Linear Combinations, Homogeneous Systems

- **3.57.** Write v as a linear combination of u_1, u_2, u_3 , where
 - (a) $v = (4, -9, 2), u_1 = (1, 2, -1), u_2 = (1, 4, 2), u_3 = (1, -3, 2);$
 - (b) $v = (1,3,2), u_1 = (1,2,1), u_2 = (2,6,5), u_3 = (1,7,8);$
 - (c) v = (1,4,6), $u_1 = (1,1,2)$, $u_2 = (2,3,5)$, $u_3 = (3,5,8)$.
- **3.58.** Let $u_1 = (1, 1, 2)$, $u_2 = (1, 3, -2)$, $u_3 = (4, -2, -1)$ in \mathbb{R}^3 . Show that u_1, u_2, u_3 are orthogonal, and write vas a linear combination of u_1, u_2, u_3 , where (a) v = (5, -5, 9), (b) v = (1, -3, 3), (c) v = (1, 1, 1). (Hint: Use Fourier coefficients.)
- **3.59.** Find the dimension and a basis of the general solution W of each of the following homogeneous systems:
- (a) x-y+2z=0 (b) x+2y-3z=0 (c) x+2y+3z+t=0 2x+y+z=0 2x+5y+2z=0 2x+4y+7z+4t=0 3x-y-4z=0 3x+6y+10z+5t=0
- **3.60.** Find the dimension and a basis of the general solution W of each of the following systems:

 - (a) $x_1 + 3x_2 + 2x_3 x_4 x_5 = 0$ $2x_1 + 6x_2 + 5x_3 + x_4 x_5 = 0$ $5x_1 + 15x_2 + 12x_3 + x_4 3x_5 = 0$ (b) $2x_1 4x_2 + 3x_3 x_4 + 2x_5 = 0$ $3x_1 6x_2 + 5x_3 2x_4 + 4x_5 = 0$ $5x_1 10x_2 + 7x_3 3x_4 + 18x_5 = 0$

Echelon Matrices, Row Canonical Form

- **3.61.** Reduce each of the following matrices to echelon form and then to row canonical form:
- (a) $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 4 & 9 \\ 1 & 5 & 12 \end{bmatrix}$, (b) $\begin{bmatrix} 1 & 2 & -1 & 2 & 1 \\ 2 & 4 & 1 & -2 & 5 \\ 3 & 6 & 3 & -7 & 7 \end{bmatrix}$, (c) $\begin{bmatrix} 2 & 4 & 2 & -2 & 5 & 1 \\ 3 & 6 & 2 & 2 & 0 & 4 \\ 4 & 8 & 2 & 6 & -5 & 7 \end{bmatrix}$
- **3.62.** Reduce each of the following matrices to echelon form and then to row canonical form:
 - (a) $\begin{bmatrix} 1 & 2 & 1 & 2 & 1 & 2 \\ 2 & 4 & 3 & 5 & 5 & 7 \\ 3 & 6 & 4 & 9 & 10 & 11 \\ 1 & 2 & 4 & 3 & 6 & 9 \end{bmatrix}$, (b) $\begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 3 & 8 & 12 \\ 0 & 0 & 4 & 6 \\ 0 & 2 & 7 & 10 \end{bmatrix}$, (c) $\begin{bmatrix} 1 & 3 & 1 & 3 \\ 2 & 8 & 5 & 10 \\ 1 & 7 & 7 & 11 \\ 3 & 11 & 7 & 15 \end{bmatrix}$
- **3.63.** Using only 0's and 1's, list all possible 2×2 matrices in row canonical form.
- **3.64.** Using only 0's and 1's, find the number n of possible 3×3 matrices in row canonical form.

Elementary Matrices, Applications

3.65. Let e_1, e_2, e_3 denote, respectively, the following elementary row operations:

"Interchange R_2 and R_3 ," "Replace R_2 by $3R_2$," "Replace R_1 by $2R_3 + R_1$ "

- (a) Find the corresponding elementary matrices E_1, E_2, E_3 .
- (b) Find the inverse operations e_1^{-1} , e_2^{-1} , e_3^{-1} ; their corresponding elementary matrices E_1' , E_2' , E_3' ; and the relationship between them and E_1, E_2, E_3 .
- (c) Describe the corresponding elementary column operations f_1, f_2, f_3 .
- (d) Find elementary matrices F_1, F_2, F_3 corresponding to f_1, f_2, f_3 , and the relationship between them and E_1, E_2, E_3 .

