7.6 Orthogonal Sets and Bases

Consider a set $S=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ of nonzero vectors in an inner product space $V . S$ is called orthogonal if each pair of vectors in S are orthogonal, and S is called orthonormal if S is orthogonal and each vector in S has unit length. That is,
(i) Orthogonal: $\left\langle u_{i}, u_{j}\right\rangle=0$ for $i \neq j$
(ii) Orthonormal: $\left\langle u_{i}, u_{j}\right\rangle= \begin{cases}0 & \text { for } i \neq j \\ 1 & \text { for } i=j\end{cases}$

Normalizing an orthogonal set S refers to the process of multiplying each vector in S by the reciprocal of its length in order to transform S into an orthonormal set of vectors.

The following theorems apply.
THEOREM 7.5: Suppose S is an orthogonal set of nonzero vectors. Then S is linearly independent.
THEOREM 7.6: (Pythagoras) Suppose $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ is an orthogonal set of vectors. Then

$$
\left\|u_{1}+u_{2}+\cdots+u_{r}\right\|^{2}=\left\|u_{1}\right\|^{2}+\left\|u_{2}\right\|^{2}+\cdots+\left\|u_{r}\right\|^{2}
$$

These theorems are proved in Problems 7.15 and 7.16 , respectively. Here we prove the Pythagorean theorem in the special and familiar case for two vectors. Specifically, suppose $\langle u, v\rangle=0$. Then

$$
\|u+v\|^{2}=\langle u+v, u+v\rangle=\langle u, u\rangle+2\langle u, v\rangle+\langle v, v\rangle=\langle u, u\rangle+\langle v, v\rangle=\|u\|^{2}+\|v\|^{2}
$$

which gives our result.

EXAMPLE 7.9

(a) Let $E=\left\{e_{1}, e_{2}, e_{3}\right\}=\{(1,0,0),(0,1,0),(0,0,1)\}$ be the usual basis of Euclidean space \mathbf{R}^{3}. It is clear that

$$
\left\langle e_{1}, e_{2}\right\rangle=\left\langle e_{1}, e_{3}\right\rangle=\left\langle e_{2}, e_{3}\right\rangle=0 \quad \text { and } \quad\left\langle e_{1}, e_{1}\right\rangle=\left\langle e_{2}, e_{2}\right\rangle=\left\langle e_{3}, e_{3}\right\rangle=1
$$

Namely, E is an orthonormal basis of \mathbf{R}^{3}. More generally, the usual basis of \mathbf{R}^{n} is orthonormal for every n.
(b) Let $V=C[-\pi, \pi]$ be the vector space of continuous functions on the interval $-\pi \leq t \leq \pi$ with inner product defined by $\langle f, g\rangle=\int_{-\pi}^{\pi} f(t) g(t) d t$. Then the following is a classical example of an orthogonal set in V :
$\{1, \cos t, \cos 2 t, \cos 3 t, \ldots, \sin t, \sin 2 t, \sin 3 t, \ldots\}$
This orthogonal set plays a fundamental role in the theory of Fourier series.

Orthogonal Basis and Linear Combinations, Fourier Coefficients

Let S consist of the following three vectors in \mathbf{R}^{3} :

$$
u_{1}=(1,2,1), \quad u_{2}=(2,1,-4), \quad u_{3}=(3,-2,1)
$$

The reader can verify that the vectors are orthogonal; hence, they are linearly independent. Thus, S is an orthogonal basis of \mathbf{R}^{3}.

Suppose we want to write $v=(7,1,9)$ as a linear combination of u_{1}, u_{2}, u_{3}. First we set v as a linear combination of u_{1}, u_{2}, u_{3} using unknowns x_{1}, x_{2}, x_{3} as follows:

$$
\begin{equation*}
v=x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3} \quad \text { or } \quad(7,1,9)=x_{1}(1,2,1)+x_{2}(2,1,-4)+x_{3}(3,-2,1) \tag{*}
\end{equation*}
$$

We can proceed in two ways.
METHOD 1: Expand (*) (as in Chapter 3) to obtain the system

$$
x_{1}+2 x_{2}+3 x_{3}=7, \quad 2 x_{1}+x_{2}-2 x_{3}=1, \quad x_{1}-4 x_{2}+x 3=7
$$

Solve the system by Gaussian elimination to obtain $x_{1}=3, x_{2}=-1, x_{3}=2$. Thus, $v=3 u_{1}-u_{2}+2 u_{3}$.

