
Systems of Linear
Equations

3.1 Introduction

Systems of linear equations play an important and motivating role in the subject of linear algebra. In fact,
many problems in linear algebra reduce to finding the solution of a system of linear equations. Thus, the
techniques introduced in this chapter will be applicable to abstract ideas introduced later. On the other
hand, some of the abstract results will give us new insights into the structure and properties of systems of
linear equations.

All our systems of linear equations involve scalars as both coefficients and constants, and such scalars
may come from any number field K. There is almost no loss in generality if the reader assumes that all
our scalars are real numbers—that is, that they come from the real field R.

3.2 Basic Definitions, Solutions

This section gives basic definitions connected with the solutions of systems of linear equations. The
actual algorithms for finding such solutions will be treated later.

Linear Equation and Solutions

A linear equation in unknowns x1; x2; . . . ; xn is an equation that can be put in the standard form

a1x1 þ a2x2 þ � � � þ anxn ¼ b ð3:1Þ
where a1; a2; . . . ; an, and b are constants. The constant ak is called the coefficient of xk , and b is called the
constant term of the equation.

A solution of the linear equation (3.1) is a list of values for the unknowns or, equivalently, a vector u in
Kn, say

x1 ¼ k1; x2 ¼ k2; . . . ; xn ¼ kn or u ¼ ðk1; k2; . . . ; knÞ
such that the following statement (obtained by substituting ki for xi in the equation) is true:

a1k1 þ a2k2 þ � � � þ ankn ¼ b

In such a case we say that u satisfies the equation.

Remark: Equation (3.1) implicitly assumes there is an ordering of the unknowns. In order to avoid
subscripts, we will usually use x; y for two unknowns; x; y; z for three unknowns; and x; y; z; t for four
unknowns; they will be ordered as shown.
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EXAMPLE 3.1 Consider the following linear equation in three unknowns x; y; z:

xþ 2y� 3z ¼ 6

We note that x ¼ 5; y ¼ 2; z ¼ 1, or, equivalently, the vector u ¼ ð5; 2; 1Þ is a solution of the equation. That is,

5þ 2ð2Þ � 3ð1Þ ¼ 6 or 5þ 4� 3 ¼ 6 or 6 ¼ 6

On the other hand, w ¼ ð1; 2; 3Þ is not a solution, because on substitution, we do not get a true statement:

1þ 2ð2Þ � 3ð3Þ ¼ 6 or 1þ 4� 9 ¼ 6 or � 4 ¼ 6

System of Linear Equations

A system of linear equations is a list of linear equations with the same unknowns. In particular, a system
of m linear equations L1; L2; . . . ;Lm in n unknowns x1; x2; . . . ; xn can be put in the standard form

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2 ð3:2Þ
:::::::::::::::::::::::::::::::::::::::::::::::::::

am1x1 þ am2x2 þ � � � þ amnxn ¼ bm

where the aij and bi are constants. The number aij is the coefficient of the unknown xj in the equation Li,
and the number bi is the constant of the equation Li.

The system (3.2) is called an m	 n (read: m by n) system. It is called a square system if m ¼ n—that
is, if the number m of equations is equal to the number n of unknowns.

The system (3.2) is said to be homogeneous if all the constant terms are zero—that is, if b1 ¼ 0,
b2 ¼ 0; . . . ; bm ¼ 0. Otherwise the system is said to be nonhomogeneous.

A solution (or a particular solution) of the system (3.2) is a list of values for the unknowns or,
equivalently, a vector u in Kn, which is a solution of each of the equations in the system. The set of all
solutions of the system is called the solution set or the general solution of the system.

EXAMPLE 3.2 Consider the following system of linear equations:

x1 þ x2 þ 4x3 þ 3x4 ¼ 5

2x1 þ 3x2 þ x3 � 2x4 ¼ 1

x1 þ 2x2 � 5x3 þ 4x4 ¼ 3

It is a 3	 4 system because it has three equations in four unknowns. Determine whether (a) u ¼ ð�8; 6; 1; 1Þ and
(b) v ¼ ð�10; 5; 1; 2Þ are solutions of the system.

(a) Substitute the values of u in each equation, obtaining

�8þ 6þ 4ð1Þ þ 3ð1Þ ¼ 5 or �8þ 6þ 4þ 3 ¼ 5 or 5 ¼ 5
2ð�8Þ þ 3ð6Þ þ 1� 2ð1Þ ¼ 1 or �16þ 18þ 1� 2 ¼ 1 or 1 ¼ 1
�8þ 2ð6Þ � 5ð1Þ þ 4ð1Þ ¼ 3 or �8þ 12� 5þ 4 ¼ 3 or 3 ¼ 3

Yes, u is a solution of the system because it is a solution of each equation.

(b) Substitute the values of v into each successive equation, obtaining

�10þ 5þ 4ð1Þ þ 3ð2Þ ¼ 5 or �10þ 5þ 4þ 6 ¼ 5 or 5 ¼ 5
2ð�10Þ þ 3ð5Þ þ 1� 2ð2Þ ¼ 1 or �20þ 15þ 1� 4 ¼ 1 or �8 ¼ 1

No, v is not a solution of the system, because it is not a solution of the second equation. (We do not need to
substitute v into the third equation.)
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The system (3.2) of linear equations is said to be consistent if it has one or more solutions, and it is
said to be inconsistent if it has no solution. If the field K of scalars is infinite, such as when K is the real
field R or the complex field C, then we have the following important result.

