
Statistical
thermodynamics 2:
applications
In this chapter we apply the concepts of statistical thermodynamics to the calculation of
chemically significant quantities. First, we establish the relations between thermodynamic
functions and partition functions. Next, we show that the molecular partition function can be
factorized into contributions from each mode of motion and establish the formulas for the
partition functions for translational, rotational, and vibrational modes of motion and the con-
tribution of electronic excitation. These contributions can be calculated from spectroscopic
data. Finally, we turn to specific applications, which include the mean energies of modes of
motion, the heat capacities of substances, and residual entropies. In the final section, we
see how to calculate the equilibrium constant of a reaction and through that calculation 
understand some of the molecular features that determine the magnitudes of equilibrium
constants and their variation with temperature.

A partition function is the bridge between thermodynamics, spectroscopy, and 
quantum mechanics. Once it is known, a partition function can be used to calculate
thermodynamic functions, heat capacities, entropies, and equilibrium constants. It
also sheds light on the significance of these properties.

Fundamental relations

In this section we see how to obtain any thermodynamic function once we know the
partition function. Then we see how to calculate the molecular partition function, and
through that the thermodynamic functions, from spectroscopic data.

17.1 The thermodynamic functions

We have already derived (in Chapter 16) the two expressions for calculating the 
internal energy and the entropy of a system from its canonical partition function, 
Q:

U − U(0) = −
V

S = + k ln Q (17.1)

where β = 1/kT. If the molecules are independent, we can go on to make the substitu-
tions Q = q N (for distinguishable molecules, as in a solid) or Q = q N/N ! (for indistin-
guishable molecules, as in a gas). All the thermodynamic functions introduced in Part 1
are related to U and S, so we have a route to their calculation from Q.
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590 17 STATISTICAL THERMODYNAMICS 2: APPLICATIONS

(a) The Helmholtz energy

The Helmholtz energy, A, is defined as A = U − TS. This relation implies that A(0) =
U(0), so substitution for U and S by using eqn 17.1 leads to the very simple expression

A − A(0) = −kT ln Q (17.2)

(b) The pressure

By an argument like that leading to eqn 3.31, it follows from A = U − TS that
dA = −pdV − SdT. Therefore, on imposing constant temperature, the pressure and the
Helmholtz energy are related by p = −(∂A/∂V)T. It then follows from eqn 17.2 that

p = kT
T

(17.3)

This relation is entirely general, and may be used for any type of substance, including
perfect gases, real gases, and liquids. Because Q is in general a function of the volume,
temperature, and amount of substance, eqn 17.3 is an equation of state.

Example 17.1 Deriving an equation of state

Derive an expression for the pressure of a gas of independent particles.

Method We should suspect that the pressure is that given by the perfect gas law. To
proceed systematically, substitute the explicit formula for Q for a gas of independ-
ent, indistinguishable molecules (see eqn 16.45 and Table 17.3 at the end of the
chapter) into eqn 17.3.

Answer For a gas of independent molecules, Q = q N/N! with q = V/Λ3:

p = kT
T

=
T

=
T

= × = =

To derive this relation, we have used

T

=
T

=

and NkT = nNAkT = nRT. The calculation shows that the equation of state of a gas
of independent particles is indeed the perfect gas law.

Self-test 17.1 Derive the equation of state of a sample for which Q = q Nf /N!, with 
q = V/Λ3, where f depends on the volume. [p = nRT/V + kT(∂ ln f /∂V)T]

(c) The enthalpy

At this stage we can use the expressions for U and p in the definition H = U + pV to
obtain an expression for the enthalpy, H, of any substance:

H − H(0) = −
V

+ kTV
T

(17.4)
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17.2 THE MOLECULAR PARTITION FUNCTION 591

We have already seen that U − U(0) = 3–2 nRT for a gas of independent particles (eqn
16.32a), and have just shown that pV = nRT. Therefore, for such a gas,

H − H(0) = 5–2 nRT (17.5)°

(d) The Gibbs energy

One of the most important thermodynamic functions for chemistry is the Gibbs 
energy, G = H − TS = A + pV. We can now express this function in terms of the parti-
tion function by combining the expressions for A and p:

G − G(0) = −kT ln Q + kTV
T

(17.6)

This expression takes a simple form for a gas of independent molecules because pV in
the expression G = A + pV can be replaced by nRT:

G − G(0) = −kT ln Q + nRT (17.7)°

Furthermore, because Q = q N/N!, and therefore ln Q = N ln q − ln N!, it follows by
using Stirling’s approximation (ln N! ≈ N ln N −N) that we can write

G − G(0) = −NkT ln q + kT ln N ! + nRT

= −nRT ln q + kT(N ln N − N) + nRT

= −nRT ln (17.8)°

with N = nNA. Now we see another interpretation of the Gibbs energy: it is pro-
portional to the logarithm of the average number of thermally accessible states per
molecule.

It will turn out to be convenient to define the molar partition function, qm = q/n
(with units mol−1), for then

G − G(0) = −nRT ln (17.9)°

17.2 The molecular partition function

The energy of a molecule is the sum of contributions from its different modes of 
motion:

εi = ε i
T + εi

R + ε i
V + ε i

E (17.10)

where T denotes translation, R rotation, V vibration, and E the electronic contribu-
tion. The electronic contribution is not actually a ‘mode of motion’, but it is con-
venient to include it here. The separation of terms in eqn 17.10 is only approximate
(except for translation) because the modes are not completely independent, but in
most cases it is satisfactory. The separation of the electronic and vibrational motions
is justified provided only the ground electronic state is occupied (for otherwise the 
vibrational characteristics depend on the electronic state) and, for the electronic
ground state, that the Born–Oppenheimer approximation is valid (Chapter 11). The
separation of the vibrational and rotational modes is justified to the extent that the 
rotational constant is independent of the vibrational state.

Given that the energy is a sum of independent contributions, the partition function
factorizes into a product of contributions (recall Section 16.2b):
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1 2 3 4 5 6 7 8 9 100
0

1

2

3

4

J

C
on

tr
ib

ut
io

n

Fig. 17.1 The contributions to the rotational
partition function of an HCl molecule 
at 25°C. The vertical axis is the value 
of (2J + 1)e−βhcBJ( J+1). Successive terms
(which are proportional to the populations
of the levels) pass through a maximum
because the population of individual states
decreases exponentially, but the degeneracy
of the levels increases with J.

q = ∑
i

e−βεi = ∑
i (all states)

e−βεT
i −βεR

i −βεV
i −βεE

i

= ∑
i (translational)

∑
i (rotational)

∑
i (vibrational)

∑
i (electronic)

e−βεT
i −βεR

i −βεV
i −βεE

i (17.11)

= ∑
i (translational)

e−βεT
i ∑

i (rotational)

e−βεR
i ∑

i (vibrational)

e−βεV
i ∑

i (electronic)

e−βεE
i

= qTqRqVqE

This factorization means that we can investigate each contribution separately.

(a) The translational contribution

The translational partition function of a molecule of mass m in a container of volume
V was derived in Section 16.2:

q T = Λ = h

1/2

= (17.12)

Notice that qT → ∞ as T → ∞ because an infinite number of states becomes accessible
as the temperature is raised. Even at room temperature qT ≈ 2 × 1028 for an O2

molecule in a vessel of volume 100 cm3.
The thermal wavelength, Λ, lets us judge whether the approximations that led to the

expression for qT are valid. The approximations are valid if many states are occupied,
which requires V/Λ3 to be large. That will be so if Λ is small compared with the linear
dimensions of the container. For H2 at 25°C, Λ = 71 pm, which is far smaller than any
conventional container is likely to be (but comparable to pores in zeolites or cavities
in clathrates). For O2, a heavier molecule, Λ = 18 pm. We saw in Section 16.2 that an
equivalent criterion of validity is that Λ should be much less than the average separa-
tion of the molecules in the sample.

(b) The rotational contribution

As demonstrated in Example 16.1, the partition function of a nonsymmetrical (AB)
linear rotor is

qR = ∑
J

(2J + 1)e−βhcBJ( J+1) (17.13)

The direct method of calculating qR is to substitute the experimental values of the 
rotational energy levels into this expression and to sum the series numerically.

Example 17.2 Evaluating the rotational partition function explicitly

Evaluate the rotational partition function of 1H35Cl at 25°C, given that B =
10.591 cm−1.

Method We use eqn 17.13 and evaluate it term by term. A useful relation is kT/hc =
207.22 cm−1 at 298.15 K. The sum is readily evaluated by using mathematical software.

Answer To show how successive terms contribute, we draw up the following table
by using kT/hcB = 0.051 11 (Fig. 17.1):

J 0 1 2 3 4 . . . 10

(2J + 1)e−0.0511J( J+1) 1 2.71 3.68 3.79 3.24 . . . 0.08

h

(2πmkT)1/2

D
F

β
2πm

A
C

V

Λ3

D
F

A
C

D
F

A
C

D
F

A
C

D
F

A
C



17.2 THE MOLECULAR PARTITION FUNCTION 593

The sum required by eqn 17.13 (the sum of the numbers in the second row of the
table) is 19.9, hence qR = 19.9 at this temperature. Taking J up to 50 gives qR =
19.902. Notice that about ten J-levels are significantly populated but the number of
populated states is larger on account of the (2J + 1)-fold degeneracy of each level.
We shall shortly encounter the approximation that qR ≈ kT/hcB, which in the pre-
sent case gives qR = 19.6, in good agreement with the exact value and with much less
work.

Self-test 17.2 Evaluate the rotational partition function for HCl at 0°C. [18.26]

At room temperature kT/hc ≈ 200 cm−1. The rotational constants of many molecules
are close to 1 cm−1 (Table 13.2) and often smaller (though the very light H2 molecule,
for which B = 60.9 cm−1, is one exception). It follows that many rotational levels are
populated at normal temperatures. When this is the case, the partition function may
be approximated by

Linear rotors: qR = (17.14a)

Nonlinear rotors: qR =
3/2 1/2

(17.14b)

where A, B, and C are the rotational constants of the molecule. However, before using
these expressions, read on (to eqns 17.15 and 17.16).

