Miscellaneous Problems

3.43. Let L be a linear combination of the m equations in n unknowns in the system (3.2). Say L is the equation

$$
\begin{equation*}
\left(c_{1} a_{11}+\cdots+c_{m} a_{m 1}\right) x_{1}+\cdots+\left(c_{1} a_{1 n}+\cdots+c_{m} a_{m n}\right) x_{n}=c_{1} b_{1}+\cdots+c_{m} b_{m} \tag{1}
\end{equation*}
$$

Show that any solution of the system (3.2) is also a solution of L.
Let $u=\left(k_{1}, \ldots, k_{n}\right)$ be a solution of (3.2). Then

$$
\begin{equation*}
a_{i 1} k_{1}+a_{i 2} k_{2}+\cdots+a_{i n} k_{n}=b_{i} \quad(i=1,2, \ldots, m) \tag{2}
\end{equation*}
$$

Substituting u in the left-hand side of (1) and using (2), we get

$$
\begin{aligned}
\left(c_{1} a_{11}\right. & \left.+\cdots+c_{m} a_{m 1}\right) k_{1}+\cdots+\left(c_{1} a_{1 n}+\cdots+c_{m} a_{m n}\right) k_{n} \\
& =c_{1}\left(a_{11} k_{1}+\cdots+a_{1 n} k_{n}\right)+\cdots+c_{m}\left(a_{m 1} k_{1}+\cdots+a_{m n} k_{n}\right) \\
& =c_{1} b_{1}+\cdots+c_{m} b_{m}
\end{aligned}
$$

This is the right-hand side of (1); hence, u is a solution of (1).
3.44. Suppose a system \mathscr{M} of linear equations is obtained from a system \mathscr{L} by applying an elementary operation (page 64). Show that \mathscr{M} and \mathscr{L} have the same solutions.

Each equation L in \mathscr{M} is a linear combination of equations in \mathscr{L}. Hence, by Problem 3.43, any solution of \mathscr{L} will also be a solution of \mathscr{M}. On the other hand, each elementary operation has an inverse elementary operation, so \mathscr{L} can be obtained from \mathscr{M} by an elementary operation. This means that any solution of \mathscr{M} is a solution of \mathscr{L}. Thus, \mathscr{L} and \mathscr{M} have the same solutions.
3.45. Prove Theorem 3.4: Suppose a system \mathscr{M} of linear equations is obtained from a system \mathscr{L} by a sequence of elementary operations. Then \mathscr{M} and \mathscr{L} have the same solutions.

Each step of the sequence does not change the solution set (Problem 3.44). Thus, the original system \mathscr{L} and the final system \mathscr{M} (and any system in between) have the same solutions.
3.46. A system \mathscr{L} of linear equations is said to be consistent if no linear combination of its equations is a degenerate equation L with a nonzero constant. Show that \mathscr{L} is consistent if and only if \mathscr{L} is reducible to echelon form.

Suppose \mathscr{L} is reducible to echelon form. Then \mathscr{L} has a solution, which must also be a solution of every linear combination of its equations. Thus, L, which has no solution, cannot be a linear combination of the equations in \mathscr{L}. Thus, \mathscr{L} is consistent.

On the other hand, suppose \mathscr{L} is not reducible to echelon form. Then, in the reduction process, it must yield a degenerate equation L with a nonzero constant, which is a linear combination of the equations in \mathscr{L}. Therefore, \mathscr{L} is not consistent; that is, \mathscr{L} is inconsistent.
3.47. Suppose u and v are distinct vectors. Show that, for distinct scalars k, the vectors $u+k(u-v)$ are distinct.

Suppose $u+k_{1}(u-v)=u+k_{2}(u-v)$. We need only show that $k_{1}=k_{2}$. We have

$$
k_{1}(u-v)=k_{2}(u-v), \quad \text { and so } \quad\left(k_{1}-k_{2}\right)(u-v)=0
$$

Because u and v are distinct, $u-v \neq 0$. Hence, $k_{1}-k_{2}=0$, and so $k_{1}=k_{2}$.
3.48. Suppose $A B$ is defined. Prove
(a) Suppose A has a zero row. Then $A B$ has a zero row.
(b) Suppose B has a zero column. Then $A B$ has a zero column.
(a) Let R_{i} be the zero row of A, and C_{1}, \ldots, C_{n} the columns of B. Then the i th row of $A B$ is

$$
\left(R_{i} C_{1}, R_{i} C_{2}, \ldots, R_{i} C_{n}\right)=(0,0,0, \ldots, 0)
$$

(b) B^{T} has a zero row, and so $B^{T} A^{T}=(A B)^{T}$ has a zero row. Hence, $A B$ has a zero column.

SUPPLEMENTARY PROBLEMS

Linear Equations, 2×2 Systems

3.49. Determine whether each of the following systems is linear:
(a) $3 x-4 y+2 y z=8$, (b) $\quad e x+3 y=\pi$, (c) $\quad 2 x-3 y+k z=4$
3.50. Solve (a) $\pi x=2$, (b) $3 x+2=5 x+7-2 x$, (c) $6 x+2-4 x=5+2 x-3$
3.51. Solve each of the following systems:
(a) $\begin{aligned} 2 x+3 y & =1 \\ 5 x+7 y & =3\end{aligned}$
(b) $\begin{aligned} 4 x-2 y & =5 \\ -6 x+3 y & =1\end{aligned}$
(c) $\begin{aligned} 2 x-4 & =3 y \\ 5 y-x & =5\end{aligned}$
(d) $\begin{aligned} 2 x-4 y & =10 \\ 3 x-6 y & =15\end{aligned}$
3.52. Consider each of the following systems in unknowns x and y :
(a) $\begin{aligned} x-a y & =1 \\ a x-4 y & =b\end{aligned}$
(b) $a x+3 y=2$
(c) $x+a y=3$
$12 x+a y=b$
$2 x+5 y=b$

For which values of a does each system have a unique solution, and for which pairs of values (a, b) does each system have more than one solution?

General Systems of Linear Equations

3.53. Solve
(a) $x+y+2 z=4$
$2 x+3 y+6 z=10$
$3 x+6 y+10 z=17$
(b) $x-2 y+3 z=2$
$2 x-3 y+8 z=7$
$3 x-4 y+13 z=8$
(c) $x+2 y+3 z=3$
$2 x+3 y+8 z=4$
$5 x+8 y+19 z=11$
3.54. Solve
(a) $x-2 y=5$
$2 x+3 y=3$
$3 x+2 y=7$
(b) $x+2 y-3 z+2 t=2$
$2 x+5 y-8 z+6 t=5$
$3 x+4 y-5 z+2 t=4$
(c) $x+2 y+4 z-5 t=3$
$3 x-y+5 z+2 t=4$
$5 x-4 y+6 z+9 t=2$
3.55. Solve
(a) $2 x-y-4 z=2$
$4 x-2 y-6 z=5$
$6 x-3 y-8 z=8$
(b) $x+2 y-z+3 t=3$
$2 x+4 y+4 z+3 t=9$
$3 x+6 y-z+8 t=10$
3.56. Consider each of the following systems in unknowns x, y, z :
(a) $x-2 y=1$ $x-y+a z=2$ $a y+9 z=b$
(b) $x+2 y+2 z=1$
$x+a y+3 z=3$
$x+11 y+a z=b$
(c) $x+y+a z=1$
$x+a y+z=4$
$a x+y+z=b$

For which values of a does the system have a unique solution, and for which pairs of values (a, b) does the system have more than one solution? The value of b does not have any effect on whether the system has a unique solution. Why?

