Linear Dependence and Echelon Matrices

Consider the following echelon matrix A, whose pivots have been circled:

 $A = \begin{bmatrix} 0 & (2) & 3 & 4 & 5 & 6 & 7 \\ 0 & 0 & (4) & 3 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & (7) & 8 & 9 \\ 0 & 0 & 0 & 0 & 0 & (6) & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Observe that the rows R_2 , R_3 , R_4 have 0's in the second column below the nonzero pivot in R_1 , and hence any linear combination of R_2 , R_3 , R_4 must have 0 as its second entry. Thus, R_1 cannot be a linear combination of the rows below it. Similarly, the rows R_3 and R_4 have 0's in the third column below the nonzero pivot in R_2 , and hence R_2 cannot be a linear combination of the rows below it. Finally, R_3 cannot be a multiple of R_4 , because R_4 has a 0 in the fifth column below the nonzero pivot in R_3 . Viewing the nonzero rows from the bottom up, R_4 , R_3 , R_2 , R_1 , no row is a linear combination of the preceding rows. Thus, the rows are linearly independent by Lemma 4.10.

The argument used with the above echelon matrix A can be used for the nonzero rows of any echelon matrix. Thus, we have the following very useful result.

THEOREM 4.11: The nonzero rows of a matrix in echelon form are linearly independent.

4.8 Basis and Dimension

First we state two equivalent ways to define a basis of a vector space V. (The equivalence is proved in Problem 4.28.)

DEFINITION A:	A set $S = \{u_1, u_2, \dots, u_n\}$ of vectors is a <i>basis</i> of V if it has the following two properties: (1) S is linearly independent. (2) S spans V.
DEFINITION B:	A set $S = \{u_1, u_2, \dots, u_n\}$ of vectors is a <i>basis</i> of V if every $v \in V$ can be written uniquely as a linear combination of the basis vectors.

The following is a fundamental result in linear algebra.

THEOREM 4.12: Let V be a vector space such that one basis has m elements and another basis has n elements. Then m = n.

A vector space V is said to be of *finite dimension* n or *n*-dimensional, written

```
dim V = n
```

if V has a basis with n elements. Theorem 4.12 tells us that all bases of V have the same number of elements, so this definition is well defined.

The vector space $\{0\}$ is defined to have dimension 0.

Suppose a vector space V does not have a finite basis. Then V is said to be of *infinite dimension* or to be *infinite-dimensional*.

The above fundamental Theorem 4.12 is a consequence of the following "replacement lemma" (proved in Problem 4.35).

LEMMA 4.13: Suppose $\{v_1, v_2, ..., v_n\}$ spans V, and suppose $\{w_1, w_2, ..., w_m\}$ is linearly independent. Then $m \le n$, and V is spanned by a set of the form

 $\{w_1, w_2, \ldots, w_m, v_{i_1}, v_{i_2}, \ldots, v_{i_{n-m}}\}$

Thus, in particular, n + 1 or more vectors in V are linearly dependent.

Observe in the above lemma that we have replaced m of the vectors in the spanning set of V by the m independent vectors and still retained a spanning set.

Examples of Bases

This subsection presents important examples of bases of some of the main vector spaces appearing in this text.

(a) Vector space K^n : Consider the following *n* vectors in K^n :

 $e_1 = (1, 0, 0, 0, \dots, 0, 0), e_2 = (0, 1, 0, 0, \dots, 0, 0), \dots, e_n = (0, 0, 0, 0, \dots, 0, 1)$

These vectors are linearly independent. (For example, they form a matrix in echelon form.) Furthermore, any vector $u = (a_1, a_2, ..., a_n)$ in K^n can be written as a linear combination of the above vectors. Specifically,

$$v = a_1 e_1 + a_2 e_2 + \dots + a_n e_n$$

Accordingly, the vectors form a basis of K^n called the *usual* or *standard* basis of K^n . Thus (as one might expect), K^n has dimension *n*. In particular, any other basis of K^n has *n* elements.

