CHAPTER 5 Linear Mappings — &

Vector Space Isomorphism

The notion of two vector spaces being isomorphic was defined in Chapter 4 when we investigated the
coordinates of a vector relative to a basis. We now redefine this concept.

DEFINITION: Two vector spaces V' and U over K are isomorphic, written V = U, if there exists a
bijective (one-to-one and onto) linear mapping F': V' — U. The mapping F is then
called an isomorphism between V and U.

Consider any vector space V' of dimension # and let S be any basis of V. Then the mapping
v [ulg

which maps each vector v € V' into its coordinate vector [v], is an isomorphism between V" and K”.

5.4 Kernel and Image of a Linear Mapping

We begin by defining two concepts.
DEFINITION: Let FF: V — U be a linear mapping. The kernel of F, written Ker F, is the set of
elements in V' that map into the zero vector 0 in U; that is,
Ker F ={veV:F(v)=0}
The image (or range) of F, written Im F, is the set of image points in U; that is,
Im F = {u € U : there exists v € V for which F(v) = u}
The following theorem is easily proved (Problem 5.22).

THEOREM 5.3:  Let F': VV — U be a linear mapping. Then the kernel of F is a subspace of V' and the
image of F' is a subspace of U.

Now suppose that v, v,,..., v, span a vector space V and that F': V' — U is linear. We show that
F(v)),F(vy),...,F(v,) span Im F. Let u € Im F. Then there exists v € V such that F(v) = u. Because
the v;’s span V' and v € V, there exist scalars a;,a,,...,a, for which

V=a10) + @yt A,y
Therefore,

u=F(v)=F(av +ay,+ - +a,v,) =aF(v)+aF(vn)+- - +a,F(v,)
Thus, the vectors F(v,), F(v,), ..., F(v,) span Im F.

We formally state the above result.

PROPOSITION 5.4:  Suppose v, v,,..., 7, span a vector space V, and suppose F: V' — U is linear.
Then F(v,),F(v,),...,F(v,) span Im F.
EXAMPLE 5.7
(a) Let F: R® — R® be the projection of a vector v into the xy-plane [as pictured in Fig. 5-2(a)]; that is,
F(x,y,2) = (x,,0)

Clearly the image of F is the entire xy-plane—that is, points of the form (x, y, 0). Moreover, the kernel of F is
the z-axis—that is, points of the form (0, 0, ¢). That is,

Im F = {(a,b,c): ¢ =0} = xy-plane and Ker F = {(a,b,c):a =0,b =0} = z-axis
(b) Let G: R® — R be the linear mapping that rotates a vector v about the z-axis through an angle 0 [as pictured in
Fig. 5-2(b)]; that is,
G(x,y,z) = (xcosO — ysin0, xsin0 + ycos0, z)
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‘ F(v) = (a, b, 0) Y
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Figure 5-2

Observe that the distance of a vector v from the origin O does not change under the rotation, and so only the zero
vector 0 is mapped into the zero vector 0. Thus, Ker G = {0}. On the other hand, every vector « in R* is the image
of a vector v in R that can be obtained by rotating u back by an angle of 0. Thus, Im G = R®, the entire space.

EXAMPLE 5.8 Consider the vector space V' = P(¢) of polynomials over the real field R, and let H: ¥ — V be the
third-derivative operator; that is, H[f(¢)] = d°f/df*. [Sometimes the notation D* is used for H, where D is the
derivative operator.] We claim that

Ker H = {polynomials of degree < 2} = P,(¢) and ImH=V

The first comes from the fact that H(at?> + bt +¢) = 0 but H(¢*) # 0 for n > 3. The second comes from that fact
that every polynomial g(¢#) in ¥ is the third derivative of some polynomial f(¢) (which can be obtained by taking the
antiderivative of g(#) three times).

Kernel and Image of Matrix Mappings

Consider, say, a 3 x 4 matrix 4 and the usual basis {e,,e,,e;,e,} of K* (written as columns):

a a a a ! ! ! !

