app——— CHAPTER 3 Systems of Linear Equations

Linear Combinations, Homogeneous Systems
3.57. Write v as a linear combination of u, u,, u;, where
@ v=4,-92), u =(1,2,-1), u,=(1,4,2), u3=(1,-3,2);
b)) v=(1,3,2), u; =(1,2,1), u,=1(2,6,5), uy=(1,7,8);
(¢ v=(1,4,6), u; =(1,1,2), u,=1(2,3,5), u3;=(3,5,8).
3.58. Letu; = (1,1,2), uy = (1,3,-2), u3 = (4, —2,—1) in R®. Show that u,,u,, u; are orthogonal, and write v
as a linear combination of u,,u,, us;, where (a) v = (5,-5,9), (b) v=(1,-3,3), (c) v=(1,1,1).

(Hint: Use Fourier coefficients.)

3.59. Find the dimension and a basis of the general solution W of each of the following homogeneous systems:

(a x—y+2z=0 ®) x+2y—-3z=0 ) x+2y+ 3z+ t=0
2x+y+ z=0 2x+5+2z2=0 2x+4y+ Tz+4t=0
Sx+y+4z=0 3x— y—4z=0 3x+6y+10z4+5¢t=0

3.60. Find the dimension and a basis of the general solution W of each of the following systems:

(a) xl + 3)C2 + Z)C3 — X4 — x5 = O (b) 2x1 — 4x2 —+ SX:; — X4 + 2.XS = 0
2x1 4+ 6x, 4+ Sx34+x,— x5=0 3x; — 6xp +5x3 —2x4+ 4x5=0
Sxy 4+ 15x, +12x3 +x4 —3x5 =0 Sx; — 10xy + 7x3 — 3x4 + 18x5 =0

Echelon Matrices, Row Canonical Form

3.61. Reduce each of the following matrices to echelon form and then to row canonical form:

11 2 12 -1 21 2 4 2 -2 51
@ |2 4 9|, ® |24 1 =25, @© [362 2 04
15 12 36 3 -7 7 482 6 =57

3.62. Reduce each of the following matrices to echelon form and then to row canonical form:

1212 1 2 01 2 3 1 31 3
2 435 5 7 0 3 8 I2 2 8 5 10
@ 135 649100 1l ® jooa 6/ © |1 771
1 243 6 9 0 2 7 10 3011 7 15

3.63. Using only 0’s and 1’s, list all possible 2 x 2 matrices in row canonical form.

3.64. Using only 0’s and 1’s, find the number 7 of possible 3 x 3 matrices in row canonical form.

Elementary Matrices, Applications
3.65. Let ¢}, e,,e3 denote, respectively, the following elementary row operations:

“Interchange R, and R;,” “Replace R, by 3R,,” “Replace R, by 2R; + R,”

(a) Find the corresponding elementary matrices E|, E,, E;.

(b) Find the inverse operations ey !, e5!, e5!; their corresponding elementary matrices E}, E}, E5; and the
relationship between them and E|, E,, E;.

(c) Describe the corresponding elementary column operations f, f5, 5.

(d) Find elementary matrices F, F,, F; corresponding to f|,>,/3, and the relationship between them and
El ) E2 ) E3 .
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3.66. Express each of the following matrices as a product of elementary matrices:

1 20
1 2 3 -6 2 6
S AR
3 4 -2 4 -3 -7 38 7
3.67. Find the inverse of each of the following matrices (if it exists):

1 -2 -1 1 2 3 1 3 =2 2 1 -1
A=12 -3 1], B=1|2 6 1, cC=1(2 8 -3{, D=5 2 -3
3 -4 4 3 10 —1 1 7 1 0 2 1

3.68. Find the inverse of each of the following »n x » matrices:

(a) A has 1’s on the diagonal and superdiagonal (entries directly above the diagonal) and 0’s elsewhere.
(b) B has 1’s on and above the diagonal, and 0’s below the diagonal.