(b) Vector space $\mathbf{M} = \mathbf{M}_{r,s}$ of all $r \times s$ matrices: The following six matrices form a basis of the vector space $\mathbf{M}_{2,3}$ of all 2×3 matrices over K:

1	0	0]	[0	1	0]		0	0	1		0	0	0		0	0	0		0	0	0
0	0	0	,	0	0	0	,	0	0	0	,	1	0	0	,	0	1	0	,	0	0	1

More generally, in the vector space $\mathbf{M} = \mathbf{M}_{r,s}$ of all $r \times s$ matrices, let E_{ij} be the matrix with *ij*-entry 1 and 0's elsewhere. Then all such matrices form a basis of $\mathbf{M}_{r,s}$ called the *usual* or *standard* basis of $\mathbf{M}_{r,s}$. Accordingly, dim $\mathbf{M}_{r,s} = rs$.

- (c) Vector space $\mathbf{P}_n(t)$ of all polynomials of degree $\leq n$: The set $S = \{1, t, t^2, t^3, \dots, t^n\}$ of n+1 polynomials is a basis of $\mathbf{P}_n(t)$. Specifically, any polynomial f(t) of degree $\leq n$ can be expessed as a linear combination of these powers of t, and one can show that these polynomials are linearly independent. Therefore, dim $\mathbf{P}_n(t) = n+1$.
- (d) Vector space $\mathbf{P}(t)$ of all polynomials: Consider any finite set $S = \{f_1(t), f_2(t), \dots, f_m(t)\}$ of polynomials in $\mathbf{P}(t)$, and let *m* denote the largest of the degrees of the polynomials. Then any polynomial g(t) of degree exceeding *m* cannot be expressed as a linear combination of the elements of *S*. Thus, *S* cannot be a basis of $\mathbf{P}(t)$. This means that the dimension of $\mathbf{P}(t)$ is infinite. We note that the infinite set $S' = \{1, t, t^2, t^3, \ldots\}$, consisting of all the powers of *t*, spans $\mathbf{P}(t)$ and is linearly independent. Accordingly, *S'* is an infinite basis of $\mathbf{P}(t)$.

Theorems on Bases

The following three theorems (proved in Problems 4.37, 4.38, and 4.39) will be used frequently.

THEOREM 4.14: Let V be a vector space of finite dimension n. Then:

- (i) Any n + 1 or more vectors in V are linearly dependent.
- (ii) Any linearly independent set $S = \{u_1, u_2, ..., u_n\}$ with *n* elements is a basis of *V*.
- (iii) Any spanning set $T = \{v_1, v_2, \dots, v_n\}$ of V with n elements is a basis of V.

THEOREM 4.15: Suppose S spans a vector space V. Then:

- (i) Any maximum number of linearly independent vectors in S form a basis of V.
- (ii) Suppose one deletes from S every vector that is a linear combination of preceding vectors in S. Then the remaining vectors form a basis of V.

125

THEOREM 4.16: Let V be a vector space of finite dimension and let $S = \{u_1, u_2, \dots, u_r\}$ be a set of linearly independent vectors in V. Then S is part of a basis of V; that is, S may be extended to a basis of V.

EXAMPLE 4.11

(a) The following four vectors in \mathbf{R}^4 form a matrix in echelon form:

(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)

Thus, the vectors are linearly independent, and, because dim $\mathbf{R}^4 = 4$, the four vectors form a basis of \mathbf{R}^4 .

(b) The following n + 1 polynomials in $\mathbf{P}_n(t)$ are of increasing degree:

1, t-1, $(t-1)^2$, ..., $(t-1)^n$

Therefore, no polynomial is a linear combination of preceding polynomials; hence, the polynomials are linear independent. Furthermore, they form a basis of $\mathbf{P}_n(t)$, because dim $\mathbf{P}_n(t) = n + 1$.

(c) Consider any four vectors in \mathbf{R}^3 , say

(257, -132, 58), (43, 0, -17), (521, -317, 94), (328, -512, -731)

By Theorem 4.14(i), the four vectors must be linearly dependent, because they come from the three-dimensional vector space \mathbf{R}^3 .

Dimension and Subspaces

The following theorem (proved in Problem 4.40) gives the basic relationship between the dimension of a vector space and the dimension of a subspace.

THEOREM 4.17: Let W be a subspace of an n-dimensional vector space V. Then dim $W \le n$. In particular, if dim W = n, then W = V.

EXAMPLE 4.12 Let W be a subspace of the real space \mathbb{R}^3 . Note that dim $\mathbb{R}^3 = 3$. Theorem 4.17 tells us that the dimension of W can only be 0, 1, 2, or 3. The following cases apply:

(a) If dim W = 0, then $W = \{0\}$, a point.