3.66. Express each of the following matrices as a product of elementary matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & -6 \\ -2 & 4 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 6 \\ -3 & -7 \end{bmatrix}, \qquad D = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 3 \\ 3 & 8 & 7 \end{bmatrix}$$

3.67. Find the inverse of each of the following matrices (if it exists):

$$A = \begin{bmatrix} 1 & -2 & -1 \\ 2 & -3 & 1 \\ 3 & -4 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 6 & 1 \\ 3 & 10 & -1 \end{bmatrix}, \qquad C = \begin{bmatrix} 1 & 3 & -2 \\ 2 & 8 & -3 \\ 1 & 7 & 1 \end{bmatrix}, \qquad D = \begin{bmatrix} 2 & 1 & -1 \\ 5 & 2 & -3 \\ 0 & 2 & 1 \end{bmatrix}$$

- **3.68.** Find the inverse of each of the following $n \times n$ matrices:
 - (a) A has 1's on the diagonal and superdiagonal (entries directly above the diagonal) and 0's elsewhere.
 - (b) B has 1's on and above the diagonal, and 0's below the diagonal.

Lu Factorization

3.69. Find the LU factorization of each of the following matrices:

(a)
$$\begin{bmatrix} 1 & -1 & -1 \\ 3 & -4 & -2 \\ 2 & -3 & -2 \end{bmatrix}$$
, (b) $\begin{bmatrix} 1 & 3 & -1 \\ 2 & 5 & 1 \\ 3 & 4 & 2 \end{bmatrix}$, (c) $\begin{bmatrix} 2 & 3 & 6 \\ 4 & 7 & 9 \\ 3 & 5 & 4 \end{bmatrix}$, (d) $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 7 & 10 \end{bmatrix}$

- **3.70.** Let A be the matrix in Problem 3.69(a). Find X_1, X_2, X_3, X_4 , where
 - (a) X_1 is the solution of $AX = B_1$, where $B_1 = (1, 1, 1)^T$.
 - (b) For k > 1, X_k is the solution of $AX = B_k$, where $B_k = B_{k-1} + X_{k-1}$.
- **3.71.** Let B be the matrix in Problem 3.69(b). Find the LDU factorization of B.

Miscellaneous Problems

3.72. Consider the following systems in unknowns x and y:

(a)
$$ax + by = 1$$

 $cx + dy = 0$
(b) $ax + by = 0$
 $cx + dy = 1$

Suppose $D = ad - bc \neq 0$. Show that each system has the unique solution:

(a)
$$x = d/D$$
, $y = -c/D$, (b) $x = -b/D$, $y = a/D$.

- **3.73.** Find the inverse of the row operation "Replace R_i by $kR_i + k'R_i$ ($k' \neq 0$)."
- **3.74.** Prove that deleting the last column of an echelon form (respectively, the row canonical form) of an augmented matrix M = [A, B] yields an echelon form (respectively, the row canonical form) of A.
- **3.75.** Let e be an elementary row operation and E its elementary matrix, and let f be the corresponding elementary column operation and F its elementary matrix. Prove

(a)
$$f(A) = (e(A^T))^T$$
, (b) $F = E^T$, (c) $f(A) = AF$.

- **3.76.** Matrix A is equivalent to matrix B, written $A \approx B$, if there exist nonsingular matrices P and Q such that B = PAQ. Prove that \approx is an equivalence relation; that is,
 - (a) $A \approx A$, (b) If $A \approx B$, then $B \approx A$, (c) If $A \approx B$ and $B \approx C$, then $A \approx C$.

ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: $A = [R_1; R_2; \ldots]$ denotes the matrix A with rows R_1, R_2, \ldots . The elements in each row are separated by commas (which may be omitted with single digits), the rows are separated by semicolons, and 0 denotes a zero row. For example,