Justification 17.1 The rotational contribution to the molecular partition function

When many rotational states are occupied and kT is much larger than the separation
between neighbouring states, the sum in the partition function can be approxim-
ated by an integral, much as we did for translational motion in Justification 16.2:

qR = �
∞

0

(2J + 1)e−βhcBJ( J+1)dJ

Although this integral looks complicated, it can be evaluated without much effort by
noticing that because

eaJ( J+1) = aJ( J + 1) eaJ( J+1) = a(2J + 1)eaJ( J+1)

it can also be written as

qR = �
∞

0

e−βhcBJ( J+1) dJ

Then, because the integral of a derivative of a function is the function itself, we 
obtain

qR = − e−βhcBJ( J+1)

0

∞

=

which (because β = 1/kT) is eqn 17.14a.
The calculation for a nonlinear molecule is along the same lines, but slightly 

trickier. First, we note that the energies of a symmetric rotor are

EJ,K,MJ
= hcBJ( J + 1) + hc(A − B)K2
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594 17 STATISTICAL THERMODYNAMICS 2: APPLICATIONS

with J = 0, 1, 2, . . . , K = J, J − 1, . . . , −J, and MJ = J, J − 1, . . . , −J. Instead of con-
sidering these ranges, we can cover the same values by allowing K to range from −∞
to ∞, with J confined to |K |, |K | + 1, . . . , ∞ for each value of K (Fig. 17.2). Because
the energy is independent of MJ, and there are 2J + 1 values of MJ for each value of J,
each value of J is 2J + 1-fold degenerate. It follows that the partition function

q =
∞

∑
J= 0

J

∑
K= −J

J

∑
MJ= −J

e−EJKMJ
/kT

can be written equivalently as

q =
∞

∑
K=−∞

∞

∑
J=|K |

(2J + 1)e−EJKMJ
/kT

=
∞

∑
K=−∞

∞

∑
J=|K |

(2J + 1)e−hc {BJ( J+1)+(A−B)K2}/kT

=
∞

∑
K=−∞

e−{hc (A−B)/kT }K2
∞

∑
J=|K |

(2J + 1)e−hcBJ( J+1)/kT

Now we assume that the temperature is so high that numerous states are occupied
and that the sums may be approximated by integrals. Then

q = �
∞

−∞
e−{hc (A−B)/kT }K2�

∞

| K |
(2J + 1)e−hcBJ( J+1)/kTdJdK

As before, the integral over J can be recognized as the integral of the derivative of a
function, which is the function itself, so

�
∞

| K |
(2J + 1)e−hcBJ(J+1)/kTdJ = �

∞

| K |
− e−hcBJ(J+1)/kTdJ

= − e−hcBJ(J+1)/kT

∞

|K |
= e−hcB |K |(|K |+1)/kT

≈ e−hcBK2/kT

In the last line we have supposed that |K | >> 1 for most contributions. Now we can
write

q = �
∞

−∞
e−{hc (A−B)/kT }K2

e−hcBK2/kT dK

π1/2

= �
∞

−∞
e−{hcA /kT }K 2

dK =
1/2

�
∞

−∞
e−x2

dx

=
3/2 1/2

For an asymmetric rotor, one of the Bs is replaced by C, to give eqn 17.14b.

A useful way of expressing the temperature above which the rotational approxima-
tion is valid is to introduce the characteristic rotational temperature, θR = hcB/k.
Then ‘high temperature’ means T >> θR and under these conditions the rotational
partition function of a linear molecule is simply T/θR. Some typical values of θR are
shown in Table 17.1. The value for H2 is abnormally high and we must be careful with
the approximation for this molecule.
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Synoptic table 17.1* Rotational and
vibrational temperatures

Molecule Mode qV/K qR/K

H2 6330 88

HCl 4300 9.4

I2 309 0.053

CO2 ν1 1997 0.561

ν2 3380

ν3 960

* For more values, see Table 13.2 in the Data
section and use hc /k = 1.439 K cm.
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Fig. 17.2 (a) The sum over J = 0, 1, 2, . . .
and K = J, J − 1, . . . , −J (depicted by the
circles) can be covered (b) by allowing K to
range from −∞ to ∞, with J confined to |K |,
|K | + 1, . . . , ∞ for each value of K.
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17.2 THE MOLECULAR PARTITION FUNCTION 595

The general conclusion at this stage is that molecules with large moments of inertia
(and hence small rotational constants and low characteristic rotational temperatures)
have large rotational partition functions. The large value of qR reflects the closeness in
energy (compared with kT) of the rotational levels in large, heavy molecules, and the
large number of them that are accessible at normal temperatures.

We must take care, however, not to include too many rotational states in the sum.
For a homonuclear diatomic molecule or a symmetrical linear molecule (such as CO2

or HC.CH), a rotation through 180° results in an indistinguishable state of the
molecule. Hence, the number of thermally accessible states is only half the number
that can be occupied by a heteronuclear diatomic molecule, where rotation through
180° does result in a distinguishable state. Therefore, for a symmetrical linear molecule,

qR = = (17.15a)

The equations for symmetrical and nonsymmetrical molecules can be combined into
a single expression by introducing the symmetry number, σ, which is the number of
indistinguishable orientations of the molecule. Then

qR = = (17.15b)

For a heteronuclear diatomic molecule σ = 1; for a homonuclear diatomic molecule
or a symmetrical linear molecule, σ = 2.

Justification 17.2 The origin of the symmetry number

The quantum mechanical origin of the symmetry number is the Pauli principle,
which forbids the occupation of certain states. We saw in Section 13.8, for example,
that H2 may occupy rotational states with even J only if its nuclear spins are 
paired (para-hydrogen), and odd J states only if its nuclear spins are parallel (ortho-
hydrogen). There are three states of ortho-H2 to each value of J (because there are
three parallel spin states of the two nuclei).

To set up the rotational partition function we note that ‘ordinary’ molecular 
hydrogen is a mixture of one part para-H2 (with only its even-J rotational states 
occupied) and three parts ortho-H2 (with only its odd-J rotational states occupied).
Therefore, the average partition function per molecule is

qR = 1–4 ∑
even J

(2J + 1)e−βhcBJ(J+1) + 3–4 ∑
odd J

(2J + 1)e−βhcBJ( J+1)

The odd-J states are more heavily weighted than the even-J states (Fig. 17.3). From
the illustration we see that we would obtain approximately the same answer for the
partition function (the sum of all the populations) if each J term contributed half its
normal value to the sum. That is, the last equation can be approximated as

qR = 1–2 ∑
J

(2J + 1)e−βhcBJ(J+1)

and this approximation is very good when many terms contribute (at high 
temperatures).

The same type of argument may be used for linear symmetrical molecules in
which identical bosons are interchanged by rotation (such as CO2). As pointed out
in Section 13.8, if the nuclear spin of the bosons is 0, then only even-J states are 
admissible. Because only half the rotational states are occupied, the rotational 
partition function is only half the value of the sum obtained by allowing all values of
J to contribute (Fig. 17.4).

T

σθR

kT

σhcB

T

2θR

kT

2hcB

ortho-H2

para-H2

0 1 J

Fig. 17.3 The values of the individual terms
(2J + 1)e−βhcBJ( J+1) contributing to the 
mean partition function of a 3:1 mixture of
ortho- and para-H2. The partition function
is the sum of all these terms. At high
temperatures, the sum is approximately
equal to the sum of the terms over all
values of J, each with a weight of 1–2. This is
the sum of the contributions indicated by
the curve.

0  2 J

Fig. 17.4 The relative populations of the
rotational energy levels of CO2. Only states
with even J values are occupied. The full
line shows the smoothed, averaged
population of levels.
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596 17 STATISTICAL THERMODYNAMICS 2: APPLICATIONS

Synoptic table 17.2* Symmetry
numbers

Molecule s

H2O 2

NH3 3

CH4 12

C6H6 12

* For more values, see Table 13.2 in the 
Data section.
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Fig. 17.5 The vibrational partition function of
a molecule in the harmonic approximation.
Note that the partition function is linearly
proportional to the temperature when the
temperature is high (T >> θV).

Exploration Plot the temperature
dependence of the vibrational

contribution to the molecular partition
function for several values of the
vibrational wavennumber. Estimate from
your plots the temperature above which 
the harmonic oscillator is in the ‘high
temperature’ limit.

The same care must be exercised for other types of symmetrical molecule, and for a
nonlinear molecule we write

qR =
3/2 1/2

(17.16)

Some typical values of the symmetry numbers required are given in Table 17.2. The
value σ(H2O) = 2 reflects the fact that a 180° rotation about the bisector of the H-
O-H angle interchanges two indistinguishable atoms. In NH3, there are three indis-
tinguishable orientations around the axis shown in (1). For CH4, any of three 120°
rotations about any of its four C-H bonds leaves the molecule in an indistinguishable
state, so the symmetry number is 3 × 4 = 12. For benzene, any of six orientations
around the axis perpendicular to the plane of the molecule leaves it apparently 
unchanged, as does a rotation of 180° around any of six axes in the plane of the
molecule (three of which pass along each C-H bond and the remaining three pass
through each C-C bond in the plane of the molecule). For the way that group theory
is used to identify the value of the symmetry number, see Problem 17.17.

(c) The vibrational contribution

The vibrational partition function of a molecule is calculated by substituting the 
measured vibrational energy levels into the exponentials appearing in the definition
of qV, and summing them numerically. In a polyatomic molecule each normal mode
(Section 13.14) has its own partition function (provided the anharmonicities are so
small that the modes are independent). The overall vibrational partition function is
the product of the individual partition functions, and we can write qV = qV(1)qV(2) . . . ,
where qV(K) is the partition function for the Kth normal mode and is calculated by 
direct summation of the observed spectroscopic levels.

If the vibrational excitation is not too great, the harmonic approximation may be
made, and the vibrational energy levels written as

Ev = (v + 1–2)hc# v = 0, 1, 2, . . . (17.17)

If, as usual, we measure energies from the zero-point level, then the permitted values
are εv = vhc# and the partition function is

qV = ∑
v

e−βvhc# = ∑
v

(e−βhc#)v (17.18)

(because eax = (ex)a). We met this sum in Example 16.2 (which is no accident: the 
ladder-like array of levels in Fig. 16.3 is exactly the same as that of a harmonic oscillator).
The series can be summed in the same way, and gives

qV = (17.19)

This function is plotted in Fig. 17.5. In a polyatomic molecule, each normal mode
gives rise to a partition function of this form.

Example 17.3 Calculating a vibrational partition function

The wavenumbers of the three normal modes of H2O are 3656.7 cm−1, 1594.8 cm−1,
and 3755.8 cm−1. Evaluate the vibrational partition function at 1500 K.

Method Use eqn 17.19 for each mode, and then form the product of the three con-
tributions. At 1500 K, kT/hc = 1042.6 cm−1.
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17.2 THE MOLECULAR PARTITION FUNCTION 597

Answer We draw up the following table displaying the contributions of each mode:

Mode: 1 2 3

#/cm−1 3656.7 1594.8 3755.8

hc#/kT 3.507 1.530 3.602

qV 1.031 1.276 1.028

The overall vibrational partition function is therefore

qV = 1.031 × 1.276 × 1.028 = 1.353

The three normal modes of H2O are at such high wavenumbers that even at 1500 K
most of the molecules are in their vibrational ground state. However, there may be
so many normal modes in a large molecule that their excitation may be significant
even though each mode is not appreciably excited. For example, a nonlinear molecule
containing 10 atoms has 3N − 6 = 24 normal modes (Section 13.14). If we assume
a value of about 1.1 for the vibrational partition function of one normal mode, the
overall vibrational partition function is about qV ≈ (1.1)24 = 9.8, which indicates
significant vibrational excitation relative to a smaller molecule, such as H2O.

Self-test 17.3 Repeat the calculation for CO2, where the vibrational wavenumbers
are 1388 cm−1, 667.4 cm−1, and 2349 cm−1, the second being the doubly degenerate
bending mode. [6.79]

In many molecules the vibrational wavenumbers are so great that βhc# > 1. For 
example, the lowest vibrational wavenumber of CH4 is 1306 cm−1, so βhc# = 6.3 at
room temperature. C-H stretches normally lie in the range 2850 to 2960 cm−1, so for
them βhc# ≈ 14. In these cases, e−βhc# in the denominator of qV is very close to zero (for
example, e−6.3 = 0.002), and the vibrational partition function for a single mode is very
close to 1 (qV = 1.002 when βhc# = 6.3), implying that only the zero-point level is
significantly occupied.

Now consider the case of bonds so weak that βhc# << kT. When this condition is
satisfied, the partition function may be approximated by expanding the exponential
(ex = 1 + x + · · ·):

qV = (17.20)

That is, for weak bonds at high temperatures,

qV = = (17.21)

The temperatures for which eqn 17.21 is valid can be expressed in terms of the 
characteristic vibrational temperature, θV = hc#/k (Table 17.1). The value for H2 is
abnormally high because the atoms are so light and the vibrational frequency is cor-
respondingly high. In terms of the vibrational temperature, ‘high temperature’ means
T >> θV and, when this condition is satisfied, qV = T/θV (the analogue of the rotational
expression).