METHOD 2: (This method uses the fact that the basis vectors are orthogonal, and the arithmetic is much simpler.) If we take the inner product of each side of $(*)$ with respect to u_{i}, we get

$$
\left\langle v, u_{i}\right\rangle=\left\langle x_{1} u_{2}+x_{2} u_{2}+x_{3} u_{3}, u_{i}\right\rangle \quad \text { or } \quad\left\langle v, u_{i}\right\rangle=x_{i}\left\langle u_{i}, u_{i}\right\rangle \quad \text { or } \quad x_{i}=\frac{\left\langle v, u_{i}\right\rangle}{\left\langle u_{i}, u_{i}\right\rangle}
$$

Here two terms drop out, because u_{1}, u_{2}, u_{3} are orthogonal. Accordingly,

$$
\begin{aligned}
x_{1}=\frac{\left\langle v, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle}=\frac{7+2+9}{1+4+1} & =\frac{18}{6}=3, \quad x_{2}=\frac{\left\langle v, u_{2}\right\rangle}{\left\langle u_{2}, u_{2}\right\rangle}=\frac{14+1-36}{4+1+16}=\frac{-21}{21}=-1 \\
x_{3} & =\frac{\left\langle v, u_{3}\right\rangle}{\left\langle u_{3}, u_{3}\right\rangle}=\frac{21-2+9}{9+4+1}=\frac{28}{14}=2
\end{aligned}
$$

Thus, again, we get $v=3 u_{1}-u_{2}+2 u_{3}$.
The procedure in Method 2 is true in general. Namely, we have the following theorem (proved in Problem 7.17).

THEOREM 7.7: Let $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be an orthogonal basis of V. Then, for any $v \in V$,

$$
v=\frac{\left\langle v, u_{1}\right\rangle}{\left\langle u_{1}, u_{1}\right\rangle} u_{1}+\frac{\left\langle v, u_{2}\right\rangle}{\left\langle u_{2}, u_{2}\right\rangle} u_{2}+\cdots+\frac{\left\langle v, u_{n}\right\rangle}{\left\langle u_{n}, u_{n}\right\rangle} u_{n}
$$

Remark: The scalar $k_{i} \equiv \frac{\left\langle v, u_{i}\right\rangle}{\left\langle u_{i}, u_{i}\right\rangle}$ is called the Fourier coefficient of v with respect to u_{i}, because it is analogous to a coefficient in the Fourier series of a function. This scalar also has a geometric interpretation, which is discussed below.

Projections

Let V be an inner product space. Suppose w is a given nonzero vector in V, and suppose v is another vector. We seek the "projection of v along w," which, as indicated in Fig. 7-3(a), will be the multiple $c w$ of w such that $v^{\prime}=v-c w$ is orthogonal to w. This means

$$
\langle v-c w, w\rangle=0 \quad \text { or } \quad\langle v, w\rangle-c\langle w, w\rangle=0 \quad \text { or } \quad c=\frac{\langle v, w\rangle}{\langle w, w\rangle}
$$

(a)

Figure 7-3
Accordingly, the projection of v along w is denoted and defined by

$$
\operatorname{proj}(v, w)=c w=\frac{\langle v, w\rangle}{\langle w, w\rangle} w
$$

Such a scalar c is unique, and it is called the Fourier coefficient of v with respect to w or the component of v along w.

The above notion is generalized as follows (see Problem 7.25).

THEOREM 7.8: Suppose $w_{1}, w_{2}, \ldots, w_{r}$ form an orthogonal set of nonzero vectors in V. Let v be any vector in V. Define

$$
v^{\prime}=v-\left(c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{r} w_{r}\right)
$$

where

$$
c_{1}=\frac{\left\langle v, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle}, \quad c_{2}=\frac{\left\langle v, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle}, \quad \ldots, \quad c_{r}=\frac{\left\langle v, w_{r}\right\rangle}{\left\langle w_{r}, w_{r}\right\rangle}
$$

Then v^{\prime} is orthogonal to $w_{1}, w_{2}, \ldots, w_{r}$.
Note that each c_{i} in the above theorem is the component (Fourier coefficient) of v along the given w_{i}.
Remark: The notion of the projection of a vector $v \in V$ along a subspace W of V is defined as follows. By Theorem 7.4, $V=W \oplus W^{\perp}$. Hence, v may be expressed uniquely in the form

$$
v=w+w^{\prime}, \quad \text { where } \quad w \in W \quad \text { and } \quad w^{\prime} \in W^{\perp}
$$

We define w to be the projection of v along W, and denote it by $\operatorname{proj}(v, W)$, as pictured in Fig. 7-2(b). In particular, if $W=\operatorname{span}\left(w_{1}, w_{2}, \ldots, w_{r}\right)$, where the w_{i} form an orthogonal set, then

$$
\operatorname{proj}(v, W)=c_{1} w_{1}+c_{2} w_{2}+\cdots+c_{r} w_{r}
$$

Here c_{i} is the component of v along w_{i}, as above.

