
(iii) If A is triangular (i.e., A has zeros above or below the diagonal), then
jAj ¼ product of diagonal elements. Thus, in particular, jI j ¼ 1, where I is the
identity matrix.

The next theorem (proved in Problems 8.23 and 8.25) shows how the determinant of a matrix is
affected by the elementary row and column operations.

THEOREM 8.3: Suppose B is obtained from A by an elementary row (column) operation.

(i) If two rows (columns) of A were interchanged, then jBj ¼ �jAj.
(ii) If a row (column) of A were multiplied by a scalar k, then jBj ¼ kjAj.
(iii) If a multiple of a row (column) of A were added to another row (column) of A,

then jBj ¼ jAj.

Major Properties of Determinants

We now state two of the most important and useful theorems on determinants.

THEOREM 8.4: The determinant of a product of two matrices A and B is the product of their
determinants; that is,

detðABÞ ¼ detðAÞ detðBÞ
The above theorem says that the determinant is a multiplicative function.

THEOREM 8.5: Let A be a square matrix. Then the following are equivalent:

(i) A is invertible; that is, A has an inverse A�1.
(ii) AX ¼ 0 has only the zero solution.

(iii) The determinant of A is not zero; that is, detðAÞ 6¼ 0.

Remark: Depending on the author and the text, a nonsingular matrix A is defined to be an
invertible matrix A, or a matrix A for which jAj 6¼ 0, or a matrix A for which AX ¼ 0 has only the zero
solution. The above theorem shows that all such definitions are equivalent.

We will prove Theorems 8.4 and 8.5 (in Problems 8.29 and 8.28, respectively) using the theory of
elementary matrices and the following lemma (proved in Problem 8.26), which is a special case of
Theorem 8.4.

LEMMA 8.6: Let E be an elementary matrix. Then, for any matrix A; jEAj ¼ jEjjAj.

Recall that matrices A and B are similar if there exists a nonsingular matrix P such that B ¼ P�1AP.
Using the multiplicative property of the determinant (Theorem 8.4), one can easily prove (Problem 8.31)
the following theorem.

THEOREM 8.7: Suppose A and B are similar matrices. Then jAj ¼ jBj.

8.7 Minors and Cofactors

Consider an n-square matrix A ¼ ½aij�. Let Mij denote the ðn� 1Þ-square submatrix of A obtained by
deleting its ith row and jth column. The determinant jMijj is called the minor of the element aij of A, and
we define the cofactor of aij, denoted by Aij; to be the ‘‘signed’’ minor:

Aij ¼ ð�1ÞiþjjMijj
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Note that the ‘‘signs’’ ð�1Þiþj accompanying the minors form a chessboard pattern with þ’s on the main
diagonal:

þ � þ � . . .
� þ � þ . . .
þ � þ � . . .
:::::::::::::::::::::::::::::::

2664
3775

We emphasize that Mij denotes a matrix, whereas Aij denotes a scalar.

Remark: The sign ð�1Þiþj of the cofactor Aij is frequently obtained using the checkerboard pattern.
Specifically, beginning with þ and alternating signs:

þ;�;þ;�; . . . ;
count from the main diagonal to the appropriate square.

EXAMPLE 8.8 Let A ¼
1 2 3
4 5 6
7 8 9

24 35. Find the following minors and cofactors: (a) jM23j and A23,
(b) jM31j and A31.

(a) jM23j ¼
1 2 3
4 5 6
7 8 9

������
������ ¼ 1 2

7 8

���� ���� ¼ 8� 14 ¼ �6, and so A23 ¼ ð�1Þ2þ3jM23j ¼ �ð�6Þ ¼ 6

(b) jM31j ¼
1 2 3
4 5 6
7 8 9

������
������ ¼ 2 3

5 6

���� ���� ¼ 12� 15 ¼ �3, and so A31 ¼ ð�1Þ1þ3jM31j ¼ þð�3Þ ¼ �3

Laplace Expansion

The following theorem (proved in Problem 8.32) holds.

THEOREM 8.8: (Laplace) The determinant of a square matrix A ¼ ½aij� is equal to the sum of the
products obtained by multiplying the elements of any row (column) by their
respective cofactors:

jAj ¼ ai1Ai1 þ ai2Ai2 þ � � � þ ainAin ¼
Pn
j¼1

aijAij

jAj ¼ a1jA1j þ a2jA2j þ � � � þ anjAnj ¼
Pn
i¼1

aijAij

The above formulas for jAj are called the Laplace expansions of the determinant of A by the ith row
and the jth column. Together with the elementary row (column) operations, they offer a method of
simplifying the computation of jAj, as described below.