THEOREM 3.1: Suppose the field K is infinite. Then any system l of linear equations has
(i) a unique solution, (ii) no solution, or (iii) an infinite number of solutions.

This situation is pictured in Fig. 3-1. The three cases have a geometrical description when the system
l consists of two equations in two unknowns (Section 3.4).

Augmented and Coefficient Matrices of a System

Consider again the general system (3.2) of m equations in n unknowns. Such a system has associated with
it the following two matrices:

M ¼
a11 a12 . . . a1n b1
a21 a22 . . . a2n b2
:::::::::::::::::::::::::::::::::::::::
am1 am2 . . . amn bn

2664
3775 and A ¼

a11 a12 . . . a1n
a21 a22 . . . a2n
:::::::::::::::::::::::::::::::
am1 am2 . . . amn

2664
3775

The first matrix M is called the augmented matrix of the system, and the second matrix A is called the
coefficient matrix.

The coefficient matrix A is simply the matrix of coefficients, which is the augmented matrixM without
the last column of constants. Some texts write M ¼ ½A;B� to emphasize the two parts of M , where B
denotes the column vector of constants. The augmented matrix M and the coefficient matrix A of the
system in Example 3.2 are as follows:

M ¼
1 1 4 3 5
2 3 1 �2 1
1 2 �5 4 3

24 35 and A ¼
1 1 4 3
2 3 1 �2
1 2 �5 4

24 35
As expected, A consists of all the columns of M except the last, which is the column of constants.

Clearly, a system of linear equations is completely determined by its augmented matrix M , and vice
versa. Specifically, each row of M corresponds to an equation of the system, and each column of M
corresponds to the coefficients of an unknown, except for the last column, which corresponds to the
constants of the system.

Degenerate Linear Equations

A linear equation is said to be degenerate if all the coefficients are zero—that is, if it has the form

0x1 þ 0x2 þ � � � þ 0xn ¼ b ð3:3Þ

Figure 3-1
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The solution of such an equation depends only on the value of the constant b. Specifically,

(i) If b 6¼ 0, then the equation has no solution.

(ii) If b ¼ 0, then every vector u ¼ ðk1; k2; . . . ; knÞ in Kn is a solution.

The following theorem applies.

THEOREM 3.2: Let l be a system of linear equations that contains a degenerate equation L, say with
constant b.

(i) If b 6¼ 0, then the system l has no solution.

(ii) If b ¼ 0, then L may be deleted from the system without changing the solution
set of the system.

Part (i) comes from the fact that the degenerate equation has no solution, so the system has no solution.
Part (ii) comes from the fact that every element in Kn is a solution of the degenerate equation.

Leading Unknown in a Nondegenerate Linear Equation

Now let L be a nondegenerate linear equation. This means one or more of the coefficients of L are not
zero. By the leading unknown of L, we mean the first unknown in L with a nonzero coefficient. For
example, x3 and y are the leading unknowns, respectively, in the equations

0x1 þ 0x2 þ 5x3 þ 6x4 þ 0x5 þ 8x6 ¼ 7 and 0xþ 2y� 4z ¼ 5

We frequently omit terms with zero coefficients, so the above equations would be written as

5x3 þ 6x4 þ 8x6 ¼ 7 and 2y� 4z ¼ 5

In such a case, the leading unknown appears first.

3.3 Equivalent Systems, Elementary Operations

Consider the system (3.2) of m linear equations in n unknowns. Let L be the linear equation obtained by
multiplying the m equations by constants c1; c2; . . . ; cm, respectively, and then adding the resulting
equations. Specifically, let L be the following linear equation:

ðc1a11 þ � � � þ cmam1Þx1 þ � � � þ ðc1a1n þ � � � þ cmamnÞxn ¼ c1b1 þ � � � þ cmbm

Then L is called a linear combination of the equations in the system. One can easily show (Problem 3.43)
that any solution of the system (3.2) is also a solution of the linear combination L.

EXAMPLE 3.3 Let L1, L2, L3 denote, respectively, the three equations in Example 3.2. Let L be the
equation obtained by multiplying L1, L2, L3 by 3;�2; 4, respectively, and then adding. Namely,

3L1: 3x1 þ 3x2 þ 12x3 þ 9x4 ¼ 15
�2L2: �4x1 � 6x2 � 2x3 þ 4x4 ¼ �2
4L1: 4x1 þ 8x2 � 20x3 þ 16x4 ¼ 12

ðSumÞ L: 3x1 þ 5x2 � 10x3 þ 29x4 ¼ 25
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Then L is a linear combination of L1, L2, L3. As expected, the solution u ¼ ð�8; 6; 1; 1Þ of the system is also a
solution of L. That is, substituting u in L, we obtain a true statement:

3ð�8Þ þ 5ð6Þ � 10ð1Þ þ 29ð1Þ ¼ 25 or �24þ 30� 10þ 29 ¼ 25 or 9 ¼ 9

The following theorem holds.

THEOREM 3.3: Two systems of linear equations have the same solutions if and only if each equation in
each system is a linear combination of the equations in the other system.

Two systems of linear equations are said to be equivalent if they have the same solutions. The next
subsection shows one way to obtain equivalent systems of linear equations.

