
Linear Dependence and Echelon Matrices

Consider the following echelon matrix A, whose pivots have been circled:

A ¼

0 �2 3 4 5 6 7
0 0 �4 3 2 3 4
0 0 0 0 �7 8 9
0 0 0 0 0 �6 7
0 0 0 0 0 0 0

266664
377775

Observe that the rows R2, R3, R4 have 0’s in the second column below the nonzero pivot in R1, and hence
any linear combination of R2, R3, R4 must have 0 as its second entry. Thus, R1 cannot be a linear
combination of the rows below it. Similarly, the rows R3 and R4 have 0’s in the third column below the
nonzero pivot in R2, and hence R2 cannot be a linear combination of the rows below it. Finally, R3 cannot
be a multiple of R4, because R4 has a 0 in the fifth column below the nonzero pivot in R3. Viewing the
nonzero rows from the bottom up, R4, R3, R2, R1, no row is a linear combination of the preceding rows.
Thus, the rows are linearly independent by Lemma 4.10.

The argument used with the above echelon matrix A can be used for the nonzero rows of any echelon
matrix. Thus, we have the following very useful result.

THEOREM 4.11: The nonzero rows of a matrix in echelon form are linearly independent.

4.8 Basis and Dimension

First we state two equivalent ways to define a basis of a vector space V. (The equivalence is proved in
Problem 4.28.)

DEFINITION A: A set S ¼ fu1; u2; . . . ; ung of vectors is a basis of V if it has the following two
properties: (1) S is linearly independent. (2) S spans V.

DEFINITION B: A set S ¼ fu1; u2; . . . ; ung of vectors is a basis of V if every v 2 V can be written
uniquely as a linear combination of the basis vectors.

The following is a fundamental result in linear algebra.

THEOREM 4.12: Let V be a vector space such that one basis has m elements and another basis has n
elements. Then m ¼ n.

A vector space V is said to be of finite dimension n or n-dimensional, written

dimV ¼ n

if V has a basis with n elements. Theorem 4.12 tells us that all bases of V have the same number of
elements, so this definition is well defined.

The vector space {0} is defined to have dimension 0.
Suppose a vector space V does not have a finite basis. Then V is said to be of infinite dimension or to

be infinite-dimensional.
The above fundamental Theorem 4.12 is a consequence of the following ‘‘replacement lemma’’

(proved in Problem 4.35).

LEMMA 4.13: Suppose fv1; v2; . . . ; vng spans V, and suppose fw1;w2; . . . ;wmg is linearly indepen-
dent. Then m � n, and V is spanned by a set of the form

fw1;w2; . . . ;wm; vi1 ; vi2 ; . . . ; vin�mg
Thus, in particular, nþ 1 or more vectors in V are linearly dependent.

Observe in the above lemma that we have replaced m of the vectors in the spanning set of V by the m
independent vectors and still retained a spanning set.
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Examples of Bases

This subsection presents important examples of bases of some of the main vector spaces appearing in this
text.

(a) Vector space Kn: Consider the following n vectors in Kn:

e1 ¼ ð1; 0; 0; 0; . . . ; 0; 0Þ; e2 ¼ ð0; 1; 0; 0; . . . ; 0; 0Þ; . . . ; en ¼ ð0; 0; 0; 0; . . . ; 0; 1Þ
These vectors are linearly independent. (For example, they form a matrix in echelon form.)
Furthermore, any vector u ¼ ða1; a2; . . . ; anÞ in Kn can be written as a linear combination of the
above vectors. Specifically,

v ¼ a1e1 þ a2e2 þ � � � þ anen

Accordingly, the vectors form a basis of Kn called the usual or standard basis of Kn. Thus (as one
might expect), Kn has dimension n. In particular, any other basis of Kn has n elements.

(b) Vector space M ¼Mr;s of all r 	 s matrices: The following six matrices form a basis of the
vector space M2;3 of all 2	 3 matrices over K:

1 0 0
0 0 0

� �
;

0 1 0
0 0 0

� �
;

0 0 1
0 0 0

� �
;

0 0 0
1 0 0

� �
;

0 0 0
0 1 0

� �
;

0 0 0
0 0 1

� �
More generally, in the vector spaceM ¼ Mr;s of all r 	 s matrices, let Eij be the matrix with ij-entry 1
and 0’s elsewhere. Then all such matrices form a basis of Mr;s called the usual or standard basis of
Mr;s. Accordingly, dimMr;s ¼ rs.