8.8 Evaluation of Determinants

The following algorithm reduces the evaluation of a determinant of order n to the evaluation of a
determinant of order n� 1.

ALGORITHM 8.1: (Reduction of the order of a determinant) The input is a nonzero n-square matrix
A ¼ ½aij� with n > 1.

Step 1. Choose an element aij ¼ 1 or, if lacking, aij 6¼ 0.

Step 2. Using aij as a pivot, apply elementary row (column) operations to put 0’s in all the other
positions in the column (row) containing aij.

Step 3. Expand the determinant by the column (row) containing aij.
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The following remarks are in order.

Remark 1: Algorithm 8.1 is usually used for determinants of order 4 or more. With determinants
of order less than 4, one uses the specific formulas for the determinant.

Remark 2: Gaussian elimination or, equivalently, repeated use of Algorithm 8.1 together with row
interchanges can be used to transform a matrix A into an upper triangular matrix whose determinant is the
product of its diagonal entries. However, one must keep track of the number of row interchanges, because
each row interchange changes the sign of the determinant.

EXAMPLE 8.9 Use Algorithm 8.1 to find the determinant of A ¼
5 4 2 1
2 3 1 �2
�5 �7 �3 9
1 �2 �1 4

2664
3775.

Use a23 ¼ 1 as a pivot to put 0’s in the other positions of the third column; that is, apply the row operations
‘‘Replace R1 by �2R2 þ R1,’’ ‘‘Replace R3 by 3R2 þ R3,’’ and ‘‘Replace R4 by R2 þ R4.’’ By Theorem 8.3(iii), the
value of the determinant does not change under these operations. Thus,

jAj ¼
5 4 2 1
2 3 1 �2
�5 �7 �3 9
1 �2 �1 4

��������
�������� ¼

1 �2 0 5
2 3 1 �2
1 2 0 3
3 1 0 2

��������
��������

Now expand by the third column. Specifically, neglect all terms that contain 0 and use the fact that the sign of the
minor M23 is ð�1Þ2þ3 ¼ �1. Thus,

jAj ¼ �
1 2 0 5
2 3 1 �2
1 2 0 3
3 1 0 2

��������
�������� ¼ �

1 �2 5
1 2 3
3 1 2

������
������ ¼ �ð4� 18þ 5� 30� 3þ 4Þ ¼ �ð�38Þ ¼ 38

8.9 Classical Adjoint

Let A ¼ ½aij� be an n	 n matrix over a field K and let Aij denote the cofactor of aij. The classical adjoint
of A, denoted by adj A, is the transpose of the matrix of cofactors of A. Namely,

adj A ¼ ½Aij�T

We say ‘‘classical adjoint’’ instead of simply ‘‘adjoint’’ because the term ‘‘adjoint’’ is currently used for
an entirely different concept.

EXAMPLE 8.10 Let A ¼
2 3 �4
0 �4 2
1 �1 5

24 35. The cofactors of the nine elements of A follow:

A11 ¼ þ �4 2
�1 5

���� ���� ¼ �18;
A21 ¼ � 3 �4

�1 5

���� ���� ¼ �11;
A31 ¼ þ 3 �4

�4 2

���� ���� ¼ �10;

A12 ¼ � 0 2
1 5

���� ���� ¼ 2;

A22 ¼ þ 2 �4
1 5

���� ���� ¼ 14;

A32 ¼ � 2 �4
0 2

���� ���� ¼ �4;

A13 ¼ þ 0 �4
1 �1
���� ���� ¼ 4

A23 ¼ � 2 3
1 �1
���� ���� ¼ 5

A33 ¼ þ 2 3
0 �4
���� ���� ¼ �8
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The transpose of the above matrix of cofactors yields the classical adjoint of A; that is,

adj A ¼
�18 �11 �10

2 14 �4
4 5 �8

24 35
The following theorem (proved in Problem 8.34) holds.

THEOREM 8.9: Let A be any square matrix. Then

Aðadj AÞ ¼ ðadj AÞA ¼ jAjI

where I is the identity matrix. Thus, if jAj 6¼ 0,

A�1 ¼ 1

jAj ðadj AÞ

EXAMPLE 8.11 Let A be the matrix in Example 8.10. We have

detðAÞ ¼ �40þ 6þ 0� 16þ 4þ 0 ¼ �46
Thus, A does have an inverse, and, by Theorem 8.9,

A�1 ¼ 1

jAj ðadj AÞ ¼ �
1

46

�18 �11 �10
2 14 �4
4 5 �8

264
375 ¼

9
23

11
46

5
23

� 1
23 � 7

23
2
23

� 2
23 � 5

46
4
23

264
375

8.10 Applications to Linear Equations, Cramer’s Rule

Consider a system AX ¼ B of n linear equations in n unknowns. Here A ¼ ½aij� is the (square) matrix of
coefficients and B ¼ ½bi� is the column vector of constants. Let Ai be the matrix obtained from A by
replacing the ith column of A by the column vector B. Furthermore, let

D ¼ detðAÞ; N1 ¼ detðA1Þ; N2 ¼ detðA2Þ; . . . ; Nn ¼ detðAnÞ

The fundamental relationship between determinants and the solution of the system AX ¼ B follows.