1 2 3 4 0 0 0 0

A= by by by by, e = 0l € = 01’ e = 01’ €4 = 0
‘2 G G 0 0 0 0

Recall that 4 may be viewed as a linear mapping 4 : K* — K3, where the vectors in K* and K> are
viewed as column vectors. Now the usual basis vectors span K*, so their images Ae;, Ae,, Ae;, Ae, span
the image of 4. But the vectors Ae,, Ae,, Ae;, Ae, are precisely the columns of 4:

T T T T
] I Aey = [az, b3, c3]" Aey = [ay, by, cy]

Ael = [al,bl,cl B A62 - [az,bz,CZ

Thus, the image of 4 is precisely the column space of 4.

On the other hand, the kernel of A4 consists of all vectors v for which 4v = 0. This means that the
kernel of A is the solution space of the homogeneous system AX = 0, called the null space of A.

We state the above results formally.

PROPOSITION 5.5:  Let 4 be any m x n matrix over a field K viewed as a linear map 4 : K" — K. Then
Ker 4 = nullsp(4) and Im 4 = colsp(A4)
Here colsp(4) denotes the column space of 4, and nullsp(4) denotes the null space of 4.
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Rank and Nullity of a Linear Mapping

Let F: V' — U be a linear mapping. The rank of F is defined to be the dimension of its image, and the
nullity of F is defined to be the dimension of its kernel; namely,

rank(F) = dim(Im F) and nullity(F) = dim(Ker F)
The following important theorem (proved in Problem 5.23) holds.

THEOREM 5.6  Let V' be of finite dimension, and let F: V' — U be linear. Then
dim V' = dim(Ker F) + dim(Im F) = nullity(F) + rank(F)
Recall that the rank of a matrix 4 was also defined to be the dimension of its column space and row

space. If we now view A4 as a linear mapping, then both definitions correspond, because the image of 4 is
precisely its column space.

EXAMPLE 5.9 Let F : R* — R? be the linear mapping defined by
F(x,y,z,t) = (x—y+z+t, 2x—2y+3z+4t, 3x—3y+4z+51)

(a) Find a basis and the dimension of the image of F.
First find the image of the usual basis vectors of R*,

F(1,0,0,0) = (1,2,3), F(0,0,1,0) = (1,3,4)
F(0,1,0,0) = (—1,—2,-3), F(0,0,0,1) = (1,4,5)

By Proposition 5.4, the image vectors span Im F. Hence, form the matrix M whose rows are these image vectors
and row reduce to echelon form:

1 2 3 1 2 3 1 2 3
1 -2 -3 00 0 0 1 1
M=\ 1 3 4 01 1710 0 0
1 4 5 0 2 2 0 0 0

Thus, (1,2,3) and (0, 1, 1) form a basis of Im F. Hence, dim(Im F) = 2 and rank(F) = 2.

(b) Find a basis and the dimension of the kernel of the map F.
Set F(v) =0, where v = (x,y,z,1),

F(x,y,z,t) = (x—y+z+t, 2x—2y+3z+4t, 3x—3y+4z+5t)=(0,0,0)

Set corresponding components equal to each other to form the following homogeneous system whose solution
space is Ker F":

xX— y+ z+ t=0 x—y+z+ t=0 B _
X2y +3z4+4r=0  or 42=0 or y*jizijg
3x—3y+4z+5t=0 z+4+2t=0 o

The free variables are y and 7. Hence, dim(Ker F) = 2 or nullity(F) = 2.
(i) Set y =1, t = 0 to obtain the solution (—1,1,0,0),
(i) Set y = 0, # = 1 to obtain the solution (1,0,—2,1).
Thus, (—1,1,0,0) and (1,0, —2, 1) form a basis for Ker F.
As expected from Theorem 5.6, diim(Im F) + dim(Ker F) = 4 = dimR".

Application to Systems of Linear Equations

Let AX = B denote the matrix form of a system of m linear equations in #» unknowns. Now the matrix 4
may be viewed as a linear mapping

A:K" — K"