(c) Vector space PnðtÞ of all polynomials of degree � n: The set S ¼ f1; t; t2; t3; . . . ; tng of nþ 1
polynomials is a basis of PnðtÞ. Specifically, any polynomial f ðtÞ of degree �n can be expessed as a
linear combination of these powers of t, and one can show that these polynomials are linearly
independent. Therefore, dimPnðtÞ ¼ nþ 1.

(d) Vector space PðtÞ of all polynomials: Consider any finite set S ¼ ff1ðtÞ; f2ðtÞ; . . . ; fmðtÞg of
polynomials in PðtÞ, and let m denote the largest of the degrees of the polynomials. Then any
polynomial gðtÞ of degree exceeding m cannot be expressed as a linear combination of the elements of
S. Thus, S cannot be a basis of PðtÞ. This means that the dimension of PðtÞ is infinite. We note that the
infinite set S0 ¼ f1; t; t2; t3; . . .g, consisting of all the powers of t, spans PðtÞ and is linearly
independent. Accordingly, S0 is an infinite basis of PðtÞ.

Theorems on Bases

The following three theorems (proved in Problems 4.37, 4.38, and 4.39) will be used frequently.

THEOREM 4.14: Let V be a vector space of finite dimension n. Then:

(i) Any nþ 1 or more vectors in V are linearly dependent.

(ii) Any linearly independent set S ¼ fu1; u2; . . . ; ung with n elements is a basis
of V.

(iii) Any spanning set T ¼ fv1; v2; . . . ; vng of V with n elements is a basis of V.

THEOREM 4.15: Suppose S spans a vector space V. Then:

(i) Any maximum number of linearly independent vectors in S form a basis of V.

(ii) Suppose one deletes from S every vector that is a linear combination of
preceding vectors in S. Then the remaining vectors form a basis of V.

CHAPTER 4 Vector Spaces 125



THEOREM 4.16: Let V be a vector space of finite dimension and let S ¼ fu1; u2; . . . ; urg be a set of
linearly independent vectors in V. Then S is part of a basis of V; that is, S may be
extended to a basis of V.

EXAMPLE 4.11

(a) The following four vectors in R4 form a matrix in echelon form:

ð1; 1; 1; 1Þ; ð0; 1; 1; 1Þ; ð0; 0; 1; 1Þ; ð0; 0; 0; 1Þ
Thus, the vectors are linearly independent, and, because dimR4 ¼ 4, the four vectors form a basis of R4.

(b) The following nþ 1 polynomials in PnðtÞ are of increasing degree:

1; t � 1; ðt � 1Þ2; . . . ; ðt � 1Þn

Therefore, no polynomial is a linear combination of preceding polynomials; hence, the polynomials are linear
independent. Furthermore, they form a basis of PnðtÞ, because dimPnðtÞ ¼ nþ 1.

(c) Consider any four vectors in R3, say

ð257;�132; 58Þ; ð43; 0;�17Þ; ð521;�317; 94Þ; ð328;�512;�731Þ
By Theorem 4.14(i), the four vectors must be linearly dependent, because they come from the three-dimensional
vector space R3.

Dimension and Subspaces

The following theorem (proved in Problem 4.40) gives the basic relationship between the dimension of a
vector space and the dimension of a subspace.

THEOREM 4.17: Let W be a subspace of an n-dimensional vector space V. Then dimW � n. In
particular, if dimW ¼ n, then W ¼ V.

EXAMPLE 4.12 Let W be a subspace of the real space R3. Note that dimR3 ¼ 3. Theorem 4.17 tells us that the
dimension of W can only be 0, 1, 2, or 3. The following cases apply:

(a) If dimW ¼ 0, then W ¼ f0g, a point.

(b) If dimW ¼ 1, then W is a line through the origin 0.

