7.5 Orthogonality

Let V be an inner product space. The vectors $u, v \in V$ are said to be orthogonal and u is said to be orthogonal to v if

$$
\langle u, v\rangle=0
$$

The relation is clearly symmetric-if u is orthogonal to v, then $\langle v, u\rangle=0$, and so v is orthogonal to u. We note that $0 \in V$ is orthogonal to every $v \in V$, because

$$
\langle 0, v\rangle=\langle 0 v, v\rangle=0\langle v, v\rangle=0
$$

Conversely, if u is orthogonal to every $v \in V$, then $\langle u, u\rangle=0$ and hence $u=0$ by $\left[\mathrm{I}_{3}\right]$. Observe that u and v are orthogonal if and only if $\cos \theta=0$, where θ is the angle between u and v. Also, this is true if and only if u and v are "perpendicular"- that is, $\theta=\pi / 2$ (or $\theta=90^{\circ}$).

EXAMPLE 7.6

(a) Consider the vectors $u=(1,1,1), v=(1,2,-3), w=(1,-4,3)$ in \mathbf{R}^{3}. Then

$$
\langle u, v\rangle=1+2-3=0, \quad\langle u, w\rangle=1-4+3=0, \quad\langle v, w\rangle=1-8-9=-16
$$

Thus, u is orthogonal to v and w, but v and w are not orthogonal.
(b) Consider the functions $\sin t$ and $\cos t$ in the vector space $C[-\pi, \pi]$ of continuous functions on the closed interval $[-\pi, \pi]$. Then

$$
\langle\sin t, \cos t\rangle=\int_{-\pi}^{\pi} \sin t \cos t d t=\left.\frac{1}{2} \sin ^{2} t\right|_{-\pi} ^{\pi}=0-0=0
$$

Thus, $\sin t$ and $\cos t$ are orthogonal functions in the vector space $C[-\pi, \pi]$.
Remark: A vector $w=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is orthogonal to $u=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in R^{n} if

$$
\langle u, w\rangle=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=0
$$

That is, w is orthogonal to u if w satisfies a homogeneous equation whose coefficients are the elements of u.

EXAMPLE 7.7 Find a nonzero vector w that is orthogonal to $u_{1}=(1,2,1)$ and $u_{2}=(2,5,4)$ in R^{3}.
Let $w=(x, y, z)$. Then we want $\left\langle u_{1}, w\right\rangle=0$ and $\left\langle u_{2}, w\right\rangle=0$. This yields the homogeneous system

$$
\begin{aligned}
x+2 y+z & =0 \\
2 x+5 y+4 z & =0
\end{aligned} \quad \text { or } \quad \begin{aligned}
x+2 y+z & =0 \\
y+2 z & =0
\end{aligned}
$$

Here z is the only free variable in the echelon system. Set $z=1$ to obtain $y=-2$ and $x=3$. Thus, $w=(3,-2,1)$ is a desired nonzero vector orthogonal to u_{1} and u_{2}.

Any multiple of w will also be orthogonal to u_{1} and u_{2}. Normalizing w, we obtain the following unit vector orthogonal to u_{1} and u_{2} :

$$
\hat{w}=\frac{w}{\|w\|}=\left(\frac{3}{\sqrt{14}},-\frac{2}{\sqrt{14}}, \frac{1}{\sqrt{14}}\right)
$$

Orthogonal Complements

Let S be a subset of an inner product space V. The orthogonal complement of S, denoted by S^{\perp} (read ' S perp'') consists of those vectors in V that are orthogonal to every vector $u \in S$; that is,

$$
S^{\perp}=\{v \in V:\langle v, u\rangle=0 \text { for every } u \in S\}
$$

In particular, for a given vector u in V, we have

$$
u^{\perp}=\{v \in V:\langle v, u\rangle=0\}
$$

that is, u^{\perp} consists of all vectors in V that are orthogonal to the given vector u.
We show that S^{\perp} is a subspace of V. Clearly $0 \in S^{\perp}$, because 0 is orthogonal to every vector in V. Now suppose $v, w \in S^{\perp}$. Then, for any scalars a and b and any vector $u \in S$, we have

$$
\langle a v+b w, \quad u\rangle=a\langle v, u\rangle+b\langle w, u\rangle=a \cdot 0+b \cdot 0=0
$$

Thus, $a v+b w \in S^{\perp}$, and therefore S^{\perp} is a subspace of V.
We state this result formally.
PROPOSITION 7.3: Let S be a subset of a vector space V. Then S^{\perp} is a subspace of V.
Remark 1: Suppose u is a nonzero vector in \mathbf{R}^{3}. Then there is a geometrical description of u^{\perp}. Specifically, u^{\perp} is the plane in \mathbf{R}^{3} through the origin O and perpendicular to the vector u. This is shown in Fig. 7-2.

Orthogonal Complement u^{\perp}
Figure 7-2

Remark 2: Let W be the solution space of an $m \times n$ homogeneous system $A X=0$, where $A=\left[a_{i j}\right]$ and $X=\left[x_{i}\right]$. Recall that W may be viewed as the kernel of the linear mapping $A: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$. Now we can give another interpretation of W using the notion of orthogonality. Specifically, each solution vector $w=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is orthogonal to each row of A; hence, W is the orthogonal complement of the row space of A.

EXAMPLE 7.8 Find a basis for the subspace u^{\perp} of \mathbf{R}^{3}, where $u=(1,3,-4)$.
Note that u^{\perp} consists of all vectors $w=(x, y, z)$ such that $\langle u, w\rangle=0$, or $x+3 y-4 z=0$. The free variables are y and z.
(1) Set $y=1, z=0$ to obtain the solution $w_{1}=(-3,1,0)$.
(2) Set $y=0, z=1$ to obtain the solution $w_{1}=(4,0,1)$.

The vectors w_{1} and w_{2} form a basis for the solution space of the equation, and hence a basis for u^{\perp}.
Suppose W is a subspace of V. Then both W and W^{\perp} are subspaces of V. The next theorem, whose proof (Problem 7.28) requires results of later sections, is a basic result in linear algebra.

THEOREM 7.4: Let W be a subspace of V. Then V is the direct sum of W and W^{\perp}; that is, $V=W \oplus W^{\perp}$.