Elementary Operations

The following operations on a system of linear equations L1; L2; . . . ;Lm are called elementary operations.

½E1� Interchange two of the equations. We indicate that the equations Li and Lj are interchanged by
writing:

‘‘Interchange Li and Lj’’ or ‘‘Li  ! Lj’’

½E2� Replace an equation by a nonzero multiple of itself. We indicate that equation Li is replaced by kLi
(where k 6¼ 0) by writing

‘‘Replace Li by kLi’’ or ‘‘kLi ! Li’’

½E3� Replace an equation by the sum of a multiple of another equation and itself. We indicate that
equation Lj is replaced by the sum of kLi and Lj by writing

‘‘Replace Lj by kLi þ Lj’’ or ‘‘kLi þ Lj ! Lj’’

The arrow ! in ½E2� and ½E3� may be read as ‘‘replaces.’’

The main property of the above elementary operations is contained in the following theorem (proved
in Problem 3.45).

THEOREM 3.4: Suppose a system of m of linear equations is obtained from a system l of linear
equations by a finite sequence of elementary operations. Thenm andl have the same
solutions.

Remark: Sometimes (say to avoid fractions when all the given scalars are integers) we may apply
½E2� and ½E3� in one step; that is, we may apply the following operation:

½E� Replace equation Lj by the sum of kLi and k 0Lj (where k0 6¼ 0), written

‘‘Replace Lj by kLi þ k 0Lj’’ or ‘‘kLi þ k 0Lj ! Lj’’

We emphasize that in operations ½E3� and [E], only equation Lj is changed.

Gaussian elimination, our main method for finding the solution of a given system of linear
equations, consists of using the above operations to transform a given system into an equivalent
system whose solution can be easily obtained.

The details of Gaussian elimination are discussed in subsequent sections.

3.4 Small Square Systems of Linear Equations

This section considers the special case of one equation in one unknown, and two equations in two
unknowns. These simple systems are treated separately because their solution sets can be described
geometrically, and their properties motivate the general case.
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Linear Equation in One Unknown

The following simple basic result is proved in Problem 3.5.

THEOREM 3.5: Consider the linear equation ax ¼ b.

(i) If a 6¼ 0, then x ¼ b=a is a unique solution of ax ¼ b.

(ii) If a ¼ 0, but b 6¼ 0, then ax ¼ b has no solution.

(iii) If a ¼ 0 and b ¼ 0, then every scalar k is a solution of ax ¼ b.

EXAMPLE 3.4 Solve (a) 4x� 1 ¼ xþ 6, (b) 2x� 5� x ¼ xþ 3, (c) 4þ x� 3 ¼ 2xþ 1� x.

(a) Rewrite the equation in standard form obtaining 3x ¼ 7. Then x ¼ 7
3 is the unique solution [Theorem 3.5(i)].

(b) Rewrite the equation in standard form, obtaining 0x ¼ 8. The equation has no solution [Theorem 3.5(ii)].

(c) Rewrite the equation in standard form, obtaining 0x ¼ 0. Then every scalar k is a solution [Theorem 3.5(iii)].

System of Two Linear Equations in Two Unknowns (2	2 System)

Consider a system of two nondegenerate linear equations in two unknowns x and y, which can be put in
the standard form

A1xþ B1y ¼ C1

A2xþ B2y ¼ C2

ð3:4Þ

Because the equations are nondegenerate, A1 and B1 are not both zero, and A2 and B2 are not both zero.
The general solution of the system (3.4) belongs to one of three types as indicated in Fig. 3-1. If R is

the field of scalars, then the graph of each equation is a line in the plane R2 and the three types may be
described geometrically as pictured in Fig. 3-2. Specifically,

(1) The system has exactly one solution.
Here the two lines intersect in one point [Fig. 3-2(a)]. This occurs when the lines have distinct
slopes or, equivalently, when the coefficients of x and y are not proportional:

A1

A2

6¼ B1

B2

or; equivalently; A1B2 � A2B1 6¼ 0

For example, in Fig. 3-2(a), 1=3 6¼ �1=2.
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(2) The system has no solution.
Here the two lines are parallel [Fig. 3-2(b)]. This occurs when the lines have the same slopes but
different y intercepts, or when

A1

A2

¼ B1

B2

6¼ C1

C2

For example, in Fig. 3-2(b), 1=2 ¼ 3=6 6¼ �3=8.
(3) The system has an infinite number of solutions.

Here the two lines coincide [Fig. 3-2(c)]. This occurs when the lines have the same slopes and same
y intercepts, or when the coefficients and constants are proportional,

A1

A2

¼ B1

B2

¼ C1

C2

For example, in Fig. 3-2(c), 1=2 ¼ 2=4 ¼ 4=8.

Remark: The following expression and its value is called a determinant of order two:

A1 B1

A2 B2

���� ���� ¼ A1B2 � A2B1

Determinants will be studied in Chapter 8. Thus, the system (3.4) has a unique solution if and only if the
determinant of its coefficients is not zero. (We show later that this statement is true for any square system
of linear equations.)

Elimination Algorithm

The solution to system (3.4) can be obtained by the process of elimination, whereby we reduce the system
to a single equation in only one unknown. Assuming the system has a unique solution, this elimination
algorithm has two parts.