(c) If dimW ¼ 2, then W is a plane through the origin 0.

(d) If dimW ¼ 3, then W is the entire space R3.

4.9 Application to Matrices, Rank of a Matrix

Let A be any m	 n matrix over a field K. Recall that the rows of A may be viewed as vectors in Kn and
that the row space of A, written rowsp(A), is the subspace of Kn spanned by the rows of A. The following
definition applies.

DEFINITION: The rank of a matrix A, written rank(A), is equal to the maximum number of linearly
independent rows of A or, equivalently, the dimension of the row space of A.

Recall, on the other hand, that the columns of an m	 n matrix A may be viewed as vectors in Km and
that the column space of A, written colsp(A), is the subspace of Km spanned by the columns of A.
Although m may not be equal to n—that is, the rows and columns of A may belong to different vector
spaces—we have the following fundamental result.

THEOREM 4.18: The maximum number of linearly independent rows of any matrix A is equal to the
maximum number of linearly independent columns of A. Thus, the dimension of the
row space of A is equal to the dimension of the column space of A.

Accordingly, one could restate the above definition of the rank of A using columns instead of rows.
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Basis-Finding Problems

This subsection shows how an echelon form of any matrix A gives us the solution to certain problems
about A itself. Specifically, let A and B be the following matrices, where the echelon matrix B (whose
pivots are circled) is an echelon form of A:

A ¼

1 2 1 3 1 2
2 5 5 6 4 5
3 7 6 11 6 9
1 5 10 8 9 9
2 6 8 11 9 12

266664
377775 and B ¼

�1 2 1 3 1 2
0 �1 3 1 2 1
0 0 0 �1 1 2
0 0 0 0 0 0
0 0 0 0 0 0

266664
377775

We solve the following four problems about the matrix A, where C1;C2; . . . ;C6 denote its columns:

(a) Find a basis of the row space of A.

(b) Find each column Ck of A that is a linear combination of preceding columns of A.

(c) Find a basis of the column space of A.

(d) Find the rank of A.

(a) We are given that A and B are row equivalent, so they have the same row space. Moreover, B is in
echelon form, so its nonzero rows are linearly independent and hence form a basis of the row space
of B. Thus, they also form a basis of the row space of A. That is,

basis of rowspðAÞ: ð1; 2; 1; 3; 1; 2Þ; ð0; 1; 3; 1; 2; 1Þ; ð0; 0; 0; 1; 1; 2Þ

(b) Let Mk ¼ ½C1;C2; . . . ;Ck �, the submatrix of A consisting of the first k columns of A. Then Mk�1 and
Mk are, respectively, the coefficient matrix and augmented matrix of the vector equation

x1C1 þ x2C2 þ � � � þ xk�1Ck�1 ¼ Ck

Theorem 3.9 tells us that the system has a solution, or, equivalently, Ck is a linear combination of
the preceding columns of A if and only if rankðMkÞ ¼ rankðMk�1Þ, where rankðMkÞ means the
number of pivots in an echelon form of Mk . Now the first k column of the echelon matrix B is also
an echelon form of Mk . Accordingly,

rankðM2Þ ¼ rankðM3Þ ¼ 2 and rankðM4Þ ¼ rankðM5Þ ¼ rankðM6Þ ¼ 3

Thus, C3, C5, C6 are each a linear combination of the preceding columns of A.

(c) The fact that the remaining columns C1, C2, C4 are not linear combinations of their respective
preceding columns also tells us that they are linearly independent. Thus, they form a basis of the
column space of A. That is,

basis of colspðAÞ: ½1; 2; 3; 1; 2�T ; ½2; 5; 7; 5; 6�T ; ½3; 6; 11; 8; 11�T

Observe that C1, C2, C4 may also be characterized as those columns of A that contain the pivots in
any echelon form of A.

(d) Here we see that three possible definitions of the rank of A yield the same value.

(i) There are three pivots in B, which is an echelon form of A.

(ii) The three pivots in B correspond to the nonzero rows of B, which form a basis of the row
space of A.

(iii) The three pivots in B correspond to the columns of A, which form a basis of the column space
of A.

Thus, rankðAÞ ¼ 3.
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