(d) The electronic contribution

Electronic energy separations from the ground state are usually very large, so for most
cases qE = 1. An important exception arises in the case of atoms and molecules having

kT

hc#

1

βhc#

1

1 − (1 − βhc# + · · ·)
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598 17 STATISTICAL THERMODYNAMICS 2: APPLICATIONS

electronically degenerate ground states, in which case qE = gE, where gE is the degeneracy
of the electronic ground state. Alkali metal atoms, for example, have doubly degenerate
ground states (corresponding to the two orientations of their electron spin), so qE = 2.

Some atoms and molecules have low-lying electronically excited states. (At high
enough temperatures, all atoms and molecules have thermally accessible excited states.)
An example is NO, which has a configuration of the form . . . π1 (see Impact I11.1). The
orbital angular momentum may take two orientations with respect to the molecular
axis (corresponding to circulation clockwise or counter-clockwise around the axis),
and the spin angular momentum may also take two orientations, giving four states in
all (Fig. 17.6). The energy of the two states in which the orbital and spin momenta are
parallel (giving the 2Π3/2 term) is slightly greater than that of the two other states in
which they are antiparallel (giving the 2Π1/2 term). The separation, which arises from
spin–orbit coupling (Section 10.8), is only 121 cm−1. Hence, at normal temperatures,
all four states are thermally accessible. If we denote the energies of the two levels as 
E1/2 = 0 and E3/2 = ε, the partition function is

qE = ∑
energy levels

gj e
−βε j = 2 + 2e−βε (17.22)

Figure 17.7 shows the variation of this function with temperature. At T = 0, qE = 2,
because only the doubly degenerate ground state is accessible. At high temperatures,
qE approaches 4 because all four states are accessible. At 25°C, qE = 3.1.
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Fig. 17.6 The doubly degenerate ground
electronic level of NO (with the spin and
orbital angular momentum around the axis
in opposite directions) and the doubly
degenerate first excited level (with the spin
and orbital momenta parallel). The upper
level is thermally accessible at room
temperature.
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Fig. 17.7 The variation with temperature of
the electronic partition function of an NO
molecule. Note that the curve resembles
that for a two-level system (Fig.16.5), but
rises from 2 (the degeneracy of the lower
level) and approaches 4 (the total number
of states) at high temperatures.

Exploration Plot the temperature
dependence of the electronic

partition function for several values of the
energy separation ε between two doubly
degenerate levels. From your plots,
estimate the temperature at which the
population of the excited level begins to
increase sharply.
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Comment 17.1 

The text’s web site contains links to 
on-line databases of atomic and
molecular spectra.

(e) The overall partition function

The partition functions for each mode of motion of a molecule are collected in 
Table 17.3 at the end of the chapter. The overall partition function is the product of
each contribution. For a diatomic molecule with no low-lying electronically excited
states and T >> θR,

q = gE (17.23)

Example 17.4 Calculating a thermodynamic function from spectroscopic data

Calculate the value of G 7
m − G 7

m(0) for H2O(g) at 1500 K given that A = 27.8778 cm−1,
B = 14.5092 cm−1, and C = 9.2869 cm−1 and the information in Example 17.3.

Method The starting point is eqn 17.9. For the standard value, we evaluate the
translational partition function at p7 (that is, at 105 Pa exactly). The vibrational
partition function was calculated in Example 17.3. Use the expressions in Table
17.3 for the other contributions.

Answer Because m = 18.015 u, it follows that qm
T7/NA = 1.706 × 108. For the vibra-

tional contribution we have already found that qV = 1.352. From Table 17.2 we see
that σ = 2, so the rotational contribution is qR = 486.7. Therefore,

G 7
m − G 7

m(0) = −(8.3145 J K−1 mol−1) × (1500 K)  
× ln{(1.706 × 108) × 486.7 × 1.352}

= −317.3 kJ mol−1

Self-test 17.4 Repeat the calculation for CO2. The vibrational data are given in
Self-test 17.3; B = 0.3902 cm−1. [−366.6 kJ mol−1]

Overall partition functions obtained from eqn 17.23 are approximate because they
assume that the rotational levels are very close together and that the vibrational levels
are harmonic. These approximations are avoided by using the energy levels identified
spectroscopically and evaluating the sums explicitly.

Using statistical thermodynamics

We can now calculate any thermodynamic quantity from a knowledge of the energy
levels of molecules: we have merged thermodynamics and spectroscopy. In this sec-
tion, we indicate how to do the calculations for four important properties.

17.3 Mean energies

It is often useful to know the mean energy, �ε�, of various modes of motion. When the
molecular partition function can be factorized into contributions from each mode,
the mean energy of each mode M (from eqn 16.29) is

�εM� = −
V

M = T, R, V, or E (17.24)
D
F

∂qM

∂β

A
C

1

qM

D
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1

1 − e−T/θ v

A
C

D
F

T
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600 17 STATISTICAL THERMODYNAMICS 2: APPLICATIONS

(a) The mean translational energy

To see a pattern emerging, we consider first a one-dimensional system of length X, for
which qT = X /Λ, with Λ = h(β/2πm)1/2. Then, if we note that Λ is a constant times β1/2,

�εT� = −
V

= −β1/2 = = 1–2 kT (17.25a)

For a molecule free to move in three dimensions, the analogous calculation leads to

�εT � = 3–2kT (17.25b)

Both conclusions are in agreement with the classical equipartition theorem (see
Molecular interpretation 2.2) that the mean energy of each quadratic contribution 
to the energy is 1–2 kT. Furthermore, the fact that the mean energy is independent of 
the size of the container is consistent with the thermodynamic result that the internal
energy of a perfect gas is independent of its volume (Molecular interpretation 2.2).

(b) The mean rotational energy

The mean rotational energy of a linear molecule is obtained from the partition func-
tion given in eqn 17.13. When the temperature is low (T < θR), the series must be
summed term by term, which gives

qR = 1 + 3e−2βhcB + 5e−6βhcB + · · ·

Hence

�εR� = (17.26a)

This function is plotted in Fig. 17.8. At high temperatures (T >> θR), qR is given by 
eqn 17.15, and

�εR� = − = −σhcβB = = kT (17.26b)

(qR is independent of V, so the partial derivatives have been replaced by complete
derivatives.) The high-temperature result is also in agreement with the equipartition
theorem, for the classical expression for the energy of a linear rotor is EK = 1–2 I⊥ωa

2 +
1–2 I⊥ωb

2. (There is no rotation around the line of atoms.) It follows from the equiparti-
tion theorem that the mean rotational energy is 2 × 1–2 kT = kT.

(c) The mean vibrational energy

The vibrational partition function in the harmonic approximation is given in eqn
17.19. Because qV is independent of the volume, it follows that

= = − (17.27)

and hence from

�εV� = − = −(1 − e−βhc#) − =

that

�εV� = (17.28)
hc#

eβhc# − 1

hc#e−βhc#

1 − e−βhc#

5
6
7

hc#e−βhc#

(1 − e−βhc#)2

1
2
3

dqV

dβ
1

qV

hc#e−βhc#

(1 − e−βhc#)2

D
F

1
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dβ
dqV
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Fig. 17.8 The mean rotational energy of a
nonsymmetrical linear rotor as a function
of temperature. At high temperatures 
(T >> θR), the energy is linearly
proportional to the temperature, in 
accord with the equipartition theorem.

Exploration Plot the temperature
dependence of the mean rotational

energy for several values of the rotational
constant (for reasonable values of the
rotational constant, see the Data section).
From your plots, estimate the temperature
at which the mean rotational energy begins
to increase sharply.
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17.4 HEAT CAPACITIES 601

The zero-point energy, 1–2 hc#, can be added to the right-hand side if the mean energy
is to be measured from 0 rather than the lowest attainable level (the zero-point 
level). The variation of the mean energy with temperature is illustrated in Fig. 17.9. 
At high temperatures, when T >> θV, or βhc# << 1, the exponential functions can be 
expanded (ex = 1 + x + · · · ) and all but the leading terms discarded. This approxima-
tion leads to

�εV � = ≈ = kT (17.29)

This result is in agreement with the value predicted by the classical equipartition 
theorem, because the energy of a one-dimensional oscillator is E = 1–2 mv2

x + 1–2 kx2 and
the mean energy of each quadratic term is 1–2 kT.

17.4 Heat capacities

The constant-volume heat capacity is defined as CV = (∂U/∂T)V . The derivative with
respect to T is converted into a derivative with respect to β by using

= = − = −kβ2 (17.30)

It follows that

CV = −kβ2

V

(17.31a)

Because the internal energy of a perfect gas is a sum of contributions, the heat capa-
city is also a sum of contributions from each mode. The contribution of mode M is

CV
M = N

V

= −Nkβ2

V

(17.31b)

(a) The individual contributions

The temperature is always high enough (provided the gas is above its condensation
temperature) for the mean translational energy to be 3–2 kT, the equipartition value.
Therefore, the molar constant-volume heat capacity is

CT
V,m = NA = 3–2 R (17.32)

Translation is the only mode of motion for a monatomic gas, so for such a gas CV,m =
3–2 R = 12.47 J K−1 mol−1. This result is very reliable: helium, for example, has this value
over a range of 2000 K. We saw in Section 2.5 that Cp,m − CV,m = R, so for a monatomic
perfect gas Cp,m = 5–2 R, and therefore

γ = = 5–3 (17.33)°

When the temperature is high enough for the rotations of the molecules to be
highly excited (when T >> θR), we can use the equipartition value kT for the mean 
rotational energy (for a linear rotor) to obtain CV,m = R. For nonlinear molecules, 
the mean rotational energy rises to 3–2 kT, so the molar rotational heat capacity rises 
to 3–2 R when T >> θR. Only the lowest rotational state is occupied when the tempera-
ture is very low, and then rotation does not contribute to the heat capacity. We can
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Fig. 17.9 The mean vibrational energy of a
molecule in the harmonic approximation
as a function of temperature. At high
temperatures (T >> θV), the energy is
linearly proportional to the temperature, 
in accord with the equipartition theorem.

Exploration Plot the temperature
dependence of the mean vibrational

energy for several values of the vibrational
wavenumber (for reasonable values of the
vibrational wavenumber, see the Data
section). From your plots, estimate the
temperature at which the mean vibrational
energy begins to increase sharply.
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calculate the rotational heat capacity at intermediate temperatures by differentiat-
ing the equation for the mean rotational energy (eqn 17.26). The resulting (untidy)
expression, which is plotted in Fig. 17.10, shows that the contribution rises from 
zero (when T = 0) to the equipartition value (when T >> θR). Because the transla-
tional contribution is always present, we can expect the molar heat capacity of a gas 
of diatomic molecules (C T

V,m + C R
V,m) to rise from 3–2 R to 5–2 R as the temperature is 

increased above θR. Problem 17.19 explores how the overall shape of the curve can be
traced to the sum of thermal excitations between all the available rotational energy
levels (Fig. 17.11).

Molecular vibrations contribute to the heat capacity, but only when the tempera-
ture is high enough for them to be significantly excited. The equipartition mean 
energy is kT for each mode, so the maximum contribution to the molar heat capacity
is R. However, it is very unusual for the vibrations to be so highly excited that equipar-
tition is valid, and it is more appropriate to use the full expression for the vibrational
heat capacity, which is obtained by differentiating eqn 17.28:

C V
V ,m = Rf f =

2 2

(17.34)

where θV = hc#/k is the characteristic vibrational temperature. The curve in Fig. 17.12
shows how the vibrational heat capacity depends on temperature. Note that even
when the temperature is only slightly above θV the heat capacity is close to its equi-
partition value.
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Fig. 17.10 The temperature dependence of
the rotational contribution to the heat
capacity of a linear molecule.

