
7.6 Orthogonal Sets and Bases

Consider a set S ¼ fu1; u2; . . . ; urg of nonzero vectors in an inner product space V. S is called orthogonal
if each pair of vectors in S are orthogonal, and S is called orthonormal if S is orthogonal and each vector
in S has unit length. That is,

(i) Orthogonal: hui; uji ¼ 0 for i 6¼ j

(ii) Orthonormal: hui; uji ¼ 0 for i 6¼ j
1 for i ¼ j

	
Normalizing an orthogonal set S refers to the process of multiplying each vector in S by the reciprocal of
its length in order to transform S into an orthonormal set of vectors.

The following theorems apply.

THEOREM 7.5: Suppose S is an orthogonal set of nonzero vectors. Then S is linearly independent.

THEOREM 7.6: (Pythagoras) Suppose fu1; u2; . . . ; urg is an orthogonal set of vectors. Then

ku1 þ u2 þ � � � þ urk2 ¼ ku1k2 þ ku2k2 þ � � � þ kurk2

These theorems are proved in Problems 7.15 and 7.16, respectively. Here we prove the Pythagorean
theorem in the special and familiar case for two vectors. Specifically, suppose hu; vi ¼ 0. Then

kuþ vk2 ¼ huþ v; uþ vi ¼ hu; ui þ 2hu; vi þ hv; vi ¼ hu; ui þ hv; vi ¼ kuk2 þ kvk2

which gives our result.

EXAMPLE 7.9

(a) Let E ¼ fe1; e2; e3g ¼ fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg be the usual basis of Euclidean space R3. It is clear that

he1; e2i ¼ he1; e3i ¼ he2; e3i ¼ 0 and he1; e1i ¼ he2; e2i ¼ he3; e3i ¼ 1

Namely, E is an orthonormal basis of R3. More generally, the usual basis of Rn is orthonormal for every n.

(b) Let V ¼ C½�p; p� be the vector space of continuous functions on the interval �p � t � p with inner product
defined by h f ; gi ¼ Ð p�p f ðtÞgðtÞ dt. Then the following is a classical example of an orthogonal set in V :

f1; cos t; cos 2t; cos 3t; . . . ; sin t; sin 2t; sin 3t; . . .g
This orthogonal set plays a fundamental role in the theory of Fourier series.

Orthogonal Basis and Linear Combinations, Fourier Coefficients

Let S consist of the following three vectors in R3:

u1 ¼ ð1; 2; 1Þ; u2 ¼ ð2; 1;�4Þ; u3 ¼ ð3;�2; 1Þ
The reader can verify that the vectors are orthogonal; hence, they are linearly independent. Thus, S is an
orthogonal basis of R3.

Suppose we want to write v ¼ ð7; 1; 9Þ as a linear combination of u1; u2; u3. First we set v as a linear
combination of u1; u2; u3 using unknowns x1; x2; x3 as follows:

v ¼ x1u1 þ x2u2 þ x3u3 or ð7; 1; 9Þ ¼ x1ð1; 2; 1Þ þ x2ð2; 1;�4Þ þ x3ð3;�2; 1Þ ð*Þ
We can proceed in two ways.

METHOD 1: Expand ð*Þ (as in Chapter 3) to obtain the system

x1 þ 2x2 þ 3x3 ¼ 7; 2x1 þ x2 � 2x3 ¼ 1; x1 � 4x2 þ x3 ¼ 7

Solve the system by Gaussian elimination to obtain x1 ¼ 3, x2 ¼ �1, x3 ¼ 2. Thus,
v ¼ 3u1 � u2 þ 2u3.
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METHOD 2: (This method uses the fact that the basis vectors are orthogonal, and the arithmetic is
much simpler.) If we take the inner product of each side of ð*Þ with respect to ui, we get

hv; uii ¼ hx1u2 þ x2u2 þ x3u3; uii or hv; uii ¼ xihui; uii or xi ¼
hv; uii
hui; uii

Here two terms drop out, because u1; u2; u3 are orthogonal. Accordingly,

x1 ¼
hv; u1i
hu1; u1i

¼ 7þ 2þ 9

1þ 4þ 1
¼ 18

6
¼ 3; x2 ¼

hv; u2i
hu2; u2i

¼ 14þ 1� 36

4þ 1þ 16
¼ �21

21
¼ �1

x3 ¼
hv; u3i
hu3; u3i

¼ 21� 2þ 9

9þ 4þ 1
¼ 28

14
¼ 2

Thus, again, we get v ¼ 3u1 � u2 þ 2u3.

The procedure in Method 2 is true in general. Namely, we have the following theorem (proved in
Problem 7.17).

THEOREM 7.7: Let fu1; u2; . . . ; ung be an orthogonal basis of V. Then, for any v 2 V,

v ¼ hv; u1ihu1; u1i
u1 þ

hv; u2i
hu2; u2i

u2 þ � � � þ
hv; uni
hun; uni

un

Remark: The scalar ki �
hv; uii
hui; uii

is called the Fourier coefficient of v with respect to ui, because it

is analogous to a coefficient in the Fourier series of a function. This scalar also has a geometric
interpretation, which is discussed below.