THEOREM 8.10: The (square) system AX ¼ B has a solution if and only if D 6¼ 0. In this case, the
unique solution is given by

x1 ¼
N1

D
; x2 ¼

N2

D
; . . . ; xn ¼

Nn

D

The above theorem (proved in Problem 8.10) is known as Cramer’s rule for solving systems of linear
equations. We emphasize that the theorem only refers to a system with the same number of equations as
unknowns, and that it only gives the solution when D 6¼ 0. In fact, if D ¼ 0, the theorem does not tell us
whether or not the system has a solution. However, in the case of a homogeneous system, we have the
following useful result (to be proved in Problem 8.54).

THEOREM 8.11: A square homogeneous system AX ¼ 0 has a nonzero solution if and only if
D ¼ jAj ¼ 0.
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EXAMPLE 8.12 Solve the system using determinants
xþ yþ z ¼ 5
x� 2y� 3z ¼ �1
2xþ y� z ¼ 3

8<:
First compute the determinant D of the matrix of coefficients:

D ¼
1 1 1
1 �2 �3
2 1 �1

������
������ ¼ 2� 6þ 1þ 4þ 3þ 1 ¼ 5

Because D 6¼ 0, the system has a unique solution. To compute Nx, Ny, Nz, we replace, respectively, the coefficients
of x; y; z in the matrix of coefficients by the constant terms. This yields

Nx ¼
5 1 1
�1 �2 �3
3 1 �1

������
������ ¼ 20; Ny ¼

1 5 1
1 �1 �3
2 3 �1

������
������ ¼ �10; Nz ¼

1 1 5
1 �2 �1
2 1 3

������
������ ¼ 15

Thus, the unique solution of the system is x ¼ Nx=D ¼ 4, y ¼ Ny=D ¼ �2, z ¼ Nz=D ¼ 3; that is, the
vector u ¼ ð4;�2; 3Þ.

8.11 Submatrices, Minors, Principal Minors

Let A ¼ ½aij� be a square matrix of order n. Consider any r rows and r columns of A. That is, consider any
set I ¼ ði1; i2; . . . ; irÞ of r row indices and any set J ¼ ðj1; j2; . . . ; jrÞ of r column indices. Then I and J
define an r 	 r submatrix of A, denoted by AðI ; JÞ, obtained by deleting the rows and columns of A whose
subscripts do not belong to I or J , respectively. That is,

AðI ; J Þ ¼ ½ast : s 2 I ; t 2 J �

The determinant jAðI ; JÞj is called a minor of A of order r and

ð�1Þi1þi2þ���þirþj1þj2þ���þjr jAðI ; J Þj

is the corresponding signed minor. (Note that a minor of order n� 1 is a minor in the sense of Section
8.7, and the corresponding signed minor is a cofactor.) Furthermore, if I 0 and J 0 denote, respectively, the
remaining row and column indices, then

jAðI 0; J 0Þj

denotes the complementary minor, and its sign (Problem 8.74) is the same sign as the minor.

EXAMPLE 8.13 Let A ¼ ½aij� be a 5-square matrix, and let I ¼ f1; 2; 4g and J ¼ f2; 3; 5g. Then
I 0 ¼ f3; 5g and J 0 ¼ f1; 4g, and the corresponding minor jM j and complementary minor jM 0j are as
follows:

jM j ¼ jAðI ; JÞj ¼
a12 a13 a15
a22 a23 a25
a42 a43 a45

������
������ and jM 0j ¼ jAðI 0; J 0Þj ¼ a31 a34

a51 a54

���� ����
Because 1þ 2þ 4þ 2þ 3þ 5 ¼ 17 is odd, �jM j is the signed minor, and �jM 0j is the signed complementary
minor.

Principal Minors

A minor is principal if the row and column indices are the same, or equivalently, if the diagonal elements
of the minor come from the diagonal of the matrix. We note that the sign of a principal minor is always
þ1, because the sum of the row and identical column subscripts must always be even.
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