Exploration The Living graphs section
of the text’s web site has applets for

the calculation of the temperature
dependence of the rotational contribution
to the heat capacity. Explore the effect of
the rotational constant on the plot of C R

V,m

against T.

Comment 17.2 

Equation 17.34 is essentially the same 
as the Einstein formula for the heat
capacity of a solid (eqn 8.7) with θV
the Einstein temperature, θE. The only
difference is that vibrations can take
place in three dimensions in a solid.
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Fig. 17.11 The rotational heat capacity of a
linear molecule can be regarded as the 
sum of contributions from a collection of
two-level systems, in which the rise in
temperature stimulates transitions between
J levels, some of which are shown here. The
calculation on which this illustration is
based is sketched in Problem 17.19.
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Fig. 17.12 The temperature dependence of
the vibrational heat capacity of a molecule
in the harmonic approximation calculated
by using eqn 17.34. Note that the heat
capacity is within 10 per cent of its classical
value for temperatures greater than θV.

Exploration The Living graphs section
of the text’s web site has applets 

for the calculation of the temperature
dependence of the vibrational contribution
to the heat capacity. Explore the effect of
the vibrational wavenumber on the plot 
of CV

V,m against T.

Fig. 17.13 The general features of the
temperature dependence of the heat
capacity of diatomic molecules are as
shown here. Each mode becomes active
when its characteristic temperature is
exceeded. The heat capacity becomes very
large when the molecule dissociates
because the energy is used to cause
dissociation and not to raise the
temperature. Then it falls back to the
translation-only value of the atoms.

(b) The overall heat capacity

The total heat capacity of a molecular substance is the sum of each contribution 
(Fig. 17.13). When equipartition is valid (when the temperature is well above the
characteristic temperature of the mode, T >> θM) we can estimate the heat capacity by
counting the numbers of modes that are active. In gases, all three translational modes
are always active and contribute 3–2 R to the molar heat capacity. If we denote the num-
ber of active rotational modes by ν*R (so for most molecules at normal temperatures
ν*R = 2 for linear molecules, and 3 for nonlinear molecules), then the rotational con-
tribution is 1–2 ν*RR. If the temperature is high enough for ν*V vibrational modes to be 
active, the vibrational contribution to the molar heat capacity is ν*VR. In most cases 
ν*V ≈ 0. It follows that the total molar heat capacity is

CV,m = 1–2 (3 + ν*R + 2ν*V)R (17.35)

Example 17.5 Estimating the molar heat capacity of a gas

Estimate the molar constant-volume heat capacity of water vapour at 100°C.
Vibrational wavenumbers are given in Example 17.3; the rotational constants of an
H2O molecule are 27.9, 14.5, and 9.3 cm−1.
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604 17 STATISTICAL THERMODYNAMICS 2: APPLICATIONS

Method We need to assess whether the rotational and vibrational modes are active
by computing their characteristic temperatures from the data (to do so, use hc/k =
1.439 cm K).

Answer The characteristic temperatures (in round numbers) of the vibrations 
are 5300 K, 2300 K, and 5400 K; the vibrations are therefore not excited at 373 K.
The three rotational modes have characteristic temperatures 40 K, 21 K, and 13 K,
so they are fully excited, like the three translational modes. The translational con-
tribution is 3–2 R = 12.5 J K−1 mol−1. Fully excited rotations contribute a further 
12.5 J K−1 mol−1. Therefore, a value close to 25 J K−1 mol−1 is predicted. The experi-
mental value is 26.1 J K−1 mol−1. The discrepancy is probably due to deviations
from perfect gas behaviour.

Self-test 17.5 Estimate the molar constant-volume heat capacity of gaseous I2 at
25°C (B = 0.037 cm−1; see Table 13.2 for more data). [29 J K−1 mol−1]

17.5 Equations of state

The relation between p and Q in eqn 17.3 is a very important route to the equations 
of state of real gases in terms of intermolecular forces, for the latter can be built into 
Q. We have already seen (Example 17.1) that the partition function for a gas of inde-
pendent particles leads to the perfect gas equation of state, pV = nRT. Real gases differ
from perfect gases in their equations of state and we saw in Section 1.3 that their equa-
tions of state may be written

= 1 + + + · · · (17.36)

where B is the second virial coefficient and C is the third virial coefficient.
The total kinetic energy of a gas is the sum of the kinetic energies of the individual

molecules. Therefore, even in a real gas the canonical partition function factorizes
into a part arising from the kinetic energy, which is the same as for the perfect gas, and
a factor called the configuration integral, Z, which depends on the intermolecular
potentials. We therefore write

Q = (17.37)

By comparing this equation with eqn 16.45 (Q = qN/N!, with q = V/Λ3), we see that for
a perfect gas of atoms (with no contributions from rotational or vibrational modes)

Z = (17.38)

For a real gas of atoms (for which the intermolecular interactions are isotropic), Z is
related to the total potential energy EP of interaction of all the particles by

Z = �e−βEPdτ1dτ2 · · · dτN (17.39)

where dτi is the volume element for atom i. The physical origin of this term is that the
probability of occurrence of each arrangement of molecules possible in the sample 
is given by a Boltzmann distribution in which the exponent is given by the potential
energy corresponding to that arrangement.
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17.5 EQUATIONS OF STATE 605

Illustration 17.1 Calculating a configuration integral

When the molecules do not interact with one another, EP = 0 and hence e−βEP = 1.
Then

Z = �dτ1dτ2 · · · dτN =

because ∫dτ = V, where V is the volume of the container. This result coincides with
eqn 17.39.

When we consider only interactions between pairs of particles the configuration 
integral simplifies to

Z = 1–2�e−βEPdτ1dτ2 (17.40)

The second virial coefficient then turns out to be

B = − �f dτ1dτ2 (17.41)

The quantity f is the Mayer f-function: it goes to zero when the two particles are 
so far apart that EP = 0. When the intermolecular interaction depends only on the 
separation r of the particles and not on their relative orientation or their absolute 
position in space, as in the interaction of closed-shell atoms in a uniform sample, the
volume element simplifies to 4πr 2dr (because the integrals over the angular variables
in dτ = r 2dr sin θ dθdφ give a factor of 4π) and eqn 17.41 becomes

B = −2πNA�
∞

0

fr 2dr f = e−βEP − 1 (17.42)

The integral can be evaluated (usually numerically) by substituting an expression for
the intermolecular potential energy.

Intermolecular potential energies are discussed in more detail in Chapter 18, 
where several expressions are developed for them. At this stage, we can illustrate 
how eqn 17.42 is used by considering the hard-sphere potential, which is infinite
when the separation of the two molecules, r, is less than or equal to a certain value σ,
and is zero for greater separations. Then

e−βEP = 0 f = −1 when r ≤ σ (and EP = ∞) (17.43a)

e−βEP = 1 f = 0 when r > σ (and EP = 0) (17.43b)

It follows from eqn 17.42 that the second virial coefficient is

B = 2πNA�
σ

0

r 2dr = 2–3 πNAσ3 (17.44)

This calculation of B raises the question as to whether a potential can be found that,
when the virial coefficients are evaluated, gives the van der Waals equation of state.
Such a potential can be found for weak attractive interactions (a << RT): it consists of
a hard-sphere repulsive core and a long-range, shallow attractive region (see Problem
17.15). A further point is that, once a second virial coefficient has been calculated for
a given intermolecular potential, it is possible to calculate other thermodynamic
properties that depend on the form of the potential. For example, it is possible to 

NA
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V N
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606 17 STATISTICAL THERMODYNAMICS 2: APPLICATIONS

calculate the isothermal Joule–Thomson coefficient, µT (Section 3.8), from the ther-
modynamic relation

p→0
lim µT = B − T (17.45)

and from the result calculate the Joule–Thomson coefficient itself by using eqn 3.48.

17.6 Molecular interactions in liquids

The starting point for the discussion of solids is the well ordered structure of a perfect
crystal, which will be discussed in Chapter 20. The starting point for the discussion of
gases is the completely disordered distribution of the molecules of a perfect gas, as we
saw in Chapter 1. Liquids lie between these two extremes. We shall see that the struc-
tural and thermodynamic properties of liquids depend on the nature of intermole-
cular interactions and that an equation of state can be built in a similar way to that just
demonstrated for real gases.

(a) The radial distribution function

The average relative locations of the particles of a liquid are expressed in terms of 
the radial distribution function, g(r). This function is defined so that g(r)r2dr is the
probability that a molecule will be found in the range dr at a distance r from another
molecule. In a perfect crystal, g(r) is a periodic array of sharp spikes, representing the
certainty (in the absence of defects and thermal motion) that molecules (or ions) lie at
definite locations. This regularity continues out to the edges of the crystal, so we say
that crystals have long-range order. When the crystal melts, the long-range order is
lost and, wherever we look at long distances from a given molecule, there is equal
probability of finding a second molecule. Close to the first molecule, though, the near-
est neighbours might still adopt approximately their original relative positions and,
even if they are displaced by newcomers, the new particles might adopt their vacated
positions. It is still possible to detect a sphere of nearest neighbours at a distance r1,
and perhaps beyond them a sphere of next-nearest neighbours at r2. The existence of
this short-range order means that the radial distribution function can be expected to
oscillate at short distances, with a peak at r1, a smaller peak at r2, and perhaps some
more structure beyond that.

The radial distribution function of the oxygen atoms in liquid water is shown in
Fig. 17.14. Closer analysis shows that any given H2O molecule is surrounded by other
molecules at the corners of a tetrahedron. The form of g(r) at 100°C shows that the 
intermolecular interactions (in this case, principally by hydrogen bonds) are strong
enough to affect the local structure right up to the boiling point. Raman spectra indi-
cate that in liquid water most molecules participate in either three or four hydrogen
bonds. Infrared spectra show that about 90 per cent of hydrogen bonds are intact at
the melting point of ice, falling to about 20 per cent at the boiling point.

The formal expression for the radial distribution function for molecules 1 and 2 in
a fluid consisting of N particles is the somewhat fearsome equation

g(r12 ) = (17.46)

where β = 1/kT and VN is the N-particle potential energy. Although fearsome, this 
expression is nothing more than the Boltzmann distribution for the relative locations
of two molecules in a field provided by all the other molecules in the system.

�� · · · �e−βVNdτ3dτ4 . . . dτN

N 2�� · · · �e−βVNdτ1dτ2 . . . dτN
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Fig. 17.14 The radial distribution function
of the oxygen atoms in liquid water at three
temperatures. Note the expansion as the
temperature is raised. (A.H. Narten, M.D.
Danford, and H.A. Levy, Discuss. Faraday.
Soc. 43, 97 (1967).)

Zhonghuai
高亮
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(b) The calculation of g(r )

Because the radial distribution function can be calculated by making assumptions
about the intermolecular interactions, it can be used to test theories of liquid struc-
ture. However, even a fluid of hard spheres without attractive interactions (a collec-
tion of ball-bearings in a container) gives a function that oscillates near the origin
(Fig. 17.15), and one of the factors influencing, and sometimes dominating, the struc-
ture of a liquid is the geometrical problem of stacking together reasonably hard
spheres. Indeed, the radial distribution function of a liquid of hard spheres shows
more pronounced oscillations at a given temperature than that of any other type of
liquid. The attractive part of the potential modifies this basic structure, but some-
times only quite weakly. One of the reasons behind the difficulty of describing liquids 
theoretically is the similar importance of both the attractive and repulsive (hard core)
components of the potential.

