ zþ t ¼ 0

zþ 2t ¼ 0

The free variables are y and t. Hence, dimðKer FÞ ¼ 2 or nullityðFÞ ¼ 2.

(i) Set y ¼ 1, t ¼ 0 to obtain the solution (�1; 1; 0; 0Þ,
(ii) Set y ¼ 0, t ¼ 1 to obtain the solution (1; 0;�2; 1Þ.

Thus, (�1; 1; 0; 0) and (1; 0;�2; 1) form a basis for Ker F.

As expected from Theorem 5.6, dimðIm FÞ þ dimðKer FÞ ¼ 4 ¼ dimR4.

Application to Systems of Linear Equations

Let AX ¼ B denote the matrix form of a system of m linear equations in n unknowns. Now the matrix A
may be viewed as a linear mapping

A : Kn ! Km
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