ALGORITHM 3.1: The input consists of two nondegenerate linear equations L1 and L2 in two
unknowns with a unique solution.

Part A. (Forward Elimination) Multiply each equation by a constant so that the resulting coefficients of
one unknown are negatives of each other, and then add the two equations to obtain a new
equation L that has only one unknown.

Part B. (Back-Substitution) Solve for the unknown in the new equation L (which contains only one
unknown), substitute this value of the unknown into one of the original equations, and then
solve to obtain the value of the other unknown.

Part A of Algorithm 3.1 can be applied to any system even if the system does not have a unique
solution. In such a case, the new equation L will be degenerate and Part B will not apply.

EXAMPLE 3.5 (Unique Case). Solve the system

L1: 2x� 3y ¼ �8
L2: 3xþ 4y ¼ 5

The unknown x is eliminated from the equations by forming the new equation L ¼ �3L1 þ 2L2. That is, we
multiply L1 by �3 and L2 by 2 and add the resulting equations as follows:

�3L1: �6xþ 9y ¼ 24
2L2: 6xþ 8y ¼ 10

Addition : 17y ¼ 34
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We now solve the new equation for y, obtaining y ¼ 2. We substitute y ¼ 2 into one of the original equations, say
L1, and solve for the other unknown x, obtaining

2x� 3ð2Þ ¼ �8 or 2x� 6 ¼ 8 or 2x ¼ �2 or x ¼ �1
Thus, x ¼ �1, y ¼ 2, or the pair u ¼ ð�1; 2Þ is the unique solution of the system. The unique solution is expected,
because 2=3 6¼ �3=4. [Geometrically, the lines corresponding to the equations intersect at the point ð�1; 2Þ.]

EXAMPLE 3.6 (Nonunique Cases)

(a) Solve the system

L1: x� 3y ¼ 4

L2: �2xþ 6y ¼ 5

We eliminated x from the equations by multiplying L1 by 2 and adding it to L2—that is, by forming the new
equation L ¼ 2L1 þ L2. This yields the degenerate equation

0xþ 0y ¼ 13

which has a nonzero constant b ¼ 13. Thus, this equation and the system have no solution. This is expected,
because 1=ð�2Þ ¼ �3=6 6¼ 4=5. (Geometrically, the lines corresponding to the equations are parallel.)

(b) Solve the system

L1: x� 3y ¼ 4

L2: �2xþ 6y ¼ �8
We eliminated x from the equations by multiplying L1 by 2 and adding it to L2—that is, by forming the new

equation L ¼ 2L1 þ L2. This yields the degenerate equation

0xþ 0y ¼ 0

where the constant term is also zero. Thus, the system has an infinite number of solutions, which correspond to
the solutions of either equation. This is expected, because 1=ð�2Þ ¼ �3=6 ¼ 4=ð�8Þ. (Geometrically, the lines
corresponding to the equations coincide.)

To find the general solution, let y ¼ a, and substitute into L1 to obtain

x� 3a ¼ 4 or x ¼ 3aþ 4

Thus, the general solution of the system is

x ¼ 3aþ 4; y ¼ a or u ¼ ð3aþ 4; aÞ
where a (called a parameter) is any scalar.

3.5 Systems in Triangular and Echelon Forms

The main method for solving systems of linear equations, Gaussian elimination, is treated in Section 3.6.
Here we consider two simple types of systems of linear equations: systems in triangular form and the
more general systems in echelon form.

Triangular Form

Consider the following system of linear equations, which is in triangular form:

2x1 � 3x2 þ 5x3 � 2x4 ¼ 9
5x2 � x3 þ 3x4 ¼ 1

7x3 � x4 ¼ 3
2x4 ¼ 8
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That is, the first unknown x1 is the leading unknown in the first equation, the second unknown x2 is the
leading unknown in the second equation, and so on. Thus, in particular, the system is square and each
leading unknown is directly to the right of the leading unknown in the preceding equation.

Such a triangular system always has a unique solution, which may be obtained by back-substitution.
That is,

(1) First solve the last equation for the last unknown to get x4 ¼ 4.

(2) Then substitute this value x4 ¼ 4 in the next-to-last equation, and solve for the next-to-last unknown
x3 as follows:

7x3 � 4 ¼ 3 or 7x3 ¼ 7 or x3 ¼ 1

(3) Now substitute x3 ¼ 1 and x4 ¼ 4 in the second equation, and solve for the second unknown x2 as
follows:
5x2 � 1þ 12 ¼ 1 or 5x2 þ 11 ¼ 1 or 5x2 ¼ �10 or x2 ¼ �2

(4) Finally, substitute x2 ¼ �2, x3 ¼ 1, x4 ¼ 4 in the first equation, and solve for the first unknown x1 as
follows:
2x1 þ 6þ 5� 8 ¼ 9 or 2x1 þ 3 ¼ 9 or 2x1 ¼ 6 or x1 ¼ 3

Thus, x1 ¼ 3 , x2 ¼ �2, x3 ¼ 1, x4 ¼ 4, or, equivalently, the vector u ¼ ð3;�2; 1; 4Þ is the unique
solution of the system.