There are several ways of building the intermolecular potential into the calculation
of g(r). Numerical methods take a box of about 103 particles (the number increases as
computers grow more powerful), and the rest of the liquid is simulated by surround-
ing the box with replications of the original box (Fig. 17.16). Then, whenever a par-
ticle leaves the box through one of its faces, its image arrives through the opposite face.
When calculating the interactions of a molecule in a box, it interacts with all the
molecules in the box and all the periodic replications of those molecules and itself in
the other boxes.

In the Monte Carlo method, the particles in the box are moved through small but
otherwise random distances, and the change in total potential energy of the N parti-
cles in the box, ∆VN , is calculated using one of the intermolecular potentials discussed
in Section 18.4. Whether or not this new configuration is accepted is then judged from
the following rules:

1 If the potential energy is not greater than before the change, then the configura-
tion is accepted.

If the potential energy is greater than before the change, then it is necessary to check if
the new configuration is reasonable and can exist in equilibrium with configurations
of lower potential energy at a given temperature. To make progress, we use the result
that, at equilibrium, the ratio of populations of two states with energy separation ∆VN

is e−∆VN/kT. Because we are testing the viability of a configuration with a higher poten-
tial energy than the previous configuration in the calculation, ∆VN > 0 and the expon-
ential factor varies between 0 and 1. In the Monte Carlo method, the second rule,
therefore, is:

2 The exponential factor is compared with a random number between 0 and 1; if
the factor is larger than the random number, then the configuration is accepted; if the
factor is not larger, the configuration is rejected.

The configurations generated with Monte Carlo calculations can be used to construct
g(r) simply by counting the number of pairs of particles with a separation r and aver-
aging the result over the whole collection of configurations.

In the molecular dynamics approach, the history of an initial arrangement is 
followed by calculating the trajectories of all the particles under the influence of the
intermolecular potentials. To appreciate what is involved, we consider the motion of
a particle in one dimension. We show in the following Justification that, after a time
interval ∆t, the position of a particle changes from xi−1 to a new value xi given by

xi = xi−1 + vi−1∆t (17.47)

where vi−1 is the velocity of the atom when it was at xi−1, its location at the start of the
interval. The velocity at xi is related to vi−1, the velocity at the start of the interval, by
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Fig. 17.15 The radial distribution function
for a simulation of a liquid using
impenetrable hard spheres (ball bearings).

Fig. 17.16 In a two-dimensional simulation
of a liquid that uses periodic boundary
conditions, when one particle leaves the
cell its mirror image enters through the
opposite face.
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vi = vi−1 − m−1

xi−1

∆t (17.48)

where the derivative of the potential energy VN(x) is evaluated at xi−1. The time inter-
val ∆t is approximately 1 fs (10−15 s), which is shorter than the average time between
collisions. The calculation of xi and vi is then repeated for tens of thousands of such
steps. The time-consuming part of the calculation is the evaluation of the net force on
the molecule arising from all the other molecules present in the system.

Justification 17.3 Particle trajectories according to molecular dynamics

Consider a particle of mass m moving along the x direction with an initial velocity
v1 given by

v1 =

If the initial and new positions of the atom are x1 and x2, then ∆x = x2 − x1 and

x2 = x1 + v1∆t

The particle moves under the influence of a force arising from interactions with
other atoms in the molecule. From Newton’s second law of motion, we write the
force F1 at x1 as

F1 = ma1

where the acceleration a1 at x1 is given by a1 = ∆v/∆t. If the initial and new velocities
are v1 and v2, then ∆v = v2 − v1 and

v2 = v1 + a1∆t = v1 + ∆t

Because F = −dV/dx, the force acting on the atom is related to the potential energy
of interaction with other nearby atoms, the potential energy VN(x), by

F1 = −
x1

where the derivative is evaluated at x1. It follows that

v2 = v1 − m−1

x1

∆t

This expression generalizes to eqn 17.48 for the calculation of a velocity vi from a
previous velocity vi−1.

Self-test 17.6 Consider a particle of mass m connected to a stationary wall with a
spring of force constant k. Write an expression for the velocity of this particle once
it is set into motion in the x direction from an equilibrium position x0.

[vi = vi−1 + (k/m)(xi−1 − x0)]

A molecular dynamics calculation gives a series of snapshots of the liquid, and g(r)
can be calculated as before. The temperature of the system is inferred by computing
the mean kinetic energy of the particles and using the equipartition result that

�1–2 mvq
2� = 1–2 kT (17.49)

for each coordinate q.

dVN(x)

dx

dVN(x)

dx

F1

m

∆x

∆t

dVN(x)

dx
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(c) The thermodynamic properties of liquids

Once g(r) is known it can be used to calculate the thermodynamic properties of 
liquids. For example, the contribution of the pairwise additive intermolecular poten-
tial, V2, to the internal energy is given by the integral

U = �
∞

0

g(r)V2r2dr (17.50)

That is, U is essentially the average two-particle potential energy weighted by g(r)r 2dr,
which is the probability that the pair of particles have a separation between r and r + dr.
Likewise, the contribution that pairwise interactions make to the pressure is

= 1 − �
∞

0

g(r)v2r 2dr v2 = r (17.51a)

The quantity v2 is called the virial (hence the term ‘virial equation of state’). To under-
stand the physical content of this expression, we rewrite it as

p = − 2π
2

�
∞

0

g(r)v2r 2dr (17.51b)

The first term on the right is the kinetic pressure, the contribution to the pressure
from the impact of the molecules in free flight. The second term is essentially the 
internal pressure, πT = (∂U/∂V)T , introduced in Section 2.11, representing the con-
tribution to the pressure from the intermolecular forces. To see the connection, we
should recognize −dV2/dr (in v2) as the force required to move two molecules apart,
and therefore −r(dV2/dr) as the work required to separate the molecules through a
distance r. The second term is therefore the average of this work over the range of 
pairwise separations in the liquid as represented by the probability of finding two
molecules at separations between r and r + dr, which is g(r)r 2dr. In brief, the integral,
when multiplied by the square of the number density, is the change in internal energy
of the system as it expands, and therefore is equal to the internal pressure.

17.7 Residual entropies

Entropies may be calculated from spectroscopic data; they may also be measured 
experimentally (Section 3.3). In many cases there is good agreement, but in some 
the experimental entropy is less than the calculated value. One possibility is that the
experimental determination failed to take a phase transition into account (and a con-
tribution of the form ∆trsH/Ttrs incorrectly omitted from the sum). Another possibility
is that some disorder is present in the solid even at T = 0. The entropy at T = 0 is then
greater than zero and is called the residual entropy.

The origin and magnitude of the residual entropy can be explained by considering
a crystal composed of AB molecules, where A and B are similar atoms (such as CO,
with its very small electric dipole moment). There may be so little energy difference
between . . .AB AB AB AB. . . , . . .AB BA BA AB. . . , and other arrangements that the
molecules adopt the orientations AB and BA at random in the solid. We can readily
calculate the entropy arising from residual disorder by using the Boltzmann formula
S = k ln W. To do so, we suppose that two orientations are equally probable, and that
the sample consists of N molecules. Because the same energy can be achieved in 2N

different ways (because each molecule can take either of two orientations), the total
number of ways of achieving the same energy is W = 2N. It follows that

S = k ln 2N = Nk ln 2 = nR ln 2 (17.52a)
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Fig. 17.17 The possible locations of H atoms
around a central O atom in an ice crystal
are shown by the white spheres. Only one
of the locations on each bond may be
occupied by an atom, and two H atoms
must be close to the O atom and two H
atoms must be distant from it.

Fig. 17.18 The six possible arrangements of 
H atoms in the locations identified in 
Fig. 17.17. Occupied locations are denoted
by red spheres and unoccupied locations 
by white spheres.

We can therefore expect a residual molar entropy of R ln 2 = 5.8 J K−1 mol−1 for solids
composed of molecules that can adopt either of two orientations at T = 0. If s orienta-
tions are possible, the residual molar entropy will be

Sm = R ln s (17.52b)

An FClO3 molecule, for example, can adopt four orientations with about the same 
energy (with the F atom at any of the four corners of a tetrahedron), and the calculated
residual molar entropy of R ln 4 = 11.5 J K−1 mol−1 is in good agreement with the 
experimental value (10.1 J K−1 mol−1). For CO, the measured residual entropy is 
5 J K−1 mol−1, which is close to R ln 2, the value expected for a random structure of the
form . . .CO CO OC CO OC OC. . . .

Illustration 17.2 Calculating a residual entropy

Consider a sample of ice with N H2O molecules. Each O atom is surrounded tetra-
hedrally by four H atoms, two of which are attached by short σ bonds, the other
two being attached by long hydrogen bonds (Fig. 17.17). It follows that each of the
2N H atoms can be in one of two positions (either close to or far from an O atom
as shown in Fig. 17.18), resulting in 22N possible arrangements. However, not all
these arrangements are acceptable. Indeed, of the 24 = 16 ways of arranging four H
atoms around one O atom, only 6 have two short and two long OH distances and
hence are acceptable. Therefore, the number of permitted arrangements is

W = 22N( 6–16)N = ( 3–2)N

It then follows that the residual molar entropy is

Sm(0) ≈ k ln( 3–2)NA = NAk ln( 3–2) = R ln( 3–2) = 3.4 J K−1 mol−1

which is in good agreement with the experimental value of 3.4 J K−1 mol−1. The
model, however, is not exact because it ignores the possibility that next-nearest
neighbours and those beyond can influence the local arrangement of bonds.

17.8 Equilibrium constants

The Gibbs energy of a gas of independent molecules is given by eqn 17.9 in terms 
of the molar partition function, qm = q/n. The equilibrium constant K of a reaction is
related to the standard Gibbs energy of reaction by ∆rG

7 = −RT ln K. To calculate the
equilibrium constant, we need to combine these two equations. We shall consider gas
phase reactions in which the equilibrium constant is expressed in terms of the partial
pressures of the reactants and products.
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(a) The relation between K and the partition function

To find an expression for the standard reaction Gibbs energy we need expressions 
for the standard molar Gibbs energies, G 7/n, of each species. For these expressions, 
we need the value of the molar partition function when p = p7 (where p7 = 1 bar): we
denote this standard molar partition function q 7

m. Because only the translational
component depends on the pressure, we can find q 7

m by evaluating the partition func-
tion with V replaced by V 7

m, where V 7
m = RT/p7. For a species J it follows that

G 7
m(J) = G 7

m(J,0) − RT ln (17.53)°

where q 7
J,m is the standard molar partition function of J. By combining expressions 

like this one (as shown in the Justification below), the equilibrium constant for the 
reaction

a A + b B → c C + d D

is given by the expression

K = e−∆rE0/RT (17.54a)

where ∆rE0 is the difference in molar energies of the ground states of the products and
reactants (this term is defined more precisely in the Justification), and is calculated
from the bond dissociation energies of the species (Fig. 17.19). In terms of the 
stoichiometric numbers introduced in Section 7.2, we would write

K = Π
J

νJ

e−∆rE0/RT (17.54b)

Justification 17.4 The equilibrium constant in terms of the partition function 1

The standard molar reaction Gibbs energy for the reaction is

∆rG
7 = cG 7

m(C) + dG 7
m(D) − aG 7

m(A) − bG 7
m(B)

= cG 7
m(C,0) + dG 7

m(D,0) − aG 7
m(A,0) − bG 7

m(B,0)

− RT c ln + d ln − a ln − b ln

Because G(0) = U(0), the first term on the right is

∆rE0 = cU 7
m(C,0) + dU 7

m(D,0) − aU 7
m(A,0) − bU 7

m(B,0) (17.55)

the reaction internal energy at T = 0 (a molar quantity).
Now we can write

∆rG
7 = ∆r E0 − RT ln

c

+ ln

d

− ln

a

− ln

b

= ∆r E0 − RT ln

= −RT + ln

At this stage we can pick out an expression for K by comparing this equation with
∆rG

7 = −RT ln K, which gives
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Fig. 17.19 The definition of ∆rE0 for the
calculation of equilibrium constants.
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ln K = − + ln

This expression is easily rearranged into eqn 17.54a by forming the exponential of
both sides.