Lu Factorization

3.69. Find the LU factorization of each of the following matrices:

1 -1 -1 1 3 -1 236 1 2 3
@ |3 —4 2,0 |25 1|, |4 7 9|.@ |2 4 7
2 -3 -2 3.4 2 35 4 3.7 10

3.70. Let A4 be the matrix in Problem 3.69(a). Find X, X,, X3, X,, where
(a) X, is the solution of AX = B,, where B, = (1,1, l)T.
(b) For k> 1, X, is the solution of AX = B, where B, = B;_; +X;_;.

3.71. Let B be the matrix in Problem 3.69(b). Find the LDU factorization of B.

Miscellaneous Problems

3.72. Consider the following systems in unknowns x and y:

ax+by=1
ex+dy=0

ax+by=0
ex+dy =1

(a) (b)

Suppose D = ad — bc # 0. Show that each system has the unique solution:
(@) x=d/D,y=—c/D, (b) x=-b/D,y=a/D.
3.73. Find the inverse of the row operation ‘‘Replace R; by kR; + k'R, (k' # 0).”

3.74. Prove that deleting the last column of an echelon form (respectively, the row canonical form) of an
augmented matrix M = [4, B] yields an echelon form (respectively, the row canonical form) of 4.

3.75. Let e be an elementary row operation and £ its elementary matrix, and let / be the corresponding elementary
column operation and F its elementary matrix. Prove

@ f(4)=(eaT))", (b) F=E", (c) f(4)=AF.

3.76. Matrix 4 is equivalent to matrix B, written A =~ B, if there exist nonsingular matrices P and Q such that
B = PAQ. Prove that = is an equivalence relation; that is,

(a) A=A, (b) IfA~B,thenB~A4, (¢c) IfA=~Band B~ C, then 4 =~ C.
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ANSWERS TO SUPPLEMENTARY PROBLEMS

Notation: A = [R;; Ry; ...] denotes the matrix 4 with rows R, R,, ... . The elements in each row are separated
by commas (which may be omitted with single digits), the rows are separated by semicolons, and 0 denotes a zero
row. For example,

[1 2 3 4]

A=11,2,3,4, 5,-6,7,-8; 0=|5 -6 7 -8

0 0 0 O

3.49. (a) no, (b) yes, (c) linear in x,y,z, not linear in x,y,z, k

3.50. (a) x=2/m, (b) no solution, (c) every scalar k is a solution

3.51. (a) (2,-1), (b) no solution, (©) (5,2), (d (5-2a, a)

3.52. (a) a#=+2, (2,2), (-2,-2), (b) a#+6, (6,4), (—6,—4), () a#3, (3,6
3.53. (a) (2,1,}), (b) no solution, ) u=(-7a-1, 2a+2, a).

3.54. (a) (3,-1), b) u=(—a+2b, 142a—2b, a, b), (¢) no solution

355. (a) u=@a+2, a, ), (b)) u=}(7-5b-4a), a, 3(1+0), b)

3.56. (a) a#+3, (3,3), (-3,-3), (b) a#5anda# -1, (57), (—1,-5),
(¢c) a#1landa+# -2, (-2,5)

3.57. (a) 2,-1,3, (b) 6,-3,1, (c) not possible

3.58. (a) 3’_271’ (b) %’_1’%’ (C) %7%7%

3.59. (a) dmW=1, u =(-1,1,1), (b) dim W = 0, no basis,
© dimW =2, u =(-2,1,0,0), u,=(50-2,1)

3.60. () dim W =3, u =(=3,1,0,0,0), u, =(7,0,—3,1,0), us=(3,0,-1,0,1),
(b) dim W =2, u =(2,1,0,0,0), u,=(5,0,—5,—3,1)

36L (@ [1,0,—1; 01,3 0, (b [1,2,0,0,2; 0,0,1,0,5 0,0,0,1,2],
[1327 747_573; 070717_57%7_%; 0]
3.62. (a) ,—2; 0,0,1,0,1,2; 0,0,0,1,2,1; 0],
; 0,0,1,0; 0,0,0,1; 0], (¢) [1,0,0,4; 0,1,0,—1; 0,0,1,2; 0]

