
7.5 Orthogonality

Let V be an inner product space. The vectors u; v 2 V are said to be orthogonal and u is said to be
orthogonal to v if

hu; vi ¼ 0

The relation is clearly symmetric—if u is orthogonal to v, then hv; ui ¼ 0, and so v is orthogonal to u. We
note that 0 2 V is orthogonal to every v 2 V, because

h0; vi ¼ h0v; vi ¼ 0hv; vi ¼ 0

Conversely, if u is orthogonal to every v 2 V, then hu; ui ¼ 0 and hence u ¼ 0 by ½I3�: Observe that u and
v are orthogonal if and only if cos y ¼ 0, where y is the angle between u and v. Also, this is true if and
only if u and v are ‘‘perpendicular’’—that is, y ¼ p=2 (or y ¼ 90�).

EXAMPLE 7.6

(a) Consider the vectors u ¼ ð1; 1; 1Þ, v ¼ ð1; 2;�3Þ, w ¼ ð1;�4; 3Þ in R3. Then

hu; vi ¼ 1þ 2� 3 ¼ 0; hu;wi ¼ 1� 4þ 3 ¼ 0; hv;wi ¼ 1� 8� 9 ¼ �16
Thus, u is orthogonal to v and w, but v and w are not orthogonal.

(b) Consider the functions sin t and cos t in the vector space C½�p; p� of continuous functions on the closed interval
½�p; p�. Then

hsin t; cos ti ¼
ðp
�p

sin t cos t dt ¼ 1
2 sin2 tjp�p ¼ 0� 0 ¼ 0

Thus, sin t and cos t are orthogonal functions in the vector space C½�p; p�.
Remark: A vector w ¼ ðx1; x2; . . . ; xnÞ is orthogonal to u ¼ ða1; a2; . . . ; anÞ in Rn if

hu;wi ¼ a1x1 þ a2x2 þ � � � þ anxn ¼ 0

That is, w is orthogonal to u if w satisfies a homogeneous equation whose coefficients are the elements
of u.

EXAMPLE 7.7 Find a nonzero vector w that is orthogonal to u1 ¼ ð1; 2; 1Þ and u2 ¼ ð2; 5; 4Þ in R3.

Let w ¼ ðx; y; zÞ. Then we want hu1;wi ¼ 0 and hu2;wi ¼ 0. This yields the homogeneous system

xþ 2yþ z ¼ 0
2xþ 5yþ 4z ¼ 0

or
xþ 2yþ z ¼ 0

yþ 2z ¼ 0

Here z is the only free variable in the echelon system. Set z ¼ 1 to obtain y ¼ �2 and x ¼ 3. Thus, w ¼ ð3;�2; 1Þ is
a desired nonzero vector orthogonal to u1 and u2.

Any multiple of w will also be orthogonal to u1 and u2. Normalizing w, we obtain the following unit vector
orthogonal to u1 and u2:

ŵ ¼ w

kwk ¼
3ffiffiffiffiffi
14
p ;� 2ffiffiffiffiffi

14
p ;

1ffiffiffiffiffi
14
p

� �

Orthogonal Complements

Let S be a subset of an inner product space V. The orthogonal complement of S, denoted by S? (read ‘‘S
perp’’) consists of those vectors in V that are orthogonal to every vector u 2 S; that is,

S? ¼ fv 2 V : hv; ui ¼ 0 for every u 2 Sg
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In particular, for a given vector u in V, we have

u? ¼ fv 2 V : hv; ui ¼ 0g
that is, u? consists of all vectors in V that are orthogonal to the given vector u.

We show that S? is a subspace of V. Clearly 0 2 S?, because 0 is orthogonal to every vector in V. Now
suppose v, w 2 S?. Then, for any scalars a and b and any vector u 2 S, we have

hav þ bw; ui ¼ ahv; ui þ bhw; ui ¼ a � 0þ b � 0 ¼ 0

Thus, av þ bw 2 S?, and therefore S? is a subspace of V.
We state this result formally.

PROPOSITION 7.3: Let S be a subset of a vector space V. Then S? is a subspace of V.

Remark 1: Suppose u is a nonzero vector in R3. Then there is a geometrical description of u?.
Specifically, u? is the plane in R3 through the origin O and perpendicular to the vector u. This is shown
in Fig. 7-2.

Remark 2: LetW be the solution space of an m	 n homogeneous system AX ¼ 0, where A ¼ ½aij�
and X ¼ ½xi�. Recall that W may be viewed as the kernel of the linear mapping A:Rn ! Rm. Now we can
give another interpretation of W using the notion of orthogonality. Specifically, each solution vector
w ¼ ðx1; x2; . . . ; xnÞ is orthogonal to each row of A; hence, W is the orthogonal complement of the row
space of A.

EXAMPLE 7.8 Find a basis for the subspace u? of R3, where u ¼ ð1; 3;�4Þ.
Note that u? consists of all vectors w ¼ ðx; y; zÞ such that hu;wi ¼ 0, or xþ 3y� 4z ¼ 0. The free variables

are y and z.

(1) Set y ¼ 1, z ¼ 0 to obtain the solution w1 ¼ ð�3; 1; 0Þ.
(2) Set y ¼ 0, z ¼ 1 to obtain the solution w1 ¼ ð4; 0; 1Þ.

The vectors w1 and w2 form a basis for the solution space of the equation, and hence a basis for u?.

Suppose W is a subspace of V. Then both W and W? are subspaces of V. The next theorem, whose
proof (Problem 7.28) requires results of later sections, is a basic result in linear algebra.

THEOREM 7.4: Let W be a subspace of V. Then V is the direct sum of W and W?; that is,
V ¼ W 
W?.

Figure 7-2

232 CHAPTER 7 Inner Product Spaces, Orthogonality