(b) A dissociation equilibrium

We shall illustrate the application of eqn 17.54 to an equilibrium in which a diatomic
molecule X2 dissociates into its atoms:

X2(g) 5 2 X(g) K =

According to eqn 17.54 (with a = 1, b = 0, c = 2, and d = 0):

K = e−∆rE0/RT = e−∆rE0/RT (17.56a)

with

∆rE0 = 2U 7
m(X,0) − U 7

m(X2,0) = D0(X-X) (17.56b)

where D0(X-X) is the dissociation energy of the X-X bond. The standard molar par-
tition functions of the atoms X are

q 7
X,m = gX =

where gX is the degeneracy of the electronic ground state of X and we have used V 7
m =

RT/p7. The diatomic molecule X2 also has rotational and vibrational degrees of free-
dom, so its standard molar partition function is

q 7
X2,m = gX2

qR
X2

qV
X2

=

where gX2
is the degeneracy of the electronic ground state of X2. It follows from eqn

17.54 that the equilibrium constant is

K = e−D0/RT (17.57)

where we have used R/NA = k. All the quantities in this expression can be calculated
from spectroscopic data. The Λs are defined in Table 17.3 and depend on the masses
of the species and the temperature; the expressions for the rotational and vibrational
partition functions are also available in Table 17.3 and depend on the rotational con-
stant and vibrational wavenumber of the molecule.

Example 17.6 Evaluating an equilibrium constant

Evaluate the equilibrium constant for the dissociation Na2(g) 5 2 Na(g) at 1000 K
from the following data: B = 0.1547 cm−1, # = 159.2 cm−1, D0 = 70.4 kJ mol−1. The
Na atoms have doublet ground terms.

Method The partition functions required are specified in eqn 17.54. They are 
evaluated by using the expressions in Table 17.3. For a homonuclear diatomic
molecule, σ = 2. In the evaluation of kT/p7 use p7 = 105 Pa and 1 Pa m3 = 1 J.
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	E0

R

P

Fig. 17.20 The array of R(eactants) and
P(roducts) energy levels. At equilibrium 
all are accessible (to differing extents,
depending on the temperature), and the
equilibrium composition of the system
reflects the overall Bolzmann distribution
of populations. As ∆E0 increases, R
becomes dominant.

Comment 17.3

For an R 5 P equilibrium, the V factors
in the partition functions cancel, so the
appearance of q in place of q7 has no
effect. In the case of a more general
reaction, the conversion from q to q7

comes about at the stage of converting
the pressures that occur in K to numbers
of molecules.

Answer The partition functions and other quantities required are as follows:

Λ(Na2) = 8.14 pm Λ(Na) = 11.5 pm

q R (Na2) = 2246 qV(Na2 ) = 4.885

g(Na) = 2 g(Na2 ) = 1

Then, from eqn 17.54,

K = × e− 8.47

= 2.42

where we have used 1 J = 1 kg m2 s−2 and 1 Pa = 1 kg m−1 s−1.

Self-test 17.7 Evaluate K at 1500 K. [52]

(c) Contributions to the equilibrium constant

We are now in a position to appreciate the physical basis of equilibrium constants. To
see what is involved, consider a simple R 5 P gas-phase equilibrium (R for reactants,
P for products).

Figure 17.20 shows two sets of energy levels; one set of states belongs to R, and 
the other belongs to P. The populations of the states are given by the Boltzmann dis-
tribution, and are independent of whether any given state happens to belong to R or
to P. We can therefore imagine a single Boltzmann distribution spreading, without 
distinction, over the two sets of states. If the spacings of R and P are similar (as in 
Fig. 17.20), and P lies above R, the diagram indicates that R will dominate in the 
equilibrium mixture. However, if P has a high density of states (a large number of
states in a given energy range, as in Fig. 17.21), then, even though its zero-point energy
lies above that of R, the species P might still dominate at equilibrium.

It is quite easy to show (see the Justification below) that the ratio of numbers of R
and P molecules at equilibrium is given by

= e−∆rE0/RT (17.58a)

and therefore that the equilibrium constant for the reaction is

K = e−∆rE0/RT (17.58b)

just as would be obtained from eqn 17.54.

Justification 17.5 The equilibrium constant in terms of the partition function 2

The population in a state i of the composite (R,P) system is

ni =

where N is the total number of molecules. The total number of R molecules is 
the sum of these populations taken over the states belonging to R; these states we
label r with energies εr. The total number of P molecules is the sum over the states

Ne−βεi

q

qP

qR

qP

qR

NP

NR

(1.38 × 10−23 J K−1) × (1000 K) × 4 × (8.14 × 10−12 m)3

(105 Pa) × 2246 × 4.885 × (1.15 × 10−11 m)6
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belonging to P; these states we label p with energies εp′ (the prime is explained in a
moment):

NR = ∑
r

nr = ∑
r

e−βεr NP = ∑
p

np = ∑
p

e−βε ′p

The sum over the states of R is its partition function, qR, so

NR =

The sum over the states of P is also a partition function, but the energies are meas-
ured from the ground state of the combined system, which is the ground state of R.
However, because ε′p = εp + ∆ε0, where ∆ε0 is the separation of zero-point energies
(as in Fig. 17.21),

NP = ∑
p

e−β(εp+∆ε0) = ∑
p

e−βεp e−β∆ε0 = e−∆rE0/RT

The switch from ∆ε0 /k to ∆r E0 /R in the last step is the conversion of molecular 
energies to molar energies.

The equilibrium constant of the R 5 P reaction is proportional to the ratio of the
numbers of the two types of molecule. Therefore,

K = = e−∆rE0/RT

as in eqn 17.58b.

The content of eqn 17.58 can be seen most clearly by exaggerating the molecular
features that contribute to it. We shall suppose that R has only a single accessible level,
which implies that qR = 1. We also suppose that P has a large number of evenly, closely
spaced levels (Fig. 17.22). The partition function of P is then qP = kT/ε. In this model
system, the equilibrium constant is

K = e−∆rE0/RT (17.59)

When ∆rE0 is very large, the exponential term dominates and K << 1, which implies
that very little P is present at equilibrium. When ∆r E0 is small but still positive, K can
exceed 1 because the factor kT/ε may be large enough to overcome the small size of the
exponential term. The size of K then reflects the predominance of P at equilibrium on
account of its high density of states. At low temperatures K << 1 and the system con-
sists entirely of R. At high temperatures the exponential function approaches 1 and
the pre-exponential factor is large. Hence P becomes dominant. We see that, in this
endothermic reaction (endothermic because P lies above R), a rise in temperature
favours P, because its states become accessible. This behaviour is what we saw, from
the outside, in Chapter 7.

The model also shows why the Gibbs energy, G, and not just the enthalpy, deter-
mines the position of equilibrium. It shows that the density of states (and hence the
entropy) of each species as well as their relative energies controls the distribution of
populations and hence the value of the equilibrium constant.
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Fig. 17.21 It is important to take into
account the densities of states of the
molecules. Even though P might lie well
above R in energy (that is, ∆E0 is large and
positive), P might have so many states that
its total population dominates in the
mixture. In classical thermodynamic terms,
we have to take entropies into account as
well as enthalpies when considering
equilibria.
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�

Fig. 17.22 The model used in the text for
exploring the effects of energy separations
and densities of states on equilibria. The
products P can dominate provided ∆E0 is
not too large and P has an appreciable
density of states.
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Checklist of key ideas

1. The molecular partition function can be written as q =
qTqRqVqE, with the contributions summarized in Table 17.3.

2. Thermodynamic functions can be expressed in terms of the
partition function as summarized in Table 17.4.

3. The mean energy of a mode is �εM� = −(1/q M)(∂q M/∂β)V, with
the contributions from each mode summarized in Table 17.5.

4. The contribution of a mode M to the constant-volume heat
capacity is C M

V = −Nkβ(∂�ε M�/∂β)V , with the contributions
from each mode summarized in Table 17.5.

5. The overall heat capacity is written as CV,m = 1–
2(3 + νR* + 2νV*)R

6. The canonical partition function of a gas is Q = Z /Λ3N, where
Z is the configuration integral: Z = V N/N! for a perfect gas,
and Z = (1/N!)∫e−βEP dτ1dτ2 . . . dτN for a real gas.

7. In the virial equation of state, the second virial coefficient
can be written as B = −(NA/2V)∫fdτ1dτ2, where the Mayer 
f-function is f = e−βEP − 1.

8. The radial distribution function, g(r), where g(r)r 2dr, is the
probability that a molecule will be found in the range dr at a
distance r from another molecule. The internal energy and
pressure of a fluid may be expressed in terms of the radial
distribution function (eqns 17.50 and 17.51, respectively).

9. The residual entropy is a non-zero entropy at T = 0 arising
from molecular disorder.

10. The equilibrium constant can be written in terms of the
partition function (eqn 17.54).

Further reading

Articles and texts

D. Chandler, Introduction to modern statistical mechanics. Oxford
University Press (1987).

K.A. Dill and S. Bromberg, Molecular driving forces: statistical
thermodynamics in chemistry and biology. Garland Publishing
(2002).

T.L. Hill, An introduction to statistical thermodynamics. Dover, New
York (1986).

D.A. McQuarrie and J.D. Simon, Molecular thermodynamics.
University Science Books, Sausalito (1999).

B. Widom, Statistical mechanics: a concise introduction for chemists.
Cambridge University Press (2002).

Table 17.3 Contributions to the molecular partition function

Mode Expression Value

Translation qT = Λ = Λ /pm =

= = 2.561 × 10−2(T/K)5/2(M/g mol−1)3/2

Rotation

Linear molecules qR = = θR = qR = ×

Nonlinear molecules qR =
3/2 1/2

qR = ×

Vibration qV = =

θV = =

For T >> θV, qV = = qV = 0.695 ×

Electronic qE = g0 [+ higher terms]

where g0 is the degeneracy of the 
electronic ground state

Note that β = 1/kT.

T/K

#/cm−1

T

θV

kT

hc#

hν
k

hc#
k

1

1 − e−θ V/T

1

1 − e−hc#/kT

(T/K)3/2

(ABC/cm−3)1/2

1.0270

σ
DEF

π
ABC

ABC
DEF

kT

hc

ABC
1

σ

T/K

(B/cm−1)

0.6950

σ
hcB

k

T

θR

kT

σhcB

qT7
m

NA

kT

p7Λ3

qT7
m

NA

1749

(T/K)1/2(M/g mol−1)1/2

h

(2πmkT)1/2

V

Λ3

Zhonghuai
高亮

Zhonghuai
高亮

Zhonghuai
高亮
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Table 17.5 Contributions to mean energies and heat capacities

Mode Expression

Mean energy Heat capacity*

General mode, M �εM� = −
V

= −
V

CV
M = −Nkβ2

V

Translation �εT� = 3–
2kT C T

V = 3–
2nR

Rotation (T >> θR) �εR� = kT, linear molecules CR = nR, linear molecules

�εR� = 3–
2kT, nonlinear molecules CR = 3–

2nR, nonlinear molecules

Vibration �εV� = = CV = nRf,

f =
2

Vibration (T >> θV) �εV� = kT CV = nR

* No distinction need be made between CV and Cp for internal modes.

e−θ V/T

(1 − e−θ V/T )2

DEF
θV

T

ABC

hν
e−θV/T − 1

hcν
e−θV/T − 1

DEF
∂�εM�

∂β
ABC

DEF
∂qM

∂β
ABC

1

qM

DEF
∂ ln qM

∂β
ABC

Table 17.4 Thermodynamic functions in terms of the partition function

Function Expression

General case Independent molecules*

Internal energy U(T) − U(0) = −
V

U(T) − U(0) = −N
V

Entropy S = + k ln Q S = + Nk ln q (a)

S = + Nk ln (b)

Helmholtz energy A(T) − A(0) = −kT ln Q A(T) − A(0) = −NkT ln q (a)

A(T) − A(0) = −NkT ln (b)

Pressure p = kT
T

p = NkT
T

(b)

Enthalpy H(T) − H(0) = −
V

+ kTV
T

H(T) − H(0) = −N
V

+ NkTV
T

Gibbs energy G(T ) − G(0) = −kT ln Q + kTV
T

G(T) − G(0) = −NkT ln q + NkTV
T

(a)

G(T) − G(0) = −NkT ln + NkTV
T

(b)

* (a) is for distinguishable particles (from Q = qN ), (b) for indistinquishable particles (from Q = qN/N !).

