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4. Use the theorem in Sec. 77, involving a single residue, to evaluate the integral of each
of these functions around the circle |z| = 2 in the positive sense:

(a)
z5

1 − z3
; (b)

1

1 + z2
; (c)

1

z
.

Ans. (a) −2π i ; (b) 0 ; (c) 2π i .

5. Let C denote the circle |z| = 1, taken counterclockwise, and use the following steps to
show that ∫

C
exp

(
z + 1

z

)
dz = 2π i

∞∑
n=0

1

n! (n + 1)!
.

(a) By using the Maclaurin series for ez and referring to Theorem 1 in Sec. 71, which
justifies the term by term integration that is to be used, write the above integral as

∞∑
n=0

1

n!

∫
C

zn exp
(

1

z

)
dz.

(b) Apply the theorem in Sec. 76 to evaluate the integrals appearing in part (a) to arrive
at the desired result.

6. Suppose that a function f is analytic throughout the finite plane except for a finite number
of singular points z1, z2, . . . , zn . Show that

Res
z=z1

f (z) + Res
z=z2

f (z) + · · · + Res
z=zn

f (z) + Res
z=∞ f (z) = 0.

7. Let the degrees of the polynomials

P(z) = a0 + a1z + a2z2 + · · · + anzn (an �= 0)

and

Q(z) = b0 + b1z + b2z2 + · · · + bm zm (bm �= 0)

be such that m ≥ n + 2. Use the theorem in Sec. 77 to show that if all of the zeros of
Q(z) are interior to a simple closed contour C , then∫

C

P(z)

Q(z)
dz = 0.

[Compare with Exercise 4(b).]

78. THE THREE TYPES OF ISOLATED
SINGULAR POINTS

We saw in Sec. 75 that the theory of residues is based on the fact that if f has an
isolated singular point at z0, then f (z) has a Laurent series representation

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bn

(z − z0)n
+ · · ·(1)
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in a punctured disk 0 < |z − z0| < R2. The portion

b1

z − z0
+ b2

(z − z0)2
+ · · · + bn

(z − z0)n
+ · · ·(2)

of the series, involving negative powers of z − z0, is called the principal part of f at
z0. We now use the principal part to identify the isolated singular point z0 as one of
three special types. This classification will aid us in the development of residue theory
that appears in following sections.

There are two extremes, the case in which every coefficient in the principal part
(2) is zero and the case in which an infinite number of them are nonzero.

(a) Removable Singular Points

When every bn is zero, so that

f (z) =
∞∑

n=0

an(z − z0)
n = a0 + a1(z − z0) + a2(z − z0)

2 + · · ·(3)

(0 < |z − z0| < R2),

z0 is known as a removable singular point. Note that the residue at a removable singu-
lar point is always zero. If we define, or possibly redefine, f at z0 so that f (z0) = a0,
expansion (3) becomes valid throughout the entire disk |z−z0| < R2. Since a power se-
ries always represents an analytic function interior to its circle of convergence (Sec. 71),
it follows that f is analytic at z0 when it is assigned the value a0 there. The singularity
z0 is, therefore, removed.

(b) Essential Singular Points

If an infinite number of the coefficients bn in the principal part (2) are nonzero, z0 is
said to be an essential singular point of f .

(c) Poles of Order m

If the principal part of f at z0 contains at least one nonzero term but the number of
such terms is only finite, then there exists a positive integer m (m ≥ 1) such that

bm �= 0 and bm+1 = bm+2 = · · · = 0.

That is, expansion (1) takes the form

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bm

(z − z0)m
(4)

(0 < |z − z0| < R2),
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where bm �= 0. In this case, the isolated singular point z0 is called a pole of order m.∗

A pole of order m = 1 is usually referred to as a simple pole.

In the next section, we shall give examples of these three types of isolated singular
points; and in the remaining sections of the chapter, we shall examine in greater depth
the theory of the three types of isolated singular points just described. The emphasis will
be on useful and efficient methods for identifying poles and finding the corresponding
residues.

The final section (Sec. 84) of the chapter includes three theorems that point out
fundamental differences in the behavior of functions at the three types of isolated
singular points.

79. EXAMPLES

The examples in this section illustrate the three types of isolated singularities described
in Sec. 78.

EXAMPLE 1. The point z0 = 0 is a removable singular point of the function

f (z) = 1 − cosh z

z2
(1)

because

f (z) = 1

z2

[
1 −

(
1 + z2

2!
+ z4

4!
+ z6

6!
+ · · ·

)]
= − 1

2!
− z2

4!
− z4

6!
− · · ·
(0 < |z| < ∞).

When the value f (0) = −1/2 is assigned, f becomes entire.