Remark: There is an alternative form for back-substitution (which will be used when solving a
system using the matrix format). Namely, after first finding the value of the last unknown, we substitute
this value for the last unknown in all the preceding equations before solving for the next-to-last
unknown. This yields a triangular system with one less equation and one less unknown. For example, in
the above triangular system, we substitute x4 ¼ 4 in all the preceding equations to obtain the triangular
system

2x1 � 3x2 þ 5x3 ¼ 17
5x2 � x3 ¼ �1

7x3 ¼ 7

We then repeat the process using the new last equation. And so on.

Echelon Form, Pivot and Free Variables

The following system of linear equations is said to be in echelon form:

2x1 þ 6x2 � x3 þ 4x4 � 2x5 ¼ 15
x3 þ 2x4 þ 2x5 ¼ 5

3x4 � 9x5 ¼ 6

That is, no equation is degenerate and the leading unknown in each equation other than the first is to the
right of the leading unknown in the preceding equation. The leading unknowns in the system, x1, x3, x4,
are called pivot variables, and the other unknowns, x2 and x5, are called free variables.

Generally speaking, an echelon system or a system in echelon form has the following form:

a11x1 þ a12x2 þ a13x3 þ a14x4 þ � � � þ a1nxn ¼ b1
a2j2xj2 þ a2;j2þ1xj2þ1 þ � � � þ a2nxn ¼ b2

::::::::::::::::::::::::::::::::::::::::::::::
arjr xjr þ � � � þ arnxn ¼ br

ð3:5Þ

where 1 < j2 < � � � < jr and a11, a2j2 ; . . . ; arjr are not zero. The pivot variables are x1, xj2 ; . . . ; xjr . Note
that r � n.

The solution set of any echelon system is described in the following theorem (proved in Problem 3.10).
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THEOREM 3.6: Consider a system of linear equations in echelon form, say with r equations in n
unknowns. There are two cases:

(i) r ¼ n. That is, there are as many equations as unknowns (triangular form). Then
the system has a unique solution.

(ii) r < n. That is, there are more unknowns than equations. Then we can arbitrarily
assign values to the n� r free variables and solve uniquely for the r pivot
variables, obtaining a solution of the system.

Suppose an echelon system contains more unknowns than equations. Assuming the field K is infinite,
the system has an infinite number of solutions, because each of the n� r free variables may be assigned
any scalar.

The general solution of a system with free variables may be described in either of two equivalent ways,
which we illustrate using the above echelon system where there are r ¼ 3 equations and n ¼ 5 unknowns.
One description is called the ‘‘Parametric Form’’ of the solution, and the other description is called the
‘‘Free-Variable Form.’’

Parametric Form

Assign arbitrary values, called parameters, to the free variables x2 and x5, say x2 ¼ a and x5 ¼ b, and
then use back-substitution to obtain values for the pivot variables x1, x3, x5 in terms of the parameters a
and b. Specifically,

(1) Substitute x5 ¼ b in the last equation, and solve for x4:

3x4 � 9b ¼ 6 or 3x4 ¼ 6þ 9b or x4 ¼ 2þ 3b

(2) Substitute x4 ¼ 2þ 3b and x5 ¼ b into the second equation, and solve for x3:

x3 þ 2ð2þ 3bÞ þ 2b ¼ 5 or x3 þ 4þ 8b ¼ 5 or x3 ¼ 1� 8b

(3) Substitute x2 ¼ a, x3 ¼ 1� 8b, x4 ¼ 2þ 3b, x5 ¼ b into the first equation, and solve for x1:

2x1 þ 6a� ð1� 8bÞ þ 4ð2þ 3bÞ � 2b ¼ 15 or x1 ¼ 4� 3a� 9b

Accordingly, the general solution in parametric form is

x1 ¼ 4� 3a� 9b; x2 ¼ a; x3 ¼ 1� 8b; x4 ¼ 2þ 3b; x5 ¼ b

or, equivalently, v ¼ ð4� 3a� 9b; a; 1� 8b; 2þ 3b; bÞ where a and b are arbitrary numbers.

Free-Variable Form

Use back-substitution to solve for the pivot variables x1, x3, x4 directly in terms of the free variables x2
and x5. That is, the last equation gives x4 ¼ 2þ 3x5. Substitution in the second equation yields
x3 ¼ 1� 8x5, and then substitution in the first equation yields x1 ¼ 4� 3x2 � 9x5. Accordingly,

x1 ¼ 4� 3x2 � 9x5; x2 ¼ free variable; x3 ¼ 1� 8x5; x4 ¼ 2þ 3x5; x5 ¼ free variable

or, equivalently,

v ¼ ð4� 3x2 � 9x5; x2; 1� 8x5; 2þ 3x5; x5Þ
is the free-variable form for the general solution of the system.

We emphasize that there is no difference between the above two forms of the general solution, and the
use of one or the other to represent the general solution is simply a matter of taste.

Remark: A particular solution of the above system can be found by assigning any values to the free
variables and then solving for the pivot variables by back-substitution. For example, setting x2 ¼ 1 and
x5 ¼ 1, we obtain

x4 ¼ 2þ 3 ¼ 5; x3 ¼ 1� 8 ¼ �7; x1 ¼ 4� 3� 9 ¼ �8
Thus, u ¼ ð�8; 1; 7; 5; 1Þ is the particular solution corresponding to x2 ¼ 1 and x5 ¼ 1.
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3.6 Gaussian Elimination

The main method for solving the general system (3.2) of linear equations is called Gaussian elimination.
It essentially consists of two parts:

Part A. (Forward Elimination) Step-by-step reduction of the system yielding either a degenerate
equation with no solution (which indicates the system has no solution) or an equivalent simpler
system in triangular or echelon form.