DEF
∂ ln q

∂V

ABC
eq

N

DEF
∂ ln q

∂V

ABC
DEF

∂ ln Q

∂V

ABC

DEF
∂ ln q

∂V

ABC
DEF

∂ ln q

∂β
ABC

DEF
∂ ln Q

∂V

ABC
DEF

∂ ln Q

∂β
ABC

DEF
∂ ln q

∂V

ABC
DEF

∂ ln Q

∂V

ABC

eq

N

eq

N

U(T) − U(0)

T

U(T) − U(0)

T

U(T) − U(0)

T

DEF
∂ ln q

∂β
ABC

DEF
∂ ln Q

∂β
ABC
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Discussion questions

17.1 Discuss the limitations of the expressions qR = kT/hcB, qV = kT/hc#, and
qE = g E.

17.2 Explain the origin of the symmetry number.

17.3 Explain the origin of residual entropy.

17.4 Use concepts of statistical thermodynamics to describe the molecular
features that determine the magnitudes of the constant-volume molar heat
capacity of a molecular substance.

17.5 Use concepts of statistical thermodynamics to describe the molecular
features that lead to the equations of state of perfect and real gases.

17.6 Describe how liquids are investigated by using concepts of statistical
thermodynamics.

17.7 Use concepts of statistical thermodynamics to describe the molecular
features that determine the magnitudes of equilibrium constants and their
variation with temperature.

Exercises

17.1a Use the equipartition theorem to estimate the constant-volume molar
heat capacity of (a) I2, (b) CH4, (c) C6H6 in the gas phase at 25°C.

17.1b Use the equipartition theorem to estimate the constant-volume molar
heat capacity of (a) O3, (b) C2H6, (c) CO2 in the gas phase at 25°C.

17.2a Estimate the values of γ = Cp /CV for gaseous ammonia and methane.
Do this calculation with and without the vibrational contribution to the
energy. Which is closer to the expected experimental value at 25°C?

17.2b Estimate the value of γ = Cp /CV for carbon dioxide. Do this calculation
with and without the vibrational contribution to the energy. Which is closer to
the expected experimental value at 25°C?

17.3a Estimate the rotational partition function of HCl at (a) 25°C and (b) 250°C.

17.3b Estimate the rotational partition function of O2 at (a) 25°C and (b) 250°C.

17.4a Give the symmetry number for each of the following molecules: 
(a) CO, (b) O2, (c) H2S, and (d) SiH4, (e) CHCl3.

17.4b Give the symmetry number for each of the following molecules: 
(a) CO2, (b) O3, (c) SO3, (d) SF6, and (e) Al2Cl6.

17.5a Calculate the rotational partition function of H2O at 298 K from its
rotational constants 27.878 cm−1, 14.509 cm−1, and 9.287 cm−1. Above 
what temperature is the high-temperature approximation valid to within 
10 per cent of the true value?

17.5b Calculate the rotational partition function of SO2 at 298 K from its
rotational constants 2.027 36 cm−1, 0.344 17 cm−1, and 0.293 535 cm−1. Above
what temperature is the high-temperature approximation valid to within 
10 per cent of the true value?

17.6a From the results of Exercise 17.5a, calculate the rotational contribution
to the molar entropy of gaseous water at 25°C.

17.6b From the results of Exercise 17.5b, calculate the rotational contribution
to the molar entropy of sulfur dioxide at 25°C.

17.7a Calculate the rotational partition function of CH4 (a) by direct
summation of the energy levels at 298 K and 500 K, and (b) by the high-
temperature approximation. Take B = 5.2412 cm−1.

17.7b Calculate the rotational partition function of CH3CN (a) by direct
summation of the energy levels at 298 K and 500 K, and (b) by the high-
temperature approximation. Take A = 5.28 cm−1 and B = 0.307 cm−1.

17.8a The bond length of O2 is 120.75 pm. Use the high-temperature
approximation to calculate the rotational partition function of the molecule 
at 300 K.

17.8b The NOF molecule is an asymmetric rotor with rotational constants
3.1752 cm−1, 0.3951 cm−1, and 0.3505 cm−1. Calculate the rotational partition
function of the molecule at (a) 25°C, (b) 100°C.

17.9a Plot the molar heat capacity of a collection of harmonic oscillators 
as a function of T/θV, and predict the vibrational heat capacity of ethyne at 
(a) 298 K, (b) 500 K. The normal modes (and their degeneracies in parentheses)
occur at wavenumbers 612(2), 729(2), 1974, 3287, and 3374 cm−1.

17.9b Plot the molar entropy of a collection of harmonic oscillators as a
function of T/θV, and predict the standard molar entropy of ethyne at 
(a) 298 K, (b) 500 K. For data, see the preceding exercise.

17.10a A CO2 molecule is linear, and its vibrational wavenumbers are 1388.2
cm−1, 667.4 cm−1, and 2349.2 cm−1, the last being doubly degenerate and the
others non-degenerate. The rotational constant of the molecule is 0.3902 cm−1.
Calculate the rotational and vibrational contributions to the molar Gibbs
energy at 298 K.

17.10b An O3 molecule is angular, and its vibrational wavenumbers are 
1110 cm−1, 705 cm−1, and 1042 cm−1. The rotational constants of the molecule
are 3.553 cm−1, 0.4452 cm−1, and 0.3948 cm−1. Calculate the rotational and
vibrational contributions to the molar Gibbs energy at 298 K.

17.11a The ground level of Cl is 2P3/2 and a 2P1/2 level lies 881 cm−1 above it.
Calculate the electronic contribution to the heat capacity of Cl atoms at 
(a) 500 K and (b) 900 K.

17.11b The first electronically excited state of O2 is 1∆ g and lies 7918.1 cm−1

above the ground state, which is 3Σg
−. Calculate the electronic contribution to

the molar Gibbs energy of O2 at 400 K.

17.12a The ground state of the Co2+ ion in CoSO4·7H2O may be regarded as
4 T9/2. The entropy of the solid at temperatures below 1 K is derived almost
entirely from the electron spin. Estimate the molar entropy of the solid at
these temperatures.

17.12b Estimate the contribution of the spin to the molar entropy of a solid
sample of a d-metal complex with S = 5–

2 .

17.13a Calculate the residual molar entropy of a solid in which the molecules
can adopt (a) three, (b) five, (c) six orientations of equal energy at T = 0.

17.13b Suppose that the hexagonal molecule C6HnF6 −n has a residual entropy
on account of the similarity of the H and F atoms. Calculate the residual for
each value of n.

17.14a Calculate the equilibrium constant of the reaction I2(g) 5 2 I(g) at
1000 K from the following data for I2: # = 214.36 cm−1, B = 0.0373 cm−1,
De = 1.5422 eV. The ground state of the I atoms is 2P3/2, implying fourfold
degeneracy.

17.14b Calculate the value of K at 298 K for the gas-phase isotopic exchange
reaction 2 79Br81Br 79Br79 5 Br + 81Br81Br. The Br2 molecule has a non-
degenerate ground state, with no other electronic states nearby. Base the
calculation on the wavenumber of the vibration of 79Br81Br, which is 323.33 cm−1.
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Problems*

Numerical problems

17.1 The NO molecule has a doubly degenerate electronic ground state 
and a doubly degenerate excited state at 121.1 cm−1. Calculate the electronic
contribution to the molar heat capacity of the molecule at (a) 50 K, (b) 298 K,
and (c) 500 K.

17.2 Explore whether a magnetic field can influence the heat capacity of a
paramagnetic molecule by calculating the electronic contribution to the heat
capacity of an NO2 molecule in a magnetic field. Estimate the total constant-
volume heat capacity using equipartition, and calculate the percentage change
in heat capacity brought about by a 5.0 T magnetic field at (a) 50 K, (b) 298 K.

17.3 The energy levels of a CH3 group attached to a larger fragment are given
by the expression for a particle on a ring, provided the group is rotating freely.
What is the high-temperature contribution to the heat capacity and entropy 
of such a freely rotating group at 25°C? The moment of inertia of CH3 about
its three-fold rotation axis (the axis that passes through the C atom and 
the centre of the equilateral triangle formed by the H atoms) is 5.341 ×
10−47 kg m2).

17.4 Calculate the temperature dependence of the heat capacity of p-H2

(in which only rotational states with even values of J are populated) at low
temperatures on the basis that its rotational levels J = 0 and J = 2 constitute a
system that resembles a two-level system except for the degeneracy of the
upper level. Use B = 60.864 cm−1 and sketch the heat capacity curve. The
experimental heat capacity of p-H2 does in fact show a peak at low
temperatures.

17.5 The pure rotational microwave spectrum of HCl has absorption lines 
at the following wavenumbers (in cm−1): 21.19, 42.37, 63.56, 84.75, 105.93,
127.12 148.31 169.49, 190.68, 211.87, 233.06, 254.24, 275.43, 296.62, 317.80,
338.99, 360.18, 381.36, 402.55, 423.74, 444.92, 466.11, 487.30, 508.48.
Calculate the rotational partition function at 25°C by direct summation.

17.6 Calculate the standard molar entropy of N2(g) at 298 K from its
rotational constant B = 1.9987 cm−1 and its vibrational wavenumber 
# = 2358 cm−1. The thermochemical value is 192.1 J K−1 mol−1. What does 
this suggest about the solid at T = 0?

17.7‡ J.G. Dojahn, E.C.M. Chen, and W.E. Wentworth (J. Phys. Chem. 100,
9649 (1996)) characterized the potential energy curves of the ground and
electronic states of homonuclear diatomic halogen anions. The ground state
of F2

− is 2Σu
+ with a fundamental vibrational wavenumber of 450.0 cm−1 and

equilibrium internuclear distance of 190.0 pm. The first two excited states are
at 1.609 and 1.702 eV above the ground state. Compute the standard molar
entropy of F2

− at 298 K.

17.8‡ In a spectroscopic study of buckminsterfullerene C60, F. Negri, 
G. Orlandi, and F. Zerbetto ( J. Phys. Chem. 100, 10849 (1996)) reviewed the
wavenumbers of all the vibrational modes of the molecule. The wavenumber
for the single Au mode is 976 cm−1; wavenumbers for the four threefold
degenerate T1u modes are 525, 578, 1180, and 1430 cm−1; wavenumbers 
for the five threefold degenerate T2u modes are 354, 715, 1037, 1190, and 
1540 cm−1; wavenumbers for the six fourfold degenerate Gu modes are 345,
757, 776, 963, 1315, and 1410 cm−1; and wavenumbers for the seven fivefold
degenerate Hu modes are 403, 525, 667, 738, 1215, 1342, and 1566 cm−1. How
many modes have a vibrational temperature θV below 1000 K? Estimate the
molar constant-volume heat capacity of C60 at 1000 K, counting as active all
modes with θV below this temperature.