Projections

Let V be an inner product space. Suppose w is a given nonzero vector in V, and suppose v is another
vector. We seek the ‘‘projection of v along w,’’ which, as indicated in Fig. 7-3(a), will be the multiple cw
of w such that v0 ¼ v � cw is orthogonal to w. This means

hv � cw; wi ¼ 0 or hv;wi � chw;wi ¼ 0 or c ¼ hv;wihw;wi

Accordingly, the projection of v along w is denoted and defined by

projðv;wÞ ¼ cw ¼ hv;wihw;wiw

Such a scalar c is unique, and it is called the Fourier coefficient of v with respect to w or the component of
v along w.

The above notion is generalized as follows (see Problem 7.25).

Figure 7-3
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THEOREM 7.8: Suppose w1;w2; . . . ;wr form an orthogonal set of nonzero vectors in V. Let v be any
vector in V. Define

v0 ¼ v � ðc1w1 þ c2w2 þ � � � þ crwrÞ
where

c1 ¼
hv;w1i
hw1;w1i

; c2 ¼
hv;w2i
hw2;w2i

; . . . ; cr ¼
hv;wri
hwr;wri

Then v0 is orthogonal to w1;w2; . . . ;wr.

Note that each ci in the above theorem is the component (Fourier coefficient) of v along the given wi.

Remark: The notion of the projection of a vector v 2 V along a subspace W of V is defined as
follows. By Theorem 7.4, V ¼ W 
W?. Hence, v may be expressed uniquely in the form

v ¼ wþ w0; where w 2 W and w0 2 W?

We define w to be the projection of v along W, and denote it by projðv;WÞ, as pictured in Fig. 7-2(b). In
particular, if W ¼ spanðw1;w2; . . . ;wrÞ, where the wi form an orthogonal set, then

projðv;WÞ ¼ c1w1 þ c2w2 þ � � � þ crwr

Here ci is the component of v along wi, as above.

7.7 Gram–Schmidt Orthogonalization Process

Suppose fv1; v2; . . . ; vng is a basis of an inner product space V. One can use this basis to construct an
orthogonal basis fw1;w2; . . . ;wng of V as follows. Set

w1 ¼ v1

w2 ¼ v2 �
hv2;w1i
hw1;w1i

w1

w3 ¼ v3 �
hv3;w1i
hw1;w1i

w1 �
hv3;w2i
hw2;w2i

w2

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

wn ¼ vn �
hvn;w1i
hw1;w1i

w1 �
hvn;w2i
hw2;w2i

w2 � � � � �
hvn;wn�1i
hwn�1;wn�1i

wn�1

In other words, for k ¼ 2; 3; . . . ; n, we define

wk ¼ vk � ck1w1 � ck2w2 � � � � � ck;k�1wk�1

where cki ¼ hvk ;wii=hwi;wii is the component of vk along wi. By Theorem 7.8, each wk is orthogonal to
the preceeding w’s. Thus, w1;w2; . . . ;wn form an orthogonal basis for V as claimed. Normalizing each wi

will then yield an orthonormal basis for V.
The above construction is known as the Gram–Schmidt orthogonalization process. The following

remarks are in order.

Remark 1: Each vector wk is a linear combination of vk and the preceding w’s. Hence, one can
easily show, by induction, that each wk is a linear combination of v1; v2; . . . ; vn.

Remark 2: Because taking multiples of vectors does not affect orthogonality, it may be simpler in
hand calculations to clear fractions in any new wk , by multiplying wk by an appropriate scalar, before
obtaining the next wkþ1.
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Remark 3: Suppose u1; u2; . . . ; ur are linearly independent, and so they form a basis for
U ¼ spanðuiÞ. Applying the Gram–Schmidt orthogonalization process to the u’s yields an orthogonal
basis for U .

The following theorems (proved in Problems 7.26 and 7.27) use the above algorithm and remarks.

THEOREM 7.9: Let fv1; v2; . . . ; vng be any basis of an inner product space V. Then there exists an
orthonormal basis fu1; u2; . . . ; ung of V such that the change-of-basis matrix from
fvig to fuig is triangular; that is, for k ¼ 1; . . . ; n,

uk ¼ ak1v1 þ ak2v2 þ � � � þ akkvk

THEOREM 7.10: Suppose S ¼ fw1;w2; . . . ;wrg is an orthogonal basis for a subspace W of a vector
space V. Then one may extend S to an orthogonal basis for V; that is, one may find
vectors wrþ1; . . . ;wn such that fw1;w2; . . . ;wng is an orthogonal basis for V.