Part B. (Backward Elimination) Step-by-step back-substitution to find the solution of the simpler
system.

Part B has already been investigated in Section 3.4. Accordingly, we need only give the algorithm for
Part A, which is as follows.

ALGORITHM 3.2 for (Part A): Input: The m	 n system (3.2) of linear equations.

ELIMINATION STEP: Find the first unknown in the system with a nonzero coefficient (which now
must be x1).

(a) Arrange so that a11 6¼ 0. That is, if necessary, interchange equations so that the first unknown x1
appears with a nonzero coefficient in the first equation.

(b) Use a11 as a pivot to eliminate x1 from all equations except the first equation. That is, for i > 1:

(1) Set m ¼ �ai1=a11; (2) Replace Li by mL1 þ Li

The system now has the following form:

a11x1 þ a12x2 þ a13x3 þ � � � þ a1nxn ¼ b1
a2j2xj2 þ � � � þ a2nxn ¼ b2
:::::::::::::::::::::::::::::::::::::::
amj2xj2 þ � � � þ amnxn ¼ bn

where x1 does not appear in any equation except the first, a11 6¼ 0, and xj2 denotes the first
unknown with a nonzero coefficient in any equation other than the first.

(c) Examine each new equation L.

(1) If L has the form 0x1 þ 0x2 þ � � � þ 0xn ¼ b with b 6¼ 0, then

STOP

The system is inconsistent and has no solution.

(2) If L has the form 0x1 þ 0x2 þ � � � þ 0xn ¼ 0 or if L is a multiple of another equation, then delete
L from the system.

RECURSION STEP: Repeat the Elimination Step with each new ‘‘smaller’’ subsystem formed by all
the equations excluding the first equation.

OUTPUT: Finally, the system is reduced to triangular or echelon form, or a degenerate equation with
no solution is obtained indicating an inconsistent system.

The next remarks refer to the Elimination Step in Algorithm 3.2.

(1) The following number m in (b) is called the multiplier:

m ¼ � ai1
a11
¼ � coefficient to be deleted

pivot

(2) One could alternatively apply the following operation in (b):

Replace Li by � ai1L1 þ a11Li

This would avoid fractions if all the scalars were originally integers.
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Gaussian Elimination Example

Here we illustrate in detail Gaussian elimination using the following system of linear equations:

L1: x� 3y� 2z ¼ 6
L2: 2x� 4y� 3z ¼ 8
L3: �3xþ 6yþ 8z ¼ �5

Part A. We use the coefficient 1 of x in the first equation L1 as the pivot in order to eliminate x from
the second equation L2 and from the third equation L3. This is accomplished as follows:

(1) Multiply L1 by the multiplier m ¼ �2 and add it to L2; that is, ‘‘Replace L2 by �2L1 þ L2.’’

(2) Multiply L1 by the multiplier m ¼ 3 and add it to L3; that is, ‘‘Replace L3 by 3L1 þ L3.’’

These steps yield

ð�2ÞL1: �2xþ 6yþ 4z ¼ �12
L2: 2x� 4y� 3z ¼ 8

New L2: 2yþ z ¼ �4

3L1: 3x� 9y� 6z ¼ 18
L3: �3xþ 6yþ 8z ¼ �5

New L3: �3yþ 2z ¼ 13

Thus, the original system is replaced by the following system:

L1: x� 3y� 2z ¼ 6
L2: 2y þ z ¼ �4
L3: �3yþ 2z ¼ 13

(Note that the equations L2 and L3 form a subsystem with one less equation and one less unknown than
the original system.)

Next we use the coefficient 2 of y in the (new) second equation L2 as the pivot in order to eliminate y
from the (new) third equation L3. This is accomplished as follows:

(3) Multiply L2 by the multiplier m ¼ 3
2 and add it to L3; that is, ‘‘Replace L3 by 3

2 L2 þ L3:’’
(Alternately, ‘‘Replace L3 by 3L2 þ 2L3,’’ which will avoid fractions.)

This step yields

3
2 L2: 3yþ 3

2 z ¼ �6
L3: �3yþ 2z ¼ 13

New L3:
7
2 z ¼ 7

or

3L2: 6yþ 3z ¼ �12
2L3: �6yþ 4z ¼ 26

New L3: 7z ¼ 14

Thus, our system is replaced by the following system:

L1: x� 3y� 2z ¼ 6
L2: 2yþ z ¼ �4
L3: 7z ¼ 14 ðor 7

2 z ¼ 7Þ
The system is now in triangular form, so Part A is completed.

Part B. The values for the unknowns are obtained in reverse order, z; y; x, by back-substitution.
Specifically,

(1) Solve for z in L3 to get z ¼ 2.

(2) Substitute z ¼ 2 in L2, and solve for y to get y ¼ �3.
(3) Substitute y ¼ �3 and z ¼ 2 in L1, and solve for x to get x ¼ 1.

Thus, the solution of the triangular system and hence the original system is as follows:

x ¼ 1; y ¼ �3; z ¼ 2 or; equivalently; u ¼ ð1;�3; 2Þ:
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Condensed Format

The Gaussian elimination algorithm involves rewriting systems of linear equations. Sometimes we can
avoid excessive recopying of some of the equations by adopting a ‘‘condensed format.’’ This format for
the solution of the above system follows:

Number Equation Operation
ð1Þ x� 3y� 2z ¼ 6
ð2Þ 2x� 4y� 3z ¼ 8
ð3Þ �3xþ 6yþ 8z ¼ �5
ð20Þ 2yþ z ¼ �4 Replace L2 by �2L1 þ L2
ð30Þ � 3yþ 2z ¼ 13 Replace L3 by 3L1 þ L3
ð300Þ 7z ¼ 14 Replace L3 by 3L2 þ 2L3

That is, first we write down the number of each of the original equations. As we apply the Gaussian
elimination algorithm to the system, we only write down the new equations, and we label each new equation
using the same number as the original corresponding equation, but with an added prime. (After each new
equation, we will indicate, for instructional purposes, the elementary operation that yielded the new equation.)

The system in triangular form consists of equations (1), ð20Þ, and ð300Þ, the numbers with the largest
number of primes. Applying back-substitution to these equations again yields x ¼ 1, y ¼ �3, z ¼ 2.

Remark: If two equations need to be interchanged, say to obtain a nonzero coefficient as a pivot,
then this is easily accomplished in the format by simply renumbering the two equations rather than
changing their positions.

EXAMPLE 3.7 Solve the following system: xþ 2y� 3z ¼ 1

2xþ 5y� 8z ¼ 4

3xþ 8y� 13z ¼ 7

We solve the system by Gaussian elimination.

Part A. (Forward Elimination) We use the coefficient 1 of x in the first equation L1 as the pivot in order to
eliminate x from the second equation L2 and from the third equation L3. This is accomplished as follows:

(1) Multiply L1 by the multiplier m ¼ �2 and add it to L2; that is, ‘‘Replace L2 by �2L1 þ L2.’’

(2) Multiply L1 by the multiplier m ¼ �3 and add it to L3; that is, ‘‘Replace L3 by �3L1 þ L3.’’

The two steps yield

xþ 2y� 3z ¼ 1
y� 2z ¼ 2

2y� 4z ¼ 4
or

xþ 2y� 3z ¼ 1
y� 2z ¼ 2

(The third equation is deleted, because it is a multiple of the second equation.) The system is now in echelon form
with free variable z.

Part B. (Backward Elimination) To obtain the general solution, let the free variable z ¼ a, and solve for x and y
by back-substitution. Substitute z ¼ a in the second equation to obtain y ¼ 2þ 2a. Then substitute z ¼ a and
y ¼ 2þ 2a into the first equation to obtain

xþ 2ð2þ 2aÞ � 3a ¼ 1 or xþ 4þ 4a� 3a ¼ 1 or x ¼ �3� a

Thus, the following is the general solution where a is a parameter:

x ¼ �3� a; y ¼ 2þ 2a; z ¼ a or u ¼ ð�3� a; 2þ 2a; aÞ
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EXAMPLE 3.8 Solve the following system:

x1 þ 3x2 � 2x3 þ 5x4 ¼ 4

2x1 þ 8x2 � x3 þ 9x4 ¼ 9

3x1 þ 5x2 � 12x3 þ 17x4 ¼ 7

We use Gaussian elimination.

Part A. (Forward Elimination) We use the coefficient 1 of x1 in the first equation L1 as the pivot in order to
eliminate x1 from the second equation L2 and from the third equation L3. This is accomplished by the following
operations:

(1) ‘‘Replace L2 by �2L1 þ L2’’ and (2) ‘‘Replace L3 by �3L1 þ L3’’

These yield:

x1 þ 3x2 � 2x3 þ 5x4 ¼ 4

2x2 þ 3x3 � x4 ¼ 1

� 4x2 � 6x3 þ 2x4 ¼ �5

We now use the coefficient 2 of x2 in the second equation L2 as the pivot and the multiplier m ¼ 2 in order to
eliminate x2 from the third equation L3. This is accomplished by the operation ‘‘Replace L3 by 2L2 þ L3,’’ which
then yields the degenerate equation

0x1 þ 0x2 þ 0x3 þ 0x4 ¼ �3
This equation and, hence, the original system have no solution:

DO NOT CONTINUE

Remark 1: As in the above examples, Part A of Gaussian elimination tells us whether or not the
system has a solution—that is, whether or not the system is consistent. Accordingly, Part B need never be
applied when a system has no solution.

Remark 2: If a system of linear equations has more than four unknowns and four equations, then it
may be more convenient to use the matrix format for solving the system. This matrix format is discussed
later.

3.7 Echelon Matrices, Row Canonical Form, Row Equivalence

One way to solve a system of linear equations is by working with its augmented matrix M rather than the
system itself. This section introduces the necessary matrix concepts for such a discussion. These
concepts, such as echelon matrices and elementary row operations, are also of independent interest.

Echelon Matrices

A matrix A is called an echelon matrix, or is said to be in echelon form, if the following two conditions
hold (where a leading nonzero element of a row of A is the first nonzero element in the row):

(1) All zero rows, if any, are at the bottom of the matrix.

(2) Each leading nonzero entry in a row is to the right of the leading nonzero entry in the preceding row.

That is, A ¼ ½aij� is an echelon matrix if there exist nonzero entries

a1j1 ; a2j2 ; . . . ; arjr ; where j1 < j2 < � � � < jr
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with the property that

aij ¼ 0 for
ðiÞ i � r; j < ji
ðiiÞ i > r

	
The entries a1j1 , a2j2 ; . . . ; arjr , which are the leading nonzero elements in their respective rows, are called
the pivots of the echelon matrix.

EXAMPLE 3.9 The following is an echelon matrix whose pivots have been circled:

A ¼

0 2 3 4 5 9 0 7
0 0 0 3 4 1 2 5
0 0 0 0 0 5 7 2
0 0 0 0 0 0 8 6
0 0 0 0 0 0 0 0

266664
377775

Observe that the pivots are in columns C2;C4;C6;C7, and each is to the right of the one above. Using the above
notation, the pivots are

a1j1 ¼ 2; a2j2 ¼ 3; a3j3 ¼ 5; a4j4 ¼ 8

where j1 ¼ 2, j2 ¼ 4, j3 ¼ 6, j4 ¼ 7. Here r ¼ 4.

Row Canonical Form

A matrix A is said to be in row canonical form (or row-reduced echelon form) if it is an echelon matrix—
that is, if it satisfies the above properties (1) and (2), and if it satisfies the following additional two
properties:

(3) Each pivot (leading nonzero entry) is equal to 1.

(4) Each pivot is the only nonzero entry in its column.

The major difference between an echelon matrix and a matrix in row canonical form is that in an
echelon matrix there must be zeros below the pivots [Properties (1) and (2)], but in a matrix in row
canonical form, each pivot must also equal 1 [Property (3)] and there must also be zeros above the pivots
[Property (4)].

The zero matrix 0 of any size and the identity matrix I of any size are important special examples of
matrices in row canonical form.

EXAMPLE 3.10

The following are echelon matrices whose pivots have been circled:

2 3 2 0 4 5 �6
0 0 0 1 �3 2 0
0 0 0 0 0 6 2
0 0 0 0 0 0 0

2664
3775; 1 2 3

0 0 1
0 0 0

24 35; 0 1 3 0 0 4
0 0 0 1 0 �3
0 0 0 0 1 2

24 35

The third matrix is also an example of a matrix in row canonical form. The second matrix is not in row canonical
form, because it does not satisfy property (4); that is, there is a nonzero entry above the second pivot in the third
column. The first matrix is not in row canonical form, because it satisfies neither property (3) nor property (4); that
is, some pivots are not equal to 1 and there are nonzero entries above the pivots.
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Elementary Row Operations

Suppose A is a matrix with rows R1;R2; . . . ;Rm. The following operations on A are called elementary row
operations.

½E1� (Row Interchange): Interchange rows Ri and Rj. This may be written as

‘‘Interchange Ri and Rj’’ or ‘‘Ri  ! Rj’’

½E2� (Row Scaling): Replace row Ri by a nonzero multiple kRi of itself. This may be written as

‘‘Replace Ri by kRi ðk 6¼ 0Þ’’ or ‘‘kRi ! Ri’’

½E3� (Row Addition): Replace row Rj by the sum of a multiple kRi of a row Ri and itself. This may be
written as

‘‘Replace Rj by kRi þ Rj’’ or ‘‘kRi þ Rj ! Rj’’

The arrow ! in E2 and E3 may be read as ‘‘replaces.’’

Sometimes (say to avoid fractions when all the given scalars are integers) we may apply ½E2� and ½E3�
in one step; that is, we may apply the following operation:

½E� Replace Rj by the sum of a multiple kRi of a row Ri and a nonzero multiple k0Rj of itself. This may
be written as

‘‘Replace Rj by kRi þ k 0Rj ðk 0 6¼ 0Þ’’ or ‘‘kRi þ k 0Rj ! Rj’’

We emphasize that in operations ½E3� and ½E � only row Rj is changed.

Row Equivalence, Rank of a Matrix

A matrix A is said to be row equivalent to a matrix B, written

A � B

if B can be obtained from A by a sequence of elementary row operations. In the case that B is also an
echelon matrix, B is called an echelon form of A.

The following are two basic results on row equivalence.

THEOREM 3.7: Suppose A ¼ ½aij� and B ¼ ½bij� are row equivalent echelon matrices with respective
pivot entries

a1j1 ; a2j2 ; . . . arjr and b1k1 ; b2k2 ; . . . bsks

Then A and B have the same number of nonzero rows—that is, r ¼ s—and the pivot
entries are in the same positions—that is, j1 ¼ k1, j2 ¼ k2; . . . ; jr ¼ kr.

THEOREM 3.8: Every matrix A is row equivalent to a unique matrix in row canonical form.

The proofs of the above theorems will be postponed to Chapter 4. The unique matrix in Theorem 3.8
is called the row canonical form of A.

Using the above theorems, we can now give our first definition of the rank of a matrix.

DEFINITION: The rank of a matrix A, written rankðAÞ, is equal to the number of pivots in an echelon
form of A.

The rank is a very important property of a matrix and, depending on the context in which the
matrix is used, it will be defined in many different ways. Of course, all the definitions lead to the
same number.

The next section gives the matrix format of Gaussian elimination, which finds an echelon form of any
matrix A (and hence the rank of A), and also finds the row canonical form of A.
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