Linear Dependence and Echelon Matrices

Consider the following echelon matrix A, whose pivots have been circled:

$$
A=\left[\begin{array}{ccccccc}
0 & (2) & 3 & 4 & 5 & 6 & 7 \\
0 & 0 & 4 & 3 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 7 & 8 & 9 \\
0 & 0 & 0 & 0 & 0 & (6) & 7 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Observe that the rows R_{2}, R_{3}, R_{4} have 0 's in the second column below the nonzero pivot in R_{1}, and hence any linear combination of R_{2}, R_{3}, R_{4} must have 0 as its second entry. Thus, R_{1} cannot be a linear combination of the rows below it. Similarly, the rows R_{3} and R_{4} have 0 's in the third column below the nonzero pivot in R_{2}, and hence R_{2} cannot be a linear combination of the rows below it. Finally, R_{3} cannot be a multiple of R_{4}, because R_{4} has a 0 in the fifth column below the nonzero pivot in R_{3}. Viewing the nonzero rows from the bottom up, $R_{4}, R_{3}, R_{2}, R_{1}$, no row is a linear combination of the preceding rows. Thus, the rows are linearly independent by Lemma 4.10.

The argument used with the above echelon matrix A can be used for the nonzero rows of any echelon matrix. Thus, we have the following very useful result.

THEOREM 4.11: The nonzero rows of a matrix in echelon form are linearly independent.

4.8 Basis and Dimension

First we state two equivalent ways to define a basis of a vector space V. (The equivalence is proved in Problem 4.28.)

DEFINITION A: A set $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of vectors is a basis of V if it has the following two properties: (1) S is linearly independent. (2) S spans V.

DEFINITION B: \quad A set $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ of vectors is a basis of V if every $v \in V$ can be written uniquely as a linear combination of the basis vectors.

The following is a fundamental result in linear algebra.
THEOREM 4.12: Let V be a vector space such that one basis has m elements and another basis has n elements. Then $m=n$.

A vector space V is said to be of finite dimension n or n-dimensional, written

$$
\operatorname{dim} V=n
$$

if V has a basis with n elements. Theorem 4.12 tells us that all bases of V have the same number of elements, so this definition is well defined.

The vector space $\{0\}$ is defined to have dimension 0 .
Suppose a vector space V does not have a finite basis. Then V is said to be of infinite dimension or to be infinite-dimensional.

The above fundamental Theorem 4.12 is a consequence of the following "replacement lemma" (proved in Problem 4.35).

LEMMA 4.13: Suppose $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ spans V, and suppose $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ is linearly independent. Then $m \leq n$, and V is spanned by a set of the form

$$
\left\{w_{1}, w_{2}, \ldots, w_{m}, v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n-m}}\right\}
$$

Thus, in particular, $n+1$ or more vectors in V are linearly dependent.
Observe in the above lemma that we have replaced m of the vectors in the spanning set of V by the m independent vectors and still retained a spanning set.

Examples of Bases

This subsection presents important examples of bases of some of the main vector spaces appearing in this text.
(a) Vector space K^{n} : Consider the following n vectors in K^{n} :

$$
e_{1}=(1,0,0,0, \ldots, 0,0), e_{2}=(0,1,0,0, \ldots, 0,0), \ldots, e_{n}=(0,0,0,0, \ldots, 0,1)
$$

These vectors are linearly independent. (For example, they form a matrix in echelon form.) Furthermore, any vector $u=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in K^{n} can be written as a linear combination of the above vectors. Specifically,

$$
v=a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{n} e_{n}
$$

Accordingly, the vectors form a basis of K^{n} called the usual or standard basis of K^{n}. Thus (as one might expect), K^{n} has dimension n. In particular, any other basis of K^{n} has n elements.
(b) Vector space $\mathbf{M}=\mathbf{M}_{r, s}$ of all $r \times s$ matrices: The following six matrices form a basis of the vector space $\mathbf{M}_{2,3}$ of all 2×3 matrices over K :

