169

Vector Space Isomorphism

The notion of two vector spaces being isomorphic was defined in Chapter 4 when we investigated the coordinates of a vector relative to a basis. We now redefine this concept.

DEFINITION: Two vector spaces V and U over K are *isomorphic*, written $V \cong U$, if there exists a bijective (one-to-one and onto) linear mapping $F: V \to U$. The mapping F is then called an *isomorphism* between V and U.

Consider any vector space V of dimension n and let S be any basis of V. Then the mapping

 $v \mapsto [v]_{S}$

which maps each vector $v \in V$ into its coordinate vector $[v]_{S}$, is an isomorphism between V and K^{n} .

5.4 Kernel and Image of a Linear Mapping

We begin by defining two concepts.

DEFINITION: Let $F: V \to U$ be a linear mapping. The *kernel* of F, written Ker F, is the set of elements in V that map into the zero vector 0 in U; that is,

$$\operatorname{Ker} F = \{ v \in V : F(v) = 0 \}$$

The *image* (or *range*) of F, written Im F, is the set of image points in U; that is,

Im $F = \{u \in U : \text{there exists } v \in V \text{ for which } F(v) = u\}$

The following theorem is easily proved (Problem 5.22).

THEOREM 5.3: Let $F: V \to U$ be a linear mapping. Then the kernel of F is a subspace of V and the image of F is a subspace of U.

Now suppose that v_1, v_2, \ldots, v_m span a vector space V and that $F: V \to U$ is linear. We show that $F(v_1), F(v_2), \ldots, F(v_m)$ span Im F. Let $u \in \text{Im } F$. Then there exists $v \in V$ such that F(v) = u. Because the v_i 's span V and $v \in V$, there exist scalars a_1, a_2, \ldots, a_m for which

 $v = a_1v_1 + a_2v_2 + \dots + a_mv_m$

Therefore,

$$u = F(v) = F(a_1v_1 + a_2v_2 + \dots + a_mv_m) = a_1F(v_1) + a_2F(v_2) + \dots + a_mF(v_m)$$

Thus, the vectors $F(v_1), F(v_2), \ldots, F(v_m)$ span Im F.

We formally state the above result.

PROPOSITION 5.4: Suppose $v_1, v_2, ..., v_m$ span a vector space V, and suppose $F: V \to U$ is linear. Then $F(v_1), F(v_2), ..., F(v_m)$ span Im F.

EXAMPLE 5.7

(a) Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be the projection of a vector v into the xy-plane [as pictured in Fig. 5-2(a)]; that is,

$$F(x, y, z) = (x, y, 0)$$

Clearly the image of F is the entire xy-plane—that is, points of the form (x, y, 0). Moreover, the kernel of F is the z-axis—that is, points of the form (0, 0, c). That is,

Im
$$F = \{(a, b, c) : c = 0\} = xy$$
-plane and Ker $F = \{(a, b, c) : a = 0, b = 0\} = z$ -axis

(b) Let G: R³ → R³ be the linear mapping that rotates a vector v about the z-axis through an angle θ [as pictured in Fig. 5-2(b)]; that is,

 $G(x, y, z) = (x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta, z)$

Observe that the distance of a vector v from the origin O does not change under the rotation, and so only the zero vector 0 is mapped into the zero vector 0. Thus, Ker $G = \{0\}$. On the other hand, every vector u in \mathbf{R}^3 is the image of a vector v in \mathbf{R}^3 that can be obtained by rotating u back by an angle of θ . Thus, Im $G = \mathbf{R}^3$, the entire space.

EXAMPLE 5.8 Consider the vector space $V = \mathbf{P}(t)$ of polynomials over the real field **R**, and let $H: V \to V$ be the third-derivative operator; that is, $H[f(t)] = d^3f/dt^3$. [Sometimes the notation \mathbf{D}^3 is used for H, where **D** is the derivative operator.] We claim that

Ker $H = \{\text{polynomials of degree} \le 2\} = \mathbf{P}_2(t)$ and Im H = V

The first comes from the fact that $H(at^2 + bt + c) = 0$ but $H(t^n) \neq 0$ for $n \ge 3$. The second comes from that fact that every polynomial g(t) in V is the third derivative of some polynomial f(t) (which can be obtained by taking the antiderivative of g(t) three times).