7.7 Gram-Schmidt Orthogonalization Process

Suppose $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of an inner product space V. One can use this basis to construct an orthogonal basis $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ of V as follows. Set

$$
\begin{aligned}
& w_{1}=v_{1} \\
& w_{2}=v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1} \\
& w_{3}=v_{3}-\frac{\left\langle v_{3}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle v_{3}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}
\end{aligned}
$$

$$
w_{n}=v_{n}-\frac{\left\langle v_{n}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle v_{n}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}-\cdots-\frac{\left\langle v_{n}, w_{n-1}\right\rangle}{\left\langle w_{n-1}, w_{n-1}\right\rangle} w_{n-1}
$$

In other words, for $k=2,3, \ldots, n$, we define

$$
w_{k}=v_{k}-c_{k 1} w_{1}-c_{k 2} w_{2}-\cdots-c_{k, k-1} w_{k-1}
$$

where $c_{k i}=\left\langle v_{k}, w_{i}\right\rangle /\left\langle w_{i}, w_{i}\right\rangle$ is the component of v_{k} along w_{i}. By Theorem 7.8, each w_{k} is orthogonal to the preceeding w 's. Thus, $w_{1}, w_{2}, \ldots, w_{n}$ form an orthogonal basis for V as claimed. Normalizing each w_{i} will then yield an orthonormal basis for V.

The above construction is known as the Gram-Schmidt orthogonalization process. The following remarks are in order.

Remark 1: Each vector w_{k} is a linear combination of v_{k} and the preceding w 's. Hence, one can easily show, by induction, that each w_{k} is a linear combination of $v_{1}, v_{2}, \ldots, v_{n}$.

Remark 2: Because taking multiples of vectors does not affect orthogonality, it may be simpler in hand calculations to clear fractions in any new w_{k}, by multiplying w_{k} by an appropriate scalar, before obtaining the next w_{k+1}.

Remark 3: Suppose $u_{1}, u_{2}, \ldots, u_{r}$ are linearly independent, and so they form a basis for $U=\operatorname{span}\left(u_{i}\right)$. Applying the Gram-Schmidt orthogonalization process to the u 's yields an orthogonal basis for U.

The following theorems (proved in Problems 7.26 and 7.27) use the above algorithm and remarks.
THEOREM 7.9: Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be any basis of an inner product space V. Then there exists an orthonormal basis $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of V such that the change-of-basis matrix from $\left\{v_{i}\right\}$ to $\left\{u_{i}\right\}$ is triangular; that is, for $k=1, \ldots, n$,

$$
u_{k}=a_{k 1} v_{1}+a_{k 2} v_{2}+\cdots+a_{k k} v_{k}
$$

THEOREM 7.10: Suppose $S=\left\{w_{1}, w_{2}, \ldots, w_{r}\right\}$ is an orthogonal basis for a subspace W of a vector space V. Then one may extend S to an orthogonal basis for V; that is, one may find vectors w_{r+1}, \ldots, w_{n} such that $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ is an orthogonal basis for V.

EXAMPLE 7.10 Apply the Gram-Schmidt orthogonalization process to find an orthogonal basis and then an orthonormal basis for the subspace U of \mathbf{R}^{4} spanned by

$$
v_{1}=(1,1,1,1), \quad v_{2}=(1,2,4,5), \quad v_{3}=(1,-3,-4,-2)
$$

(1) First set $w_{1}=v_{1}=(1,1,1,1)$.
(2) Compute

$$
v_{2}-\frac{\left\langle v_{2}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}=v_{2}-\frac{12}{4} w_{1}=(-2,-1,1,2)
$$

Set $w_{2}=(-2,-1,1,2)$.
(3) Compute

$$
v_{3}-\frac{\left\langle v_{3}, w_{1}\right\rangle}{\left\langle w_{1}, w_{1}\right\rangle} w_{1}-\frac{\left\langle v_{3}, w_{2}\right\rangle}{\left\langle w_{2}, w_{2}\right\rangle} w_{2}=v_{3}-\frac{(-8)}{4} w_{1}-\frac{(-7)}{10} w_{2}=\left(\frac{8}{5},-\frac{17}{10},-\frac{13}{10}, \frac{7}{5}\right)
$$

Clear fractions to obtain $w_{3}=(-6,-17,-13,14)$.
Thus, w_{1}, w_{2}, w_{3} form an orthogonal basis for U. Normalize these vectors to obtain an orthonormal basis $\left\{u_{1}, u_{2}, u_{3}\right\}$ of U. We have $\left\|w_{1}\right\|^{2}=4,\left\|w_{2}\right\|^{2}=10,\left\|w_{3}\right\|^{2}=910$, so

$$
u_{1}=\frac{1}{2}(1,1,1,1), \quad u_{2}=\frac{1}{\sqrt{10}}(-2,-1,1,2), \quad u_{3}=\frac{1}{\sqrt{910}}(16,-17,-13,14)
$$

EXAMPLE 7.11 Let V be the vector space of polynomials $f(t)$ with inner product $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$. Apply the Gram-Schmidt orthogonalization process to $\left\{1, t, t^{2}, t^{3}\right\}$ to find an orthogonal basis $\left\{f_{0}, f_{1}, f_{2}, f_{3}\right\}$ with integer coefficients for $\mathbf{P}_{3}(t)$.