3.63. 5:[1,0; 0,1],[1,1; 0,0}, [1,0; 0,0],[0,1; 0,0],0
3.64. 16
3.65. (a) [1,0,0; 0,0,1; 0,1,0],[1,0,0; 0,3,0; 0,0,1],[1,0,2; 0,1,0; 0,0,1],

(b) Ry« Ry; 1Ry —Ry;  —2R;+R; —Ry; eachE]=E",
(C) C2 — C3,3C2 — C272C3 + Cl — Cl’ (d) each Fi :ElT

3.66. 4=[1,0; 3,1][1,0; 0,-2][1,2; 0,1], B is not invertible,
C:[LO; 7%7]][]70; 0,2“1,6; 071][2>0§ 071]’
D =[100; 010; 301][100; 010; 021]J[100; O013; 001][120; 010; 001]
3.67. A'=[-8,12,-5; —5,7,-3; 1,-2/1], B has no inverse,
Cil :[229a g7%7 _%agy_%a 37_271}7 Dil:[87_37_1; _572717 107_4a_1]



CHAPTER 3 Systems of Linear Equations —@»

3.68. A '=[1,-1,1,-1,...; 0,1,—-1,1,—1,...; 0,0,1,—=1,1,—1,1,...; ...; ...; 0,...0,1]
B~! has 1’s on diagonal, —1’s on superdiagonal, and 0’s elsewhere.

3.69. (a) [100; 310; 211][1,—1,—1; 0,—1,1; 0,0,—1],
(b) [100; 210; 351][1,3,—1; 0,—1,3; 0,0,—10],
(c) [100; 210; %,%, 1][2,3,6; 0,1,-3 0,0,—%],
(d) There is no LU decomposition.

3.70. x, =[1,1,-1]", B,=1[2,2,0]", X,=1[6,4,0", B;=1[8,6,0", X;=[22,16,-2]",
B, =[30,22,-2]", X, =[86,62,—6]"

3.71. B=[100; 210; 351]diag(1,—1,—10)[1,3,—1; 0,1,3; 0,0,1]

3.73. Replace R; by —kR; + (1/K')R,.

3.75. (¢) f(4) = (e(d”))" = (EA")" = (4T)"ET = 4F

3.76. (a) A=14I. (b) If A= PBQ,then B=P '407".
(c) If 4=PBQ and B=P'CQ/, then 4 = (PP')C(Q'0).



Vector Spaces

4.1 Introduction

This chapter introduces the underlying structure of linear algebra, that of a finite-dimensional vector
space. The definition of a vector space V, whose elements are called vectors, involves an arbitrary field K,
whose elements are called scalars. The following notation will be used (unless otherwise stated or
implied):
vV the given vector space
U, v, w vectors in V
K the given number field
a,b,c, ork scalars in K
Almost nothing essential is lost if the reader assumes that K is the real field R or the complex field C.
The reader might suspect that the real line R has ‘‘dimension’’ one, the cartesian plane R? has
““dimension”” two, and the space R* has ‘‘dimension’’ three. This chapter formalizes the notion of
““‘dimension,”” and this definition will agree with the reader’s intuition.
Throughout this text, we will use the following set notation:
acA Element a belongs to set 4
a,beA Elements a and b belong to 4
Vx €4 For every x in 4
Ixe4 There exists an x in 4
ACB A is a subset of B
ANB Intersection of 4 and B
AUB Union of 4 and B
) Empty set

4.2 Vector Spaces

The following defines the notion of a vector space V' where K is the field of scalars.

DEFINITION: Let 7 be a nonempty set with two operations:
(1) Vector Addition: This assigns to any u,v € V a sum u+ v in V.

(i) Scalar Multiplication: This assigns to any u € V, k € K a product ku € V.

Then V is called a vector space (over the field K) if the following axioms hold for any
vectors u, v,w € V:

@