17.9‡ Treat carbon monoxide as a perfect gas and apply equilibrium
statistical thermodynamics to the study of its properties, as specified below, in
the temperature range 100–1000 K at 1 bar. # = 2169.8 cm−1, B =1.931 cm−1,
and D0 = 11.09 eV; neglect anharmonicity and centrifugal distortion. 
(a) Examine the probability distribution of molecules over available rotational
and vibrational states. (b) Explore numerically the differences, if any, between
the rotational molecular partition function as calculated with the discrete
energy distribution and that calculated with the classical, continuous energy
distribution. (c) Calculate the individual contributions to Um(T) − Um

(100 K), CV,m(T), and Sm(T) − Sm(100 K) made by the translational,
rotational, and vibrational degrees of freedom.

17.10 Calculate and plot as a function of temperature, in the range 300 K 
to 1000 K, the equilibrium constant for the reaction CD4(g) + HCl(g) 5
CHD3(g) + DCl(g) using the following data (numbers in parentheses are
degeneracies): #(CHD3)/cm−1 = 2993(1), 2142(1), 1003(3), 1291(2), 1036(2);
#(CD4)/cm−1 = 2109(1), 1092(2), 2259(3), 996(3); #(HCl)/cm−1 = 2991;
#(DCl)/cm−1 = 2145; B(HCl)/cm−1 = 10.59; B(DCl)/cm−1 = 5.445;
B(CHD3)/cm−1 = 3.28; A(CHD3)/cm−1 = 2.63, B(CD4)/cm−1 = 2.63.

17.11 The exchange of deuterium between acid and water is an important
type of equilibrium, and we can examine it using spectroscopic data on the
molecules. Calculate the equilibrium constant at (a) 298 K and (b) 800 K 
for the gas-phase exchange reaction H2O + DCl 5 HDO + HCl from the
following data: #(H2O)/cm−1 = 3656.7, 1594.8, 3755.8; #(HDO)/cm−1 =
2726.7, 1402.2, 3707.5; A(H2O)/cm−1 = 27.88; B(H2O)/cm−1 = 14.51;
C(H2O)/cm−1 = 9.29; A(HDO)/cm−1 = 23.38; B(HDO)/cm−1 = 9.102;
C(HDO)/cm−1 = 6.417; B(HCl)/cm−1 = 10.59; B(DCl)/cm−1 = 5.449;
#(HCl)/cm−1 = 2991; #(DCl)/cm−1 = 2145.

Theoretical problems

17.12 Derive the Sackur–Tetrode equation for a monatomic gas confined to 
a two-dimensional surface, and hence derive an expression for the standard
molar entropy of condensation to form a mobile surface film.

17.13‡ For H2 at very low temperatures, only translational motion
contributes to the heat capacity. At temperatures above θR = hcB/k, the
rotational contribution to the heat capacity becomes significant. At still higher
temperatures, above θV = hν/k, the vibrations contribute. But at this latter
temperature, dissociation of the molecule into the atoms must be considered.
(a) Explain the origin of the expressions for θR and θV, and calculate their
values for hydrogen. (b) Obtain an expression for the molar constant-pressure
heat capacity of hydrogen at all temperatures taking into account the
dissociation of hydrogen. (c) Make a plot of the molar constant-pressure heat
capacity as a function of temperature in the high-temperature region where
dissociation of the molecule is significant.

17.14 Derive expressions for the internal energy, heat capacity, entropy,
Helmholtz energy, and Gibbs energy of a harmonic oscillator. Express the
results in terms of the vibrational temperature, θV and plot graphs of each
property against T/θV.

17.15 Suppose that an intermolecular potential has a hard-sphere core of
radius r1 and a shallow attractive well of uniform depth ε out to a distance r2.
Show, by using eqn 17.42 and the condition ε << kT, that such a model is
approximately consistent with a van der Waals equation of state when 
b << Vm, and relate the van der Waals parameters and the Joule–Thomson
coefficient to the parameters in this model.

* Problems denoted with the symbol ‡ were supplied by Charles Trapp, Carmen Giunta, and Marshall Cady.
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17.16‡ (a) Show that the number of molecules in any given rotational state 
of a linear molecule is given by NJ = C(2J + 1)e−hcBJ( J+1)/kT, where C is
independent of J. (b) Use this result to derive eqn 13.39 for the value of J of
the most highly populated rotational level. (c) Estimate the temperature at
which the spectrum of HCl shown in Fig. 13.44 was obtained. (d) What is the
most highly populated level of a spherical rotor at a temperature T?

17.17 A more formal way of arriving at the value of the symmetry number is
to note that σ is the order (the number of elements) of the rotational subgroup
of the molecule, the point group of the molecule with all but the identity and
the rotations removed. The rotational subgroup of H2O is {E, C2}, so σ = 2.
The rotational subgroup of NH3 is {E, 2C3}, so σ = 3. This recipe makes it 
easy to find the symmetry numbers for more complicated molecules. The
rotational subgroup of CH4 is obtained from the T character table as {E, 8C3,
3C2}, so σ = 12. For benzene, the rotational subgroup of D6h is {E, 2C6, 2C3,
C2, 3C2′ , 3C 2″}, so σ = 12. (a) Estimate the rotational partition function of
ethene at 25°C given that A = 4.828 cm−1, B = 1.0012 cm−1, and C = 0.8282 cm−1.
(b) Evaluate the rotational partition function of pyridine, C5H5N, at room
temperature (A = 0.2014 cm−1, B = 0.1936 cm−1, C = 0.0987 cm−1).

17.18 Although expressions like �ε � = −d ln q/dβ are useful for formal
manipulations in statistical thermodynamics, and for expressing
thermodynamic functions in neat formulas, they are sometimes more trouble
than they are worth in practical applications. When presented with a table of
energy levels, it is often much more convenient to evaluate the following sums
directly:

q = ∑
j

e−βεj ≥ = ∑
j

βεje
−βεj ” = ∑

j

(βεj)
2e−βεj

(a) Derive expressions for the internal energy, heat capacity, and entropy in
terms of these three functions. (b) Apply the technique to the calculation of
the electronic contribution to the constant-volume molar heat capacity of
magnesium vapour at 5000 K using the following data:

Term 1S 3P0
3P1

3P2
1P1

3S1

Degeneracy 1 1 3 5 3 3

#/cm−1 0 21 850 21 870 21 911 35 051 41 197

17.19 Show how the heat capacity of a linear rotor is related to the following
sum:

ζ(β) = ∑
J,J′

{ε( J) − ε( J′ )}2g( J)g( J′ )e−β{ε ( J)+ε ( J′ )}

by

C = 1–
2 Nkβ2ζ(β)

where the ε(J) are the rotational energy levels and g( J) their degeneracies.
Then go on to show graphically that the total contribution to the heat capacity
of a linear rotor can be regarded as a sum of contributions due to transitions
0→1, 0→2, 1→2, 1→3, etc. In this way, construct Fig. 17.11 for the rotational
heat capacities of a linear molecule.

17.20 Set up a calculation like that in Problem 17.19 to analyse the vibrational
contribution to the heat capacity in terms of excitations between levels and
illustrate your results graphically in terms of a diagram like that in Fig. 17.11.

17.21 Determine whether a magnetic field can influence the value of an
equilibrium constant. Consider the equilibrium I2(g) 5 2 I(g) at 1000 K, and
calculate the ratio of equilibrium constants K(B)/K, where K(B) is the
equilibrium constant when a magnetic field B is present and removes the
degeneracy of the four states of the 2P3/2 level. Data on the species are given in
Exercise 17.14a. The electronic g value of the atoms is 4–

3. Calculate the field
required to change the equilibrium constant by 1 per cent.

1

q2

17.22 The heat capacity ratio of a gas determines the speed of sound in it
through the formula cs = (γRT/M)1/2, where γ = Cp /CV and M is the molar
mass of the gas. Deduce an expression for the speed of sound in a perfect gas
of (a) diatomic, (b) linear triatomic, (c) nonlinear triatomic molecules at high
temperatures (with translation and rotation active). Estimate the speed of
sound in air at 25°C.

Applications: to biology, materials science, environmental
science, and astrophysics

17.23 An average human DNA molecule has 5 × 108 binucleotides (rungs on
the DNA ladder) of four different kinds. If each rung were a random choice of
one of these four possibilities, what would be the residual entropy associated
with this typical DNA molecule?

17.24 It is possible to write an approximate expression for the partition
function of a protein molecule by including contributions from only two
states: the native and denatured forms of the polymer. Proceeding with this
crude model gives us insight into the contribution of denaturation to the heat
capacity of a protein. It follows from Illustration 16.4 that the total energy of a
system of N protein molecules is

E =

where ε is the energy separation between the denatured and native forms. 
(a) Show that the constant-volume molar heat capacity is

CV,m =

Hint. For two functions f and g, the quotient rule of differentiation states 
that d( f /g)/dx = (1/g)df /dx − ( f /g 2)dg /dx. (b) Plot the variation of CV,m with
temperature. (c) If the function CV,m(T) has a maximum or minimum, derive
an expression for the temperature at which it occurs.

17.25‡ R. Viswanathan, R.W. Schmude, Jr., and K.A. Gingerich (J. Phys.
Chem. 100, 10784 (1996)) studied thermodynamic properties of several
boron–silicon gas-phase species experimentally and theoretically. These
species can occur in the high-temperature chemical vapour deposition (CVD)
of silicon-based semiconductors. Among the computations they reported was
computation of the Gibbs energy of BSi(g) at several temperatures based on 
a 4Σ− ground state with equilibrium internuclear distance of 190.5 pm and
fundamental vibrational wavenumber of 772 cm−1 and a 2P0 first excited level
8000 cm−1 above the ground level. Compute the standard molar Gibbs energy
G 7

m(2000 K) − G 7
m(0).

17.26‡ The molecule Cl2O2, which is believed to participate in the seasonal
depletion of ozone over Antarctica, has been studied by several means. 
M. Birk, R.R. Friedl, E.A. Cohen, H.M. Pickett, and S.P. Sander (J. Chem.
Phys. 91, 6588 (1989)) report its rotational constants (actually cB) as 13 109.4,
2409.8, and 2139.7 MHz. They also report that its rotational spectrum
indicates a molecule with a symmetry number of 2. J. Jacobs, M. Kronberg,
H.S.P. Möller, and H. Willner (J. Amer. Chem. Soc. 116, 1106 (1994)) report
its vibrational wavenumbers as 753, 542, 310, 127, 646, and 419 cm−1.
Compute G 7

m(200 K) − G 7
m(0) of Cl2O2.

17.27‡ J. Hutter, H.P. Lüthi, and F. Diederich (J. Amer. Chem. Soc. 116, 750
(1994)) examined the geometric and vibrational structure of several carbon
molecules of formula Cn. Given that the ground state of C3, a molecule found
in interstellar space and in flames, is an angular singlet with moments of
inertia 39.340, 39.032, and 0.3082 u Å2 (where 1 Å = 10−10 m) and with
vibrational wavenumbers of 63.4, 1224.5, and 2040 cm−1, compute 
G 7

m(10.00 K) − G 7
m(0) and G 7

m(1000 K) − G 7
m(0) for C3.

R(εm/RT)2e−εm/RT

(1 + e−εm/RT)2

Nεe−ε /kT

1 + e−ε /kT