- (b) If dim W = 1, then W is a line through the origin 0.
- (c) If dim W = 2, then W is a plane through the origin 0.
- (d) If dim W = 3, then W is the entire space \mathbb{R}^3 .

4.9 Application to Matrices, Rank of a Matrix

Let A be any $m \times n$ matrix over a field K. Recall that the rows of A may be viewed as vectors in K^n and that the row space of A, written rowsp(A), is the subspace of K^n spanned by the rows of A. The following definition applies.

DEFINITION: The *rank* of a matrix A, written rank(A), is equal to the maximum number of linearly independent rows of A or, equivalently, the dimension of the row space of A.

Recall, on the other hand, that the columns of an $m \times n$ matrix A may be viewed as vectors in K^m and that the column space of A, written colsp(A), is the subspace of K^m spanned by the columns of A. Although m may not be equal to n—that is, the rows and columns of A may belong to different vector spaces—we have the following fundamental result.

THEOREM 4.18: The maximum number of linearly independent rows of any matrix A is equal to the maximum number of linearly independent columns of A. Thus, the dimension of the row space of A is equal to the dimension of the column space of A.

Accordingly, one could restate the above definition of the rank of A using columns instead of rows.

CHAPTER 4 Vector Spaces

Basis-Finding Problems

This subsection shows how an echelon form of any matrix A gives us the solution to certain problems about A itself. Specifically, let A and B be the following matrices, where the echelon matrix B (whose pivots are circled) is an echelon form of A:

	[1	2	1	3	1	2		$\left[\begin{array}{c} 1 \end{array} \right]$	2	1	3	1	2]
	2	5	5	6	4	5		0	1	3	1	2	1
A =	3	7	6	11	6	9	and $B =$	0	0	0	(1)	1	2
	1	5	10	8	9	9		0	0	0	0	0	0
	2	6	8	11	9	12		0	0	0	0	0	0

We solve the following four problems about the matrix A, where C_1, C_2, \ldots, C_6 denote its columns:

- (a) Find a basis of the row space of A.
- (b) Find each column C_k of A that is a linear combination of preceding columns of A.
- (c) Find a basis of the column space of A.
- (d) Find the rank of A.
- (a) We are given that A and B are row equivalent, so they have the same row space. Moreover, B is in echelon form, so its nonzero rows are linearly independent and hence form a basis of the row space of B. Thus, they also form a basis of the row space of A. That is,

basis of
$$rowsp(A)$$
: $(1,2,1,3,1,2)$, $(0,1,3,1,2,1)$, $(0,0,0,1,1,2)$

(b) Let $M_k = [C_1, C_2, ..., C_k]$, the submatrix of A consisting of the first k columns of A. Then M_{k-1} and M_k are, respectively, the coefficient matrix and augmented matrix of the vector equation

$$x_1C_1 + x_2C_2 + \dots + x_{k-1}C_{k-1} = C_k$$

Theorem 3.9 tells us that the system has a solution, or, equivalently, C_k is a linear combination of the preceding columns of A if and only if $rank(M_k) = rank(M_{k-1})$, where $rank(M_k)$ means the number of pivots in an echelon form of M_k . Now the first k column of the echelon matrix B is also an echelon form of M_k . Accordingly,

$$\operatorname{rank}(M_2) = \operatorname{rank}(M_3) = 2$$
 and $\operatorname{rank}(M_4) = \operatorname{rank}(M_5) = \operatorname{rank}(M_6) = 3$

Thus, C_3 , C_5 , C_6 are each a linear combination of the preceding columns of A.

(c) The fact that the remaining columns C_1 , C_2 , C_4 are not linear combinations of their respective preceding columns also tells us that they are linearly independent. Thus, they form a basis of the column space of A. That is,

basis of colsp(A): $[1, 2, 3, 1, 2]^T$, $[2, 5, 7, 5, 6]^T$, $[3, 6, 11, 8, 11]^T$

Observe that C_1 , C_2 , C_4 may also be characterized as those columns of A that contain the pivots in any echelon form of A.

- (d) Here we see that three possible definitions of the rank of A yield the same value.
 - (i) There are three pivots in *B*, which is an echelon form of *A*.
 - (ii) The three pivots in B correspond to the nonzero rows of B, which form a basis of the row space of A.
 - (iii) The three pivots in B correspond to the columns of A, which form a basis of the column space of A.

Thus, $\operatorname{rank}(A) = 3$.