$$A = \begin{bmatrix} 1, 2, 3, 4; & 5, -6, 7, -8; & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & -6 & 7 & -8 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- **3.49.** (a) no, (b) yes, (c) linear in x, y, z, not linear in x, y, z, k
- **3.50.** (a) $x = 2/\pi$, (b) no solution, (c) every scalar k is a solution
- **3.51.** (a) (2,-1), (b) no solution, (c) (5,2), (d) (5-2a, a)
- **3.52.** (a) $a \neq \pm 2$, (2,2), (-2,-2), (b) $a \neq \pm 6$, (6,4), (-6,-4), (c) $a \neq \frac{5}{2}$, $(\frac{5}{2},6)$
- **3.53.** (a) $(2, 1, \frac{1}{2})$, (b) no solution, (c) u = (-7a 1, 2a + 2, a).
- **3.54.** (a) (3,-1), (b) u = (-a+2b, 1+2a-2b, a, b), (c) no solution
- **3.55.** (a) $u = (\frac{1}{2}a + 2, a, \frac{1}{2}),$ (b) $u = (\frac{1}{2}(7 5b 4a), a, \frac{1}{2}(1 + b), b)$
- **3.56.** (a) $a \neq \pm 3$, (3,3), (-3,-3), (b) $a \neq 5$ and $a \neq -1$, (5,7), (-1,-5), (c) $a \neq 1$ and $a \neq -2$, (-2,5)
- **3.57.** (a) 2, -1, 3, (b) 6, -3, 1, (c) not possible
- **3.58.** (a) 3, -2, 1, (b) $\frac{2}{3}, -1, \frac{1}{3},$ (c) $\frac{2}{3}, \frac{1}{7}, \frac{1}{21}$
- **3.59.** (a) dim W=1, $u_1=(-1,1,1)$, (b) dim W=0, no basis, (c) dim W=2, $u_1=(-2,1,0,0)$, $u_2=(5,0,-2,1)$
- **3.60.** (a) dim W=3, $u_1=(-3,1,0,0,0)$, $u_2=(7,0,-3,1,0)$, $u_3=(3,0,-1,0,1)$, (b) dim W=2, $u_1=(2,1,0,0,0)$, $u_2=(5,0,-5,-3,1)$
- **3.61.** (a) $[1,0,-\frac{1}{2};\ 0,1,\frac{5}{2};\ 0],$ (b) $[1,2,0,0,2;\ 0,0,1,0,5;\ 0,0,0,1,2],$ (c) $[1,2,0,4,-5,3;\ 0,0,1,-5,\frac{15}{2},-\frac{5}{2};\ 0]$
- **3.62.** (a) [1,2,0,0,-4,-2; 0,0,1,0,1,2; 0,0,0,1,2,1; 0], (b) [0,1,0,0; 0,0,1,0; 0,0,0,1; 0], (c) [1,0,0,4; 0,1,0,-1; 0,0,1,2; 0]
- **3.63.** 5: [1, 0; 0, 1], [1, 1; 0, 0], [1, 0; 0, 0], [0, 1; 0, 0], 0
- **3.64.** 16
- **3.65.** (a) [1,0,0; 0,0,1; 0,1,0], [1,0,0; 0,3,0; 0,0,1], [1,0,2; 0,1,0; 0,0,1], (b) $R_2 \leftrightarrow R_3; \frac{1}{3}R_2 \rightarrow R_2; -2R_3 + R_1 \rightarrow R_1; \text{ each } E_i' = E_i^{-1},$ (c) $C_2 \leftrightarrow C_3, 3C_2 \rightarrow C_2, 2C_3 + C_1 \rightarrow C_1,$ (d) each $F_i = E_i^T.$
- **3.66.** $A = \begin{bmatrix} 1,0; & 3,1 \end{bmatrix} \begin{bmatrix} 1,0; & 0,-2 \end{bmatrix} \begin{bmatrix} 1,2; & 0,1 \end{bmatrix}, \quad B \text{ is not invertible,}$ $C = \begin{bmatrix} 1,0; & -\frac{3}{2},1 \end{bmatrix} \begin{bmatrix} 1,0; & 0,2 \end{bmatrix} \begin{bmatrix} 1,6; & 0,1 \end{bmatrix} \begin{bmatrix} 2,0; & 0,1 \end{bmatrix},$ $D = \begin{bmatrix} 100; & 010; & 301 \end{bmatrix} \begin{bmatrix} 100; & 010; & 021 \end{bmatrix} \begin{bmatrix} 100; & 013; & 001 \end{bmatrix} \begin{bmatrix} 120; & 010; & 001 \end{bmatrix}$
- **3.67.** $A^{-1} = \begin{bmatrix} -8, 12, -5; & -5, 7, -3; & 1, -2, 1 \end{bmatrix}$, B has no inverse, $C^{-1} = \begin{bmatrix} \frac{29}{2}, -\frac{17}{2}, \frac{7}{2}; & -\frac{5}{2}, \frac{3}{2}, -\frac{1}{2}; & 3, -2, 1 \end{bmatrix}$, $D^{-1} = \begin{bmatrix} 8, -3, -1; & -5, 2, 1; & 10, -4, -1 \end{bmatrix}$