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

More generally, in the vector space $\mathbf{M}=\mathbf{M}_{r, s}$ of all $r \times s$ matrices, let $E_{i j}$ be the matrix with $i j$-entry 1 and 0 's elsewhere. Then all such matrices form a basis of $\mathbf{M}_{r, s}$ called the usual or standard basis of $\mathbf{M}_{r, s}$. Accordingly, $\operatorname{dim} \mathbf{M}_{r, s}=r s$.
(c) Vector space $\mathbf{P}_{n}(t)$ of all polynomials of degree $\leq n$: The set $S=\left\{1, t, t^{2}, t^{3}, \ldots, t^{n}\right\}$ of $n+1$ polynomials is a basis of $\mathbf{P}_{n}(t)$. Specifically, any polynomial $f(t)$ of degree $\leq n$ can be expessed as a linear combination of these powers of t, and one can show that these polynomials are linearly independent. Therefore, $\operatorname{dim} \mathbf{P}_{n}(t)=n+1$.
(d) Vector space $\mathbf{P}(t)$ of all polynomials: Consider any finite set $S=\left\{f_{1}(t), f_{2}(t), \ldots, f_{m}(t)\right\}$ of polynomials in $\mathbf{P}(t)$, and let m denote the largest of the degrees of the polynomials. Then any polynomial $g(t)$ of degree exceeding m cannot be expressed as a linear combination of the elements of S. Thus, S cannot be a basis of $\mathbf{P}(t)$. This means that the dimension of $\mathbf{P}(t)$ is infinite. We note that the infinite set $S^{\prime}=\left\{1, t, t^{2}, t^{3}, \ldots\right\}$, consisting of all the powers of t, spans $\mathbf{P}(t)$ and is linearly independent. Accordingly, S^{\prime} is an infinite basis of $\mathbf{P}(t)$.

Theorems on Bases

The following three theorems (proved in Problems 4.37, 4.38, and 4.39) will be used frequently.
THEOREM 4.14: Let V be a vector space of finite dimension n. Then:
(i) Any $n+1$ or more vectors in V are linearly dependent.
(ii) Any linearly independent set $S=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ with n elements is a basis of V.
(iii) Any spanning set $T=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of V with n elements is a basis of V.

THEOREM 4.15: Suppose S spans a vector space V. Then:
(i) Any maximum number of linearly independent vectors in S form a basis of V.
(ii) Suppose one deletes from S every vector that is a linear combination of preceding vectors in S. Then the remaining vectors form a basis of V.

THEOREM 4.16: Let V be a vector space of finite dimension and let $S=\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ be a set of linearly independent vectors in V. Then S is part of a basis of V; that is, S may be extended to a basis of V.

EXAMPLE 4.11

(a) The following four vectors in \mathbf{R}^{4} form a matrix in echelon form:

$$
(1,1,1,1),(0,1,1,1),(0,0,1,1),(0,0,0,1)
$$

Thus, the vectors are linearly independent, and, because $\operatorname{dim} \mathbf{R}^{4}=4$, the four vectors form a basis of \mathbf{R}^{4}.
(b) The following $n+1$ polynomials in $\mathbf{P}_{n}(t)$ are of increasing degree:

$$
1, t-1,(t-1)^{2}, \ldots,(t-1)^{n}
$$

Therefore, no polynomial is a linear combination of preceding polynomials; hence, the polynomials are linear independent. Furthermore, they form a basis of $\mathbf{P}_{n}(t)$, because $\operatorname{dim} \mathbf{P}_{n}(t)=n+1$.
(c) Consider any four vectors in \mathbf{R}^{3}, say

$$
(257,-132,58), \quad(43,0,-17), \quad(521,-317,94), \quad(328,-512,-731)
$$

By Theorem 4.14(i), the four vectors must be linearly dependent, because they come from the three-dimensional vector space \mathbf{R}^{3}.

Dimension and Subspaces

The following theorem (proved in Problem 4.40) gives the basic relationship between the dimension of a vector space and the dimension of a subspace.

THEOREM 4.17: Let W be a subspace of an n-dimensional vector space V. Then $\operatorname{dim} W \leq n$. In particular, if $\operatorname{dim} W=n$, then $W=V$.
EXAMPLE 4.12 Let W be a subspace of the real space \mathbf{R}^{3}. Note that $\operatorname{dim} \mathbf{R}^{3}=3$. Theorem 4.17 tells us that the dimension of W can only be $0,1,2$, or 3 . The following cases apply:
(a) If $\operatorname{dim} W=0$, then $W=\{0\}$, a point.
(b) If $\operatorname{dim} W=1$, then W is a line through the origin 0 .
(c) If $\operatorname{dim} W=2$, then W is a plane through the origin 0 .
(d) If $\operatorname{dim} W=3$, then W is the entire space \mathbf{R}^{3}.

4.9 Application to Matrices, Rank of a Matrix

Let A be any $m \times n$ matrix over a field K. Recall that the rows of A may be viewed as vectors in K^{n} and that the row space of A, written rowsp(A), is the subspace of K^{n} spanned by the rows of A. The following definition applies.