EXAMPLE 7.10 Apply the Gram–Schmidt orthogonalization process to find an orthogonal basis and
then an orthonormal basis for the subspace U of R4 spanned by

v1 ¼ ð1; 1; 1; 1Þ; v2 ¼ ð1; 2; 4; 5Þ; v3 ¼ ð1;�3;�4;�2Þ
(1) First set w1 ¼ v1 ¼ ð1; 1; 1; 1Þ.
(2) Compute

v2 �
hv2;w1i
hw1;w1i

w1 ¼ v2 �
12

4
w1 ¼ ð�2;�1; 1; 2Þ

Set w2 ¼ ð�2;�1; 1; 2Þ.
(3) Compute

v3 �
hv3;w1i
hw1;w1i

w1 �
hv3;w2i
hw2;w2i

w2 ¼ v3 �
ð�8Þ
4

w1 �
ð�7Þ
10

w2 ¼ 8
5 ;� 17

10 ;� 13
10 ;

7
5


 �
Clear fractions to obtain w3 ¼ ð�6;�17;�13; 14Þ.
Thus, w1;w2;w3 form an orthogonal basis for U . Normalize these vectors to obtain an orthonormal basis

fu1; u2; u3g of U . We have kw1k2 ¼ 4, kw2k2 ¼ 10, kw3k2 ¼ 910, so

u1 ¼
1

2
ð1; 1; 1; 1Þ; u2 ¼

1ffiffiffiffiffi
10
p ð�2;�1; 1; 2Þ; u3 ¼

1ffiffiffiffiffiffiffiffi
910
p ð16;�17;�13; 14Þ

EXAMPLE 7.11 Let V be the vector space of polynomials f ðtÞ with inner product
h f ; gi ¼ Ð 1�1 f ðtÞgðtÞ dt. Apply the Gram–Schmidt orthogonalization process to f1; t; t2; t3g to find an
orthogonal basis f f0; f1; f2; f3g with integer coefficients for P3ðtÞ.

Here we use the fact that, for r þ s ¼ n,

htr; tsi ¼
ð1
�1

tn dt ¼ tnþ1

nþ 1

����1
�1
¼ 2=ðnþ 1Þ when n is even

0 when n is odd

	
(1) First set f0 ¼ 1.

(2) Compute t ¼ ht; 1ih1; 1i ð1Þ ¼ t � 0 ¼ t. Set f1 ¼ t.

(3) Compute

t2 � ht
2; 1i
h1; 1i ð1Þ �

ht2; ti
ht; ti ðtÞ ¼ t2 �

2
3

2
ð1Þ þ 0ðtÞ ¼ t2 � 1

3

Multiply by 3 to obtain f2 ¼ 3t2 ¼ 1.
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(4) Compute

t3 � ht
3; 1i
h1; 1i ð1Þ �

ht3; ti
ht; ti ðtÞ �

ht3; 3t2 � 1i
h3t2 � 1; 3t2 � 1i ð3t

2 � 1Þ

¼ t3 � 0ð1Þ �
2
5
2
3

ðtÞ � 0ð3t2 � 1Þ ¼ t3 � 3
5 t

Multiply by 5 to obtain f3 ¼ 5t3 � 3t.

Thus, f1; t; 3t2 � 1; 5t3 � 3tg is the required orthogonal basis.

Remark: Normalizing the polynomials in Example 7.11 so that pð1Þ ¼ 1 yields the polynomials

1; t; 1
2 ð3t2 � 1Þ; 1

2 ð5t3 � 3tÞ
These are the first four Legendre polynomials, which appear in the study of differential equations.

7.8 Orthogonal and Positive Definite Matrices

This section discusses two types of matrices that are closely related to real inner product spaces V. Here
vectors in Rn will be represented by column vectors. Thus, hu; vi ¼ uTv denotes the inner product in
Euclidean space Rn.

Orthogonal Matrices

A real matrix P is orthogonal if P is nonsingular and P�1 ¼ PT , or, in other words, if PPT ¼ PTP ¼ I .
First we recall (Theorem 2.6) an important characterization of such matrices.

THEOREM 7.11: Let P be a real matrix. Then the following are equivalent: (a) P is orthogonal; (b)
the rows of P form an orthonormal set; (c) the columns of P form an orthonormal
set.

(This theorem is true only using the usual inner product on Rn. It is not true if Rn is given any other
inner product.)

EXAMPLE 7.12

(a) Let P ¼
1=

ffiffiffi
3
p

1=
ffiffiffi
3
p

1=
ffiffiffi
3
p

0 1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

2=
ffiffiffi
6
p �1= ffiffiffi

6
p �1= ffiffiffi

6
p

24 35: The rows of P are orthogonal to each other and are unit vectors. Thus

P is an orthogonal matrix.

(b) Let P be a 2	 2 orthogonal matrix. Then, for some real number y, we have

P ¼ cos y sin y
� sin y cos y

� �
or P ¼ cos y sin y

sin y � cos y

� �
The following two theorems (proved in Problems 7.37 and 7.38) show important relationships

between orthogonal matrices and orthonormal bases of a real inner product space V.

THEOREM 7.12: Suppose E ¼ feig and E0 ¼ fe0ig are orthonormal bases of V. Let P be the change-
of-basis matrix from the basis E to the basis E0. Then P is orthogonal.

THEOREM 7.13: Let fe1; . . . ; eng be an orthonormal basis of an inner product space V. Let P ¼ ½aij�
be an orthogonal matrix. Then the following n vectors form an orthonormal basis
for V :

e0i ¼ a1ie1 þ a2ie2 þ � � � þ anien; i ¼ 1; 2; . . . ; n
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