Here we use the fact that, for $r+s=n$,

$$
\left\langle t^{r}, t^{s}\right\rangle=\int_{-1}^{1} t^{n} d t=\left.\frac{t^{n+1}}{n+1}\right|_{-1} ^{1}= \begin{cases}2 /(n+1) & \text { when } n \text { is even } \\ 0 & \text { when } n \text { is odd }\end{cases}
$$

(1) First set $f_{0}=1$.
(2) Compute $t=\frac{\langle t, 1\rangle}{\langle 1,1\rangle}(1)=t-0=t$. Set $f_{1}=t$.
(3) Compute

$$
t^{2}-\frac{\left\langle t^{2}, 1\right\rangle}{\langle 1,1\rangle}(1)-\frac{\left\langle t^{2}, t\right\rangle}{\langle t, t\rangle}(t)=t^{2}-\frac{\frac{2}{3}}{2}(1)+0(t)=t^{2}-\frac{1}{3}
$$

Multiply by 3 to obtain $f_{2}=3 t^{2}=1$.
(4) Compute

$$
\begin{aligned}
t^{3} & -\frac{\left\langle t^{3}, 1\right\rangle}{\langle 1,1\rangle}(1)-\frac{\left\langle t^{3}, t\right\rangle}{\langle t, t\rangle}(t)-\frac{\left\langle t^{3}, 3 t^{2}-1\right\rangle}{\left\langle 3 t^{2}-1,3 t^{2}-1\right\rangle}\left(3 t^{2}-1\right) \\
& =t^{3}-0(1)-\frac{\frac{2}{2}}{\frac{2}{3}}(t)-0\left(3 t^{2}-1\right)=t^{3}-\frac{3}{5} t
\end{aligned}
$$

Multiply by 5 to obtain $f_{3}=5 t^{3}-3 t$.
Thus, $\left\{1, t, 3 t^{2}-1,5 t^{3}-3 t\right\}$ is the required orthogonal basis.
Remark: Normalizing the polynomials in Example 7.11 so that $p(1)=1$ yields the polynomials

$$
1, t, \frac{1}{2}\left(3 t^{2}-1\right), \frac{1}{2}\left(5 t^{3}-3 t\right)
$$

These are the first four Legendre polynomials, which appear in the study of differential equations.

7.8 Orthogonal and Positive Definite Matrices

This section discusses two types of matrices that are closely related to real inner product spaces V. Here vectors in \mathbf{R}^{n} will be represented by column vectors. Thus, $\langle u, v\rangle=u^{T} v$ denotes the inner product in Euclidean space \mathbf{R}^{n}.

Orthogonal Matrices

A real matrix P is orthogonal if P is nonsingular and $P^{-1}=P^{T}$, or, in other words, if $P P^{T}=P^{T} P=I$. First we recall (Theorem 2.6) an important characterization of such matrices.

THEOREM 7.11: Let P be a real matrix. Then the following are equivalent: (a) P is orthogonal; (b) the rows of P form an orthonormal set; (c) the columns of P form an orthonormal set.
(This theorem is true only using the usual inner product on \mathbf{R}^{n}. It is not true if \mathbf{R}^{n} is given any other inner product.)

EXAMPLE 7.12

(a) Let $P=\left[\begin{array}{ccc}1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\ 0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\ 2 / \sqrt{6} & -1 / \sqrt{6} & -1 / \sqrt{6}\end{array}\right]$. The rows of P are orthogonal to each other and are unit vectors. Thus P is an orthogonal matrix.
(b) Let P be a 2×2 orthogonal matrix. Then, for some real number θ, we have

$$
P=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \quad \text { or } \quad P=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]
$$

The following two theorems (proved in Problems 7.37 and 7.38) show important relationships between orthogonal matrices and orthonormal bases of a real inner product space V.

THEOREM 7.12: Suppose $E=\left\{e_{i}\right\}$ and $E^{\prime}=\left\{e_{i}^{\prime}\right\}$ are orthonormal bases of V. Let P be the change-of-basis matrix from the basis E to the basis E^{\prime}. Then P is orthogonal.

THEOREM 7.13: Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal basis of an inner product space V. Let $P=\left[a_{i j}\right]$ be an orthogonal matrix. Then the following n vectors form an orthonormal basis for V :

$$
e_{i}^{\prime}=a_{1 i} e_{1}+a_{2 i} e_{2}+\cdots+a_{n i} e_{n}, \quad i=1,2, \ldots, n
$$