Kernel and Image of Matrix Mappings

Consider, say, a 3 × 4 matrix A and the usual basis $\{e_1, e_2, e_3, e_4\}$ of K^4 (written as columns):

$$A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \\ c_1 & c_2 & c_3 & c_4 \end{bmatrix}, \qquad e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad e_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad e_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad e_4 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Recall that A may be viewed as a linear mapping $A: K^4 \to K^3$, where the vectors in K^4 and K^3 are viewed as column vectors. Now the usual basis vectors span K^4 , so their images Ae_1 , Ae_2 , Ae_3 , Ae_4 span the image of A. But the vectors Ae_1 , Ae_2 , Ae_3 , Ae_4 are precisely the columns of A:

$$Ae_1 = [a_1, b_1, c_1]^T$$
, $Ae_2 = [a_2, b_2, c_2]^T$, $Ae_3 = [a_3, b_3, c_3]^T$, $Ae_4 = [a_4, b_4, c_4]^T$

Thus, the image of A is precisely the column space of A.

On the other hand, the kernel of A consists of all vectors v for which Av = 0. This means that the kernel of A is the solution space of the homogeneous system AX = 0, called the *null space* of A.

We state the above results formally.

PROPOSITION 5.5: Let A be any $m \times n$ matrix over a field K viewed as a linear map $A : K^n \to K^m$. Then Ker A = nullsp(A) and Im A = colsp(A)

Here colsp(A) denotes the column space of A, and nullsp(A) denotes the null space of A.

Rank and Nullity of a Linear Mapping

Let $F: V \to U$ be a linear mapping. The *rank* of F is defined to be the dimension of its image, and the *nullity* of F is defined to be the dimension of its kernel; namely,

 $\operatorname{rank}(F) = \operatorname{dim}(\operatorname{Im} F)$ and $\operatorname{nullity}(F) = \operatorname{dim}(\operatorname{Ker} F)$

The following important theorem (proved in Problem 5.23) holds.

THEOREM 5.6 Let V be of finite dimension, and let $F: V \to U$ be linear. Then dim $V = \dim(\text{Ker } F) + \dim(\text{Im } F) = \text{nullity}(F) + \text{rank}(F)$

Recall that the rank of a matrix A was also defined to be the dimension of its column space and row space. If we now view A as a linear mapping, then both definitions correspond, because the image of A is precisely its column space.

EXAMPLE 5.9 Let $F : \mathbf{R}^4 \to \mathbf{R}^3$ be the linear mapping defined by

$$F(x, y, z, t) = (x - y + z + t, 2x - 2y + 3z + 4t, 3x - 3y + 4z + 5t)$$

(a) Find a basis and the dimension of the image of F.

First find the image of the usual basis vectors of \mathbf{R}^4 ,

F(1,0,0,0) = (1,2,3),	F(0,0,1,0) = (1,3,4)
F(0, 1, 0, 0) = (-1, -2, -3),	F(0,0,0,1) = (1,4,5)

By Proposition 5.4, the image vectors span Im F. Hence, form the matrix M whose rows are these image vectors and row reduce to echelon form:

$$M = \begin{bmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \\ 1 & 3 & 4 \\ 1 & 4 & 5 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, (1, 2, 3) and (0, 1, 1) form a basis of Im F. Hence, dim(Im F) = 2 and rank(F) = 2.

(b) Find a basis and the dimension of the kernel of the map F.

Set F(v) = 0, where v = (x, y, z, t),

$$F(x, y, z, t) = (x - y + z + t, \quad 2x - 2y + 3z + 4t, \quad 3x - 3y + 4z + 5t) = (0, 0, 0)$$

Set corresponding components equal to each other to form the following homogeneous system whose solution space is Ker *F*:

x - y + z + t = 0		x - y + z + t = 0		$x y \mid z \mid t = 0$
2x - 2y + 3z + 4t = 0	or	z + 2t = 0	or	x - y + z + t = 0
3x - 3y + 4z + 5t = 0		z + 2t = 0		z + 2t = 0

The free variables are y and t. Hence, $\dim(\text{Ker } F) = 2$ or $\operatorname{nullity}(F) = 2$.

(i) Set y = 1, t = 0 to obtain the solution (-1, 1, 0, 0),

(ii) Set y = 0, t = 1 to obtain the solution (1, 0, -2, 1).

Thus, (-1, 1, 0, 0) and (1, 0, -2, 1) form a basis for Ker F.

As expected from Theorem 5.6, $\dim(\operatorname{Im} F) + \dim(\operatorname{Ker} F) = 4 = \dim \mathbb{R}^4$.

Application to Systems of Linear Equations

Let AX = B denote the matrix form of a system of *m* linear equations in *n* unknowns. Now the matrix *A* may be viewed as a linear mapping

 $A: K^n \to K^m$