

Miscellaneous Problems

3.43. Let L be a linear combination of the m equations in n unknowns in the system (3.2). Say L is the equation

$$(c_1a_{11} + \dots + c_ma_{m1})x_1 + \dots + (c_1a_{1n} + \dots + c_ma_{mn})x_n = c_1b_1 + \dots + c_mb_m$$
(1)

Show that any solution of the system (3.2) is also a solution of L.

Let $u = (k_1, \ldots, k_n)$ be a solution of (3.2). Then

$$a_{i1}k_1 + a_{i2}k_2 + \dots + a_{in}k_n = b_i$$
 $(i = 1, 2, \dots, m)$ (2)

Substituting u in the left-hand side of (1) and using (2), we get

$$(c_1a_{11} + \dots + c_ma_{m1})k_1 + \dots + (c_1a_{1n} + \dots + c_ma_{mn})k_n$$

= $c_1(a_{11}k_1 + \dots + a_{1n}k_n) + \dots + c_m(a_{m1}k_1 + \dots + a_{mn}k_n)$
= $c_1b_1 + \dots + c_mb_m$

This is the right-hand side of (1); hence, u is a solution of (1).

3.44. Suppose a system \mathscr{M} of linear equations is obtained from a system \mathscr{L} by applying an elementary operation (page 64). Show that \mathscr{M} and \mathscr{L} have the same solutions.

Each equation L in \mathcal{M} is a linear combination of equations in \mathcal{L} . Hence, by Problem 3.43, any solution of \mathcal{L} will also be a solution of \mathcal{M} . On the other hand, each elementary operation has an inverse elementary operation, so \mathcal{L} can be obtained from \mathcal{M} by an elementary operation. This means that any solution of \mathcal{M} is a solution of \mathcal{L} . Thus, \mathcal{L} and \mathcal{M} have the same solutions.

3.45. Prove Theorem 3.4: Suppose a system \mathscr{M} of linear equations is obtained from a system \mathscr{L} by a sequence of elementary operations. Then \mathscr{M} and \mathscr{L} have the same solutions.

Each step of the sequence does not change the solution set (Problem 3.44). Thus, the original system \mathscr{L} and the final system \mathscr{M} (and any system in between) have the same solutions.

3.46. A system \mathscr{L} of linear equations is said to be *consistent* if no linear combination of its equations is a degenerate equation L with a nonzero constant. Show that \mathscr{L} is consistent if and only if \mathscr{L} is reducible to echelon form.

Suppose \mathscr{L} is reducible to echelon form. Then \mathscr{L} has a solution, which must also be a solution of every linear combination of its equations. Thus, L, which has no solution, cannot be a linear combination of the equations in \mathscr{L} . Thus, \mathscr{L} is consistent.

On the other hand, suppose \mathscr{L} is not reducible to echelon form. Then, in the reduction process, it must yield a degenerate equation L with a nonzero constant, which is a linear combination of the equations in \mathscr{L} . Therefore, \mathscr{L} is not consistent; that is, \mathscr{L} is inconsistent.

3.47. Suppose u and v are distinct vectors. Show that, for distinct scalars k, the vectors u + k(u - v) are distinct.

Suppose $u + k_1(u - v) = u + k_2(u - v)$. We need only show that $k_1 = k_2$. We have

 $k_1(u-v) = k_2(u-v)$, and so $(k_1 - k_2)(u-v) = 0$

Because u and v are distinct, $u - v \neq 0$. Hence, $k_1 - k_2 = 0$, and so $k_1 = k_2$.

3.48. Suppose AB is defined. Prove

- (a) Suppose *A* has a zero row. Then *AB* has a zero row.
- (b) Suppose *B* has a zero column. Then *AB* has a zero column.

(a) Let R_i be the zero row of A, and C_1, \ldots, C_n the columns of B. Then the *i*th row of AB is

$$(R_iC_1, R_iC_2, \dots, R_iC_n) = (0, 0, 0, \dots, 0)$$

(b) B^T has a zero row, and so $B^T A^T = (AB)^T$ has a zero row. Hence, AB has a zero column.

SUPPLEMENTARY PROBLEMS

Linear Equations, $\mathbf{2} \times \mathbf{2}$ Systems

3.49. Determine whether each of the following systems is linear:

(a) 3x - 4y + 2yz = 8, (b) $ex + 3y = \pi$, (c) 2x - 3y + kz = 4

3.50. Solve (a) $\pi x = 2$, (b) 3x + 2 = 5x + 7 - 2x, (c) 6x + 2 - 4x = 5 + 2x - 3

3.51. Solve each of the following systems:

(a)	2x + 3y = 1	(b)	4x - 2y = 5	(c)	2x - 4 = 3y	(d)	2x - 4y = 10
	5x + 7y = 3	_	-6x + 3y = 1		5v - x = 5		3x - 6v = 15

3.52. Consider each of the following systems in unknowns x and y:

(a) $x - ay = 1$	(b) $ax + 3y = 2$	(c) $x + ay = 3$
ax - 4y = b	12x + ay = b	2x + 5y = b

For which values of a does each system have a unique solution, and for which pairs of values (a, b) does each system have more than one solution?

General Systems of Linear Equations

3.53. Solve

(a) $x + y + 2z = 4$	(b) $x - 2y + 3z = 2$	(c) $x + 2y + 3z = 3$
2x + 3y + 6z = 10	2x - 3y + 8z = 7	2x + 3y + 8z = 4
3x + 6y + 10z = 17	3x - 4y + 13z = 8	5x + 8y + 19z = 11

3.54. Solve

(a)	x - 2y = 5	(b) $x + 2y - 3z + 2t = 2$	(c) $x + 2y + 4z - 5t = 3$
	2x + 3y = 3	2x + 5y - 8z + 6t = 5	3x - y + 5z + 2t = 4
	3x + 2y = 7	3x + 4y - 5z + 2t = 4	5x - 4y + 6z + 9t = 2

3.55. Solve

(a)	2x - y - 4z = 2	(b)	x + 2y - z + 3t = 3
	4x - 2y - 6z = 5		2x + 4y + 4z + 3t = 9
	6x - 3y - 8z = 8		3x + 6y - z + 8t = 10

3.56. Consider each of the following systems in unknowns x, y, z:

(a)	x - 2y = 1	(b) $x + 2y + 2z = 1$	(c)	x + y + az = 1
	x - y + az = 2	x + ay + 3z = 3		x + ay + z = 4
	ay + 9z = b	x + 11y + az = b		ax + y + z = b

For which values of a does the system have a unique solution, and for which pairs of values (a, b) does the system have more than one solution? The value of b does not have any effect on whether the system has a unique solution. Why?

L07