CHAPTER 3 Systems of Linear Equations

- **3.68.** $A^{-1} = \begin{bmatrix} 1, -1, 1, -1, \dots; & 0, 1, -1, 1, -1, \dots; & 0, 0, 1, -1, 1, -1, 1, \dots; & \dots; & 0, \dots 0, 1 \end{bmatrix}$ B^{-1} has 1's on diagonal, -1's on superdiagonal, and 0's elsewhere.
- **3.69.** (a) [100; 310; 211][1, -1, -1; 0, -1, 1; 0, 0, -1],
 - (b) [100; 210; 351][1, 3, -1; 0, -1, 3; 0, 0, -10],
 - (c) $[100; 210; \frac{3}{2}, \frac{1}{2}, 1][2, 3, 6; 0, 1, -3; 0, 0, -\frac{7}{2}],$
 - (d) There is no $L\bar{U}$ decomposition.
- **3.70.** $X_1 = \begin{bmatrix} 1, 1, -1 \end{bmatrix}^T$, $B_2 = \begin{bmatrix} 2, 2, 0 \end{bmatrix}^T$, $X_2 = \begin{bmatrix} 6, 4, 0 \end{bmatrix}^T$, $B_3 = \begin{bmatrix} 8, 6, 0 \end{bmatrix}^T$, $X_3 = \begin{bmatrix} 22, 16, -2 \end{bmatrix}^T$, $B_4 = \begin{bmatrix} 30, 22, -2 \end{bmatrix}^T$, $X_4 = \begin{bmatrix} 86, 62, -6 \end{bmatrix}^T$
- **3.71.** $B = \begin{bmatrix} 100; & 210; & 351 \end{bmatrix} \operatorname{diag}(1, -1, -10) \begin{bmatrix} 1, 3, -1; & 0, 1, 3; & 0, 0, 1 \end{bmatrix}$
- **3.73.** Replace R_i by $-kR_i + (1/k')R_i$.
- **3.75.** (c) $f(A) = (e(A^T))^T = (EA^T)^T = (A^T)^T E^T = AF$
- **3.76.** (a) A = IAI. (b) If A = PBQ, then $B = P^{-1}AQ^{-1}$.
 - (c) If A = PBQ and B = P'CQ', then A = (PP')C(Q'Q).

Vector Spaces

4.1 Introduction

This chapter introduces the underlying structure of linear algebra, that of a finite-dimensional vector space. The definition of a vector space V, whose elements are called *vectors*, involves an arbitrary field K, whose elements are called *scalars*. The following notation will be used (unless otherwise stated or implied):

V the given vector space

u, v, w vectors in V

K the given number field

a, b, c, or k scalars in K

Almost nothing essential is lost if the reader assumes that K is the real field \mathbf{R} or the complex field \mathbf{C} . The reader might suspect that the real line \mathbf{R} has "dimension" one, the cartesian plane \mathbf{R}^2 has "dimension" two, and the space \mathbf{R}^3 has "dimension" three. This chapter formalizes the notion of "dimension," and this definition will agree with the reader's intuition.

Throughout this text, we will use the following set notation:

 $a \in A$ Element a belongs to set A

 $a, b \in A$ Elements a and b belong to A

 $\forall x \in A$ For every x in A

 $\exists x \in A$ There exists an x in A

 $A \subseteq B$ A is a subset of B

 $A \cap B$ Intersection of A and B

 $A \cup B$ Union of A and B

∅ Empty set

4.2 Vector Spaces

The following defines the notion of a vector space V where K is the field of scalars.

DEFINITION: Let V be a nonempty set with two operations:

- (i) **Vector Addition:** This assigns to any $u, v \in V$ a sum u + v in V.
- (ii) **Scalar Multiplication:** This assigns to any $u \in V$, $k \in K$ a product $ku \in V$.

Then V is called a *vector space* (over the field K) if the following axioms hold for any vectors $u, v, w \in V$: