
Basic properties of vectors under the operations of vector addition and scalar multiplication are
described in the following theorem.

THEOREM 1.1: For any vectors u; v;w in Rn and any scalars k; k0 in R,

(i) ðuþ vÞ þ w ¼ uþ ðv þ wÞ, (v) kðuþ vÞ ¼ kuþ kv,

(ii) uþ 0 ¼ u; (vi) ðk þ k0Þu ¼ kuþ k0u,

(iii) uþ ð�uÞ ¼ 0; (vii) (kk’)u=k(k’u);

(iv) uþ v ¼ v þ u, (viii) 1u ¼ u.

We postpone the proof of Theorem 1.1 until Chapter 2, where it appears in the context of matrices
(Problem 2.3).

Suppose u and v are vectors in Rn for which u ¼ kv for some nonzero scalar k in R. Then u is called a
multiple of v. Also, u is said to be in the same or opposite direction as v according to whether k > 0 or
k < 0.

1.4 Dot (Inner) Product

Consider arbitrary vectors u and v in Rn; say,

u ¼ ða1; a2; . . . ; anÞ and v ¼ ðb1; b2; . . . ; bnÞ
The dot product or inner product or scalar product of u and v is denoted and defined by

u � v ¼ a1b1 þ a2b2 þ � � � þ anbn

That is, u � v is obtained by multiplying corresponding components and adding the resulting products.
The vectors u and v are said to be orthogonal (or perpendicular) if their dot product is zero—that is, if
u � v ¼ 0.

EXAMPLE 1.3

(a) Let u ¼ ð1;�2; 3Þ, v ¼ ð4; 5;�1Þ, w ¼ ð2; 7; 4Þ. Then,
u � v ¼ 1ð4Þ � 2ð5Þ þ 3ð�1Þ ¼ 4� 10� 3 ¼ �9
u � w ¼ 2� 14þ 12 ¼ 0; v � w ¼ 8þ 35� 4 ¼ 39

Thus, u and w are orthogonal.

(b) Let u ¼
2
3
�4

24 35 and v ¼
3
�1
�2

24 35. Then u � v ¼ 6� 3þ 8 ¼ 11.

(c) Suppose u ¼ ð1; 2; 3; 4Þ and v ¼ ð6; k;�8; 2Þ. Find k so that u and v are orthogonal.

First obtain u � v ¼ 6þ 2k � 24þ 8 ¼ �10þ 2k. Then set u � v ¼ 0 and solve for k:

�10þ 2k ¼ 0 or 2k ¼ 10 or k ¼ 5

Basic properties of the dot product in Rn (proved in Problem 1.13) follow.

THEOREM 1.2: For any vectors u; v;w in Rn and any scalar k in R:

(i) ðuþ vÞ � w ¼ u � wþ v � w; (iii) u � v ¼ v � u,
(ii) ðkuÞ � v ¼ kðu � vÞ, (iv) u � u � 0; and u � u ¼ 0 iff u ¼ 0.

Note that (ii) says that we can ‘‘take k out’’ from the first position in an inner product. By (iii) and (ii),

u � ðkvÞ ¼ ðkvÞ � u ¼ kðv � uÞ ¼ kðu � vÞ
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That is, we can also ‘‘take k out’’ from the second position in an inner product.
The space Rn with the above operations of vector addition, scalar multiplication, and dot product is

usually called Euclidean n-space.

Norm (Length) of a Vector

The norm or length of a vector u in Rn, denoted by kuk, is defined to be the nonnegative square root of
u � u. In particular, if u ¼ ða1; a2; . . . ; anÞ, then

kuk ¼ ffiffiffiffiffiffiffiffiffi
u � up ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ � � � þ a2n

q
That is, kuk is the square root of the sum of the squares of the components of u. Thus, kuk � 0, and
kuk ¼ 0 if and only if u ¼ 0.

A vector u is called a unit vector if kuk ¼ 1 or, equivalently, if u � u ¼ 1. For any nonzero vector v in
Rn, the vector

v̂ ¼ 1

kvk v ¼
v

kvk
is the unique unit vector in the same direction as v. The process of finding v̂ from v is called normalizing v.

EXAMPLE 1.4

(a) Suppose u ¼ ð1;�2;�4; 5; 3Þ. To find kuk, we can first find kuk2 ¼ u � u by squaring each component of u and
adding, as follows:

kuk2 ¼ 12 þ ð�2Þ2 þ ð�4Þ2 þ 52 þ 32 ¼ 1þ 4þ 16þ 25þ 9 ¼ 55

Then kuk ¼ ffiffiffiffiffi
55
p

.

(b) Let v ¼ ð1;�3; 4; 2Þ and w ¼ ð12 ;� 1
6 ;

5
6 ;

1
6Þ. Then

kvk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9þ 16þ 4
p ¼

ffiffiffiffiffi
30
p

and kwk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

36
þ 1

36
þ 25

36
þ 1

36

r
¼

ffiffiffiffiffi
36

36

r
¼

ffiffiffi
1
p
¼ 1

Thus w is a unit vector, but v is not a unit vector. However, we can normalize v as follows:

v̂ ¼ v

kvk ¼
1ffiffiffiffiffi
30
p ;

�3ffiffiffiffiffi
30
p ;

4ffiffiffiffiffi
30
p ;

2ffiffiffiffiffi
30
p

� �
This is the unique unit vector in the same direction as v.

The following formula (proved in Problem 1.14) is known as the Schwarz inequality or Cauchy–
Schwarz inequality. It is used in many branches of mathematics.

THEOREM 1.3 (Schwarz): For any vectors u; v in Rn, ju � vj � kukkvk.

Using the above inequality, we also prove (Problem 1.15) the following result known as the ‘‘triangle
inequality’’ or Minkowski’s inequality.

THEOREM 1.4 (Minkowski): For any vectors u; v in Rn, kuþ vk � kuk þ kvk.

Distance, Angles, Projections

The distance between vectors u ¼ ða1; a2; . . . ; anÞ and v ¼ ðb1; b2; . . . ; bnÞ in Rn is denoted and defined
by

dðu; vÞ ¼ ku� vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � b1Þ2 þ ða2 � b2Þ2 þ � � � þ ðan � bnÞ2

q
One can show that this definition agrees with the usual notion of distance in the Euclidean plane R2 or
space R3.
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The angle y between nonzero vectors u; v in Rn is defined by

cos y ¼ u � v
kukkvk

This definition is well defined, because, by the Schwarz inequality (Theorem 1.3),

�1 � u � v
kukkvk � 1

Note that if u � v ¼ 0, then y ¼ 90� (or y ¼ p=2). This then agrees with our previous definition of
orthogonality.

The projection of a vector u onto a nonzero vector v is the vector denoted and defined by

projðu; vÞ ¼ u � v
kvk2 v ¼

u � v
v � v v

We show below that this agrees with the usual notion of vector projection in physics.

EXAMPLE 1.5

(a) Suppose u ¼ ð1;�2; 3Þ and v ¼ ð2; 4; 5Þ. Then

dðu; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2Þ2 þ ð�2� 4Þ2 þ ð3� 5Þ2

q
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 36þ 4
p ¼

ffiffiffiffiffi
41
p

To find cos y, where y is the angle between u and v, we first find

u � v ¼ 2� 8þ 15 ¼ 9; kuk2 ¼ 1þ 4þ 9 ¼ 14; kvk2 ¼ 4þ 16þ 25 ¼ 45

Then

cos y ¼ u � v
kukkvk ¼

9ffiffiffiffiffi
14
p ffiffiffiffiffi

45
p

Also,

projðu; vÞ ¼ u � v
kvk2 v ¼

9

45
ð2; 4; 5Þ ¼ 1

5
ð2; 4; 5Þ ¼ 2

5
;
4

5
; 1

� �
(b) Consider the vectors u and v in Fig. 1-2(a) (with respective endpoints A and B). The (perpendicular) projection

of u onto v is the vector u* with magnitude

ku*k ¼ kuk cos y ¼ kuk u � v
kukvk ¼

u � v
kvk

To obtain u*, we multiply its magnitude by the unit vector in the direction of v, obtaining

u* ¼ ku*k v

kvk ¼
u � v
kvk

v

kvk ¼
u � v
kvk2 v

This is the same as the above definition of projðu; vÞ.

Figure 1-2
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1.5 Located Vectors, Hyperplanes, Lines, Curves in Rn

This section distinguishes between an n-tuple PðaiÞ � Pða1; a2; . . . ; anÞ viewed as a point in Rn and an
n-tuple u ¼ ½c1; c2; . . . ; cn� viewed as a vector (arrow) from the origin O to the point Cðc1; c2; . . . ; cnÞ.

Located Vectors

Any pair of points AðaiÞ and BðbiÞ in Rn defines the located vector or directed line segment from A to B,

written AB
�!

. We identify AB
�!

with the vector

u ¼ B� A ¼ ½b1 � a1; b2 � a2; . . . ; bn � an�
because AB

�!
and u have the same magnitude and direction. This is pictured in Fig. 1-2(b) for the

points Aða1; a2; a3Þ and Bðb1; b2; b3Þ in R3 and the vector u ¼ B� A which has the endpoint
Pðb1 � a1, b2 � a2, b3 � a3Þ.

Hyperplanes

A hyperplane H in Rn is the set of points ðx1; x2; . . . ; xnÞ that satisfy a linear equation

a1x1 þ a2x2 þ � � � þ anxn ¼ b

where the vector u ¼ ½a1; a2; . . . ; an� of coefficients is not zero. Thus a hyperplane H in R2 is a line, and a
hyperplane H in R3 is a plane. We show below, as pictured in Fig. 1-3(a) for R3, that u is orthogonal to
any directed line segment PQ

�!
, where Pð piÞ and QðqiÞ are points in H : [For this reason, we say that u is

normal to H and that H is normal to u:]

Because Pð piÞ and QðqiÞ belong to H ; they satisfy the above hyperplane equation—that is,

a1 p1 þ a2 p2 þ � � � þ an pn ¼ b and a1q1 þ a2q2 þ � � � þ anqn ¼ b

v ¼ PQ
�! ¼ Q� P ¼ ½q1 � p1; q2 � p2; . . . ; qn � pn�Let

Then

u � v ¼ a1ðq1 � p1Þ þ a2ðq2 � p2Þ þ � � � þ anðqn � pnÞ
¼ ða1q1 þ a2q2 þ � � � þ anqnÞ � ða1 p1 þ a2 p2 þ � � � þ an pnÞ ¼ b� b ¼ 0

Thus v ¼ PQ
�!

is orthogonal to u; as claimed.

Figure 1-3
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Lines in Rn

The line L in Rn passing through the point Pðb1; b2; . . . ; bnÞ and in the direction of a nonzero vector
u ¼ ½a1; a2; . . . ; an� consists of the points X ðx1; x2; . . . ; xnÞ that satisfy

X ¼ Pþ tu or

x1 ¼ a1t þ b1
x2 ¼ a2t þ b2
::::::::::::::::::::
xn ¼ ant þ bn

or LðtÞ ¼ ðait þ biÞ

8>><>>:
where the parameter t takes on all real values. Such a line L in R3 is pictured in Fig. 1-3(b).

EXAMPLE 1.6

(a) Let H be the plane in R3 corresponding to the linear equation 2x� 5yþ 7z ¼ 4. Observe that Pð1; 1; 1Þ and
Qð5; 4; 2Þ are solutions of the equation. Thus P and Q and the directed line segment

v ¼ PQ
�! ¼ Q� P ¼ ½5� 1; 4� 1; 2� 1� ¼ ½4; 3; 1�

lie on the plane H . The vector u ¼ ½2;�5; 7� is normal to H , and, as expected,

u � v ¼ ½2;�5; 7� � ½4; 3; 1� ¼ 8� 15þ 7 ¼ 0

That is, u is orthogonal to v.

(b) Find an equation of the hyperplane H in R4 that passes through the point Pð1; 3;�4; 2Þ and is normal to the
vector u ¼ ½4;�2; 5; 6�.

The coefficients of the unknowns of an equation of H are the components of the normal vector u; hence, the
equation of H must be of the form

4x1 � 2x2 þ 5x3 þ 6x4 ¼ k

Substituting P into this equation, we obtain

4ð1Þ � 2ð3Þ þ 5ð�4Þ þ 6ð2Þ ¼ k or 4� 6� 20þ 12 ¼ k or k ¼ �10

Thus, 4x1 � 2x2 þ 5x3 þ 6x4 ¼ �10 is the equation of H .

(c) Find the parametric representation of the line L in R4 passing through the point Pð1; 2; 3;�4Þ and in the
direction of u ¼ ½5; 6;�7; 8�. Also, find the point Q on L when t ¼ 1.

Substitution in the above equation for L yields the following parametric representation:

x1 ¼ 5t þ 1; x2 ¼ 6t þ 2; x3 ¼ �7t þ 3; x4 ¼ 8t � 4

or, equivalently,

LðtÞ ¼ ð5t þ 1; 6t þ 2;�7t þ 3; 8t � 4Þ

Note that t ¼ 0 yields the point P on L. Substitution of t ¼ 1 yields the point Qð6; 8;�4; 4Þ on L.

Curves in Rn

Let D be an interval (finite or infinite) on the real line R. A continuous function F:D! Rn is a curve in
Rn. Thus, to each point t 2 D there is assigned the following point in Rn:

FðtÞ ¼ ½F1ðtÞ;F2ðtÞ; . . . ;FnðtÞ�
Moreover, the derivative (if it exists) of FðtÞ yields the vector

VðtÞ ¼ dFðtÞ
dt
¼ dF1ðtÞ

dt
;
dF2ðtÞ
dt

; . . . ;
dFnðtÞ
dt

� �
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which is tangent to the curve. Normalizing VðtÞ yields

TðtÞ ¼ VðtÞ
kVðtÞk

Thus, TðtÞ is the unit tangent vector to the curve. (Unit vectors with geometrical significance are often
presented in bold type.)

EXAMPLE 1.7 Consider the curve FðtÞ ¼ ½sin t; cos t; t� in R3. Taking the derivative of FðtÞ [or each component of
FðtÞ] yields

VðtÞ ¼ ½cos t;� sin t; 1�
which is a vector tangent to the curve. We normalize VðtÞ. First we obtain

kV ðtÞk2 ¼ cos2 t þ sin2 t þ 1 ¼ 1þ 1 ¼ 2

Then the unit tangent vection TðtÞ to the curve follows:

TðtÞ ¼ V ðtÞ
kV ðtÞk ¼

cos tffiffiffi
2
p ;

� sin tffiffiffi
2
p ;

1ffiffiffi
2
p

� �

1.6 Vectors in R3 (Spatial Vectors), ijk Notation

Vectors in R3, called spatial vectors, appear in many applications, especially in physics. In fact, a special
notation is frequently used for such vectors as follows:

i ¼ ½1; 0; 0� denotes the unit vector in the x direction:

j ¼ ½0; 1; 0� denotes the unit vector in the y direction:

k ¼ ½0; 0; 1� denotes the unit vector in the z direction:

Then any vector u ¼ ½a; b; c� in R3 can be expressed uniquely in the form

u ¼ ½a; b; c� ¼ aiþ bjþ cj

Because the vectors i; j; k are unit vectors and are mutually orthogonal, we obtain the following dot
products:

i � i ¼ 1; j � j ¼ 1; k � k ¼ 1 and i � j ¼ 0; i � k ¼ 0; j � k ¼ 0

Furthermore, the vector operations discussed above may be expressed in the ijk notation as follows.
Suppose

u ¼ a1iþ a2jþ a3k and v ¼ b1iþ b2jþ b3k

Then

uþ v ¼ ða1 þ b1Þiþ ða2 þ b2Þjþ ða3 þ b3Þk and cu ¼ ca1iþ ca2jþ ca3k

where c is a scalar. Also,

u � v ¼ a1b1 þ a2b2 þ a3b3 and kuk ¼ ffiffiffiffiffiffiffiffiffi
u � up ¼ a21 þ a22 þ a23

EXAMPLE 1.8 Suppose u ¼ 3iþ 5j� 2k and v ¼ 4i� 8jþ 7k.

(a) To find uþ v, add corresponding components, obtaining uþ v ¼ 7i� 3jþ 5k

(b) To find 3u� 2v, first multiply by the scalars and then add:

3u� 2v ¼ ð9iþ 13j� 6kÞ þ ð�8iþ 16j� 14kÞ ¼ iþ 29j� 20k
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(c) To find u � v, multiply corresponding components and then add:

u � v ¼ 12� 40� 14 ¼ �42
(d) To find kuk, take the square root of the sum of the squares of the components:

kuk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 25þ 4
p ¼

ffiffiffiffiffi
38
p

Cross Product

There is a special operation for vectors u and v in R3 that is not defined in Rn for n 6¼ 3. This operation is
called the cross product and is denoted by u	 v. One way to easily remember the formula for u	 v is to
use the determinant (of order two) and its negative, which are denoted and defined as follows:

a b
c d

���� ���� ¼ ad � bc and � a b
c d

���� ���� ¼ bc� ad

Here a and d are called the diagonal elements and b and c are the nondiagonal elements. Thus, the
determinant is the product ad of the diagonal elements minus the product bc of the nondiagonal elements,
but vice versa for the negative of the determinant.

Now suppose u ¼ a1iþ a2jþ a3k and v ¼ b1iþ b2jþ b3k. Then

u	 v ¼ ða2b3 � a3b2Þiþ ða3b1 � a1b3Þjþ ða1b2 � a2b1Þk

¼ a1 a2 a3

b1 b2 b3

���� ����i� a1 a2 a3

b1 b2 b3

���� ����jþ a1 a2 a3

b1 b2 b3

���� ����i
That is, the three components of u	 v are obtained from the array

a1 a2 a3
b1 b2 b3

� �
(which contain the components of u above the component of v) as follows:

(1) Cover the first column and take the determinant.
(2) Cover the second column and take the negative of the determinant.
(3) Cover the third column and take the determinant.

Note that u	 v is a vector; hence, u	 v is also called the vector product or outer product of u
and v.

EXAMPLE 1.9 Find u	 v where: (a) u ¼ 4iþ 3jþ 6k, v ¼ 2iþ 5j� 3k, (b) u ¼ ½2;�1; 5�, v ¼ ½3; 7; 6�.

(a) Use
4 3 6
2 5 �3
� �

to get u	 v ¼ ð�9� 30Þiþ ð12þ 12Þjþ ð20� 6Þk ¼ �39iþ 24jþ 14k

(b) Use
2 �1 5
3 7 6

� �
to get u	 v ¼ ½�6� 35; 15� 12; 14þ 3� ¼ ½�41; 3; 17�

Remark: The cross products of the vectors i; j;k are as follows:

i	 j ¼ k; j	 k ¼ i; k 	 i ¼ j

j	 i ¼ �k; k 	 j ¼ �i; i	 k ¼ �j
Thus, if we view the triple ði; j; kÞ as a cyclic permutation, where i follows k and hence k precedes i, then
the product of two of them in the given direction is the third one, but the product of two of them in the
opposite direction is the negative of the third one.

Two important properties of the cross product are contained in the following theorem.
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THEOREM 1.5: Let u; v;w be vectors in R3.

(a) The vector u	 v is orthogonal to both u and v.

(b) The absolute value of the ‘‘triple product’’

u � v 	 w

represents the volume of the parallelopiped formed by the vectors u; v, w.
[See Fig. 1-4(a).]

We note that the vectors u; v, u	 v form a right-handed system, and that the following formula
gives the magnitude of u	 v:

ku	 vk ¼ kukkvk sin y
where y is the angle between u and v.

1.7 Complex Numbers

The set of complex numbers is denoted by C. Formally, a complex number is an ordered pair ða; bÞ of
real numbers where equality, addition, and multiplication are defined as follows:

ða; bÞ ¼ ðc; dÞ if and only if a ¼ c and b ¼ d

ða; bÞ þ ðc; dÞ ¼ ðaþ c; bþ dÞ
ða; bÞ � ðc; dÞ ¼ ðac� bd; ad þ bcÞ

We identify the real number a with the complex number ða; 0Þ; that is,
a$ ða; 0Þ

This is possible because the operations of addition and multiplication of real numbers are preserved under
the correspondence; that is,

ða; 0Þ þ ðb; 0Þ ¼ ðaþ b; 0Þ and ða; 0Þ � ðb; 0Þ ¼ ðab; 0Þ
Thus we view R as a subset of C, and replace ða; 0Þ by a whenever convenient and possible.

We note that the set C of complex numbers with the above operations of addition and multiplication is
a field of numbers, like the set R of real numbers and the set Q of rational numbers.

Figure 1-4
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