EXAMPLE 2. We recall from Example 3 in Sec. 68 that

e1/z =
∞∑

n=0

1

n!
· 1

zn
= 1 + 1

1!
· 1

z
+ 1

2!
· 1

z2
+ · · · (0 < |z| < ∞),(2)

and it follows that e1/z has an essential singularity at z0 = 0, where the residue b1 is
unity.

This example can be used to illustrate an important result known as Picard’s
theorem. It concerns the behavior of a function near an essential singular point and
states that in each neighborhood of an essential singular point, a function assumes
every finite value, with one possible exception, an infinite number of times.†

∗The reason for the terminology pole is pointed out on pp. 348–349 of the book (2005) by A. D. Wunsch
as well as on p. 62 of the one (2010) by R. P. Boas, both of which are listed in Appendix 1. Also, the
reason will be touched on in Sec. 84.
†For a proof of Picard’s theorem, see Sec. 51 in Vol. III of the book by Markushevich, cited in
Appendix 1.
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It is easy to see, for instance, that e1/z assumes the value −1 an infinite number
of times in each neighborhood of the origin. More precisely, since ez = −1 when

z = (2n + 1)π i (n = 0, ±1, ±2, . . .),

(see Sec. 30), it follows that e1/z = −1 when

z = 1

(2n + 1)π i
· i

i
= − i

(2n + 1)π
(n = 0, ±1, ±2, . . .),

So if n is large enough, an infinite number of such points lie in any given ε neighborhood
of the origin. Zero is evidently the exceptional value when Picard’s theorem is applied
to e1/z at the origin.

EXAMPLE 3. From the representation

f (z) = 1

z2(1 − z)
= 1

z2
(1 + z + z2 + z3 + z4 + · · ·)(3)

= 1

z2
+ 1

z
+ 1 + z + z2 + · · · (0 < |z| < 1),

one can see that f has a pole of order m = 2 at the origin and that

Res
z=0

f (z) = 1.

From the limit

lim
z→0

1

f (z)
= lim

z→0
[z2(1 − z)] = 0,

it follows that (see Sec. 17)

lim
z→0

f (z) = ∞.(4)

Such a limit always occurs at poles, as will be shown in Sec. 84.

EXAMPLE 4. Finally, we observe that the function

f (z) = z2 + z − 2

z + 1
= z(z + 1) − 2

z + 1
= z − 2

z + 1
= −1 + (z + 1) − 2

z + 1
(0 < |z + 1| < ∞)

has a simple pole at z0 = −1. The residue there is −2. Moreover, since

lim
z→−1

1

f (z)
= lim

z→−1

z + 1

z2 + z − 2
= 0

−2
= 0,

we find that

lim
z→−1

f (z) = ∞.(5)

[Compare with limit (4) in Example 3.]
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In the remaining sections of this chapter, we shall develop in greater depth the
theory of the three types of isolated singular points just illustrated. The emphasis will
be on useful and efficient methods for identifying poles and finding the corresponding
residues.

EXERCISES
1. In each case, write the principal part of the function at its isolated singular point and

determine whether that point is a removable singular point, an essential singular point,
or a pole:

(a) z exp
(

1

z

)
; (b)

z2

1 + z
; (c)

sin z

z
; (d)

cos z

z
; (e)

1

(2 − z)3
.

2. Show that the singular point of each of the following functions is a pole. Determine the
order m of that pole and the corresponding residue B.

(a)
1 − cosh z

z3
; (b)

1 − exp(2z)

z4
; (c)

exp(2z)

(z − 1)2
.

Ans. (a) m = 1, B = −1/2 ; (b) m = 3, B = −4/3 ; (c) m = 2, B = 2e2.

3. Suppose that a function f is analytic at z0, and write g(z) = f (z)/(z − z0). Show that

(a) if f (z0) �= 0, then z0 is a simple pole of g, with residue f (z0);
(b) if f (z0) = 0, then z0 is a removable singular point of g.

Suggestion: As pointed out in Sec. 62, there is a Taylor series for f (z) about z0

since f is analytic there. Start each part of this exercise by writing out a few terms of
that series.

4. Write the function

f (z) = 8a3z2

(z2 + a2)3
(a > 0)

as

f (z) = φ(z)

(z − ai)3
where φ(z) = 8a3z2

(z + ai)3
.

Point out why φ(z) has a Taylor series representation about z = ai , and then use it to
show that the principal part of f at that point is

φ′′(ai)/2

z − ai
+ φ′(ai)

(z − ai)2
+ φ(ai)

(z − ai)3
= − i/2

z − ai
− a/2

(z − ai)2
− a2i

(z − ai)3
.

80. RESIDUES AT POLES

When a function f has an isolated singularity at a point z0, the basic method for
identifying z0 as a pole and finding the residue there is to write the appropriate Laurent
series and to note the coefficient of 1/(z − z0). The following theorem provides an
alternative characterization of poles and a way of finding residues at poles that is often
more convenient.
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Theorem. Let z0 be an isolated singular point of a function f . The following two
statements are