DEFINITION: The rank of a matrix A, written $\operatorname{rank}(A)$, is equal to the maximum number of linearly independent rows of A or, equivalently, the dimension of the row space of A.
Recall, on the other hand, that the columns of an $m \times n$ matrix A may be viewed as vectors in K^{m} and that the column space of A, written colsp(A), is the subspace of K^{m} spanned by the columns of A. Although m may not be equal to n-that is, the rows and columns of A may belong to different vector spaces-we have the following fundamental result.

THEOREM 4.18: The maximum number of linearly independent rows of any matrix A is equal to the maximum number of linearly independent columns of A. Thus, the dimension of the row space of A is equal to the dimension of the column space of A.

Accordingly, one could restate the above definition of the rank of A using columns instead of rows.

Basis-Finding Problems

This subsection shows how an echelon form of any matrix A gives us the solution to certain problems about A itself. Specifically, let A and B be the following matrices, where the echelon matrix B (whose pivots are circled) is an echelon form of A :

$$
A=\left[\begin{array}{rrrrrr}
1 & 2 & 1 & 3 & 1 & 2 \\
2 & 5 & 5 & 6 & 4 & 5 \\
3 & 7 & 6 & 11 & 6 & 9 \\
1 & 5 & 10 & 8 & 9 & 9 \\
2 & 6 & 8 & 11 & 9 & 12
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cccccc}
(1) & 2 & 1 & 3 & 1 & 2 \\
0 & 1 & 3 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We solve the following four problems about the matrix A, where $C_{1}, C_{2}, \ldots, C_{6}$ denote its columns:
(a) Find a basis of the row space of A.
(b) Find each column C_{k} of A that is a linear combination of preceding columns of A.
(c) Find a basis of the column space of A.
(d) Find the rank of A.
(a) We are given that A and B are row equivalent, so they have the same row space. Moreover, B is in echelon form, so its nonzero rows are linearly independent and hence form a basis of the row space of B. Thus, they also form a basis of the row space of A. That is,

$$
\text { basis of } \operatorname{rowsp}(A): \quad(1,2,1,3,1,2), \quad(0,1,3,1,2,1), \quad(0,0,0,1,1,2)
$$

(b) Let $M_{k}=\left[C_{1}, C_{2}, \ldots, C_{k}\right]$, the submatrix of A consisting of the first k columns of A. Then M_{k-1} and M_{k} are, respectively, the coefficient matrix and augmented matrix of the vector equation

$$
x_{1} C_{1}+x_{2} C_{2}+\cdots+x_{k-1} C_{k-1}=C_{k}
$$

Theorem 3.9 tells us that the system has a solution, or, equivalently, C_{k} is a linear combination of the preceding columns of A if and only if $\operatorname{rank}\left(M_{k}\right)=\operatorname{rank}\left(M_{k-1}\right)$, where $\operatorname{rank}\left(M_{k}\right)$ means the number of pivots in an echelon form of M_{k}. Now the first k column of the echelon matrix B is also an echelon form of M_{k}. Accordingly,

$$
\operatorname{rank}\left(M_{2}\right)=\operatorname{rank}\left(M_{3}\right)=2 \quad \text { and } \quad \operatorname{rank}\left(M_{4}\right)=\operatorname{rank}\left(M_{5}\right)=\operatorname{rank}\left(M_{6}\right)=3
$$

Thus, C_{3}, C_{5}, C_{6} are each a linear combination of the preceding columns of A.
(c) The fact that the remaining columns C_{1}, C_{2}, C_{4} are not linear combinations of their respective preceding columns also tells us that they are linearly independent. Thus, they form a basis of the column space of A. That is,

$$
\text { basis of } \operatorname{colsp}(A): \quad[1,2,3,1,2]^{T}, \quad[2,5,7,5,6]^{T}, \quad[3,6,11,8,11]^{T}
$$

Observe that C_{1}, C_{2}, C_{4} may also be characterized as those columns of A that contain the pivots in any echelon form of A.
(d) Here we see that three possible definitions of the rank of A yield the same value.
(i) There are three pivots in B, which is an echelon form of A.
(ii) The three pivots in B correspond to the nonzero rows of B, which form a basis of the row space of A.
(iii) The three pivots in B correspond to the columns of A, which form a basis of the column space of A.

Thus, $\operatorname{rank}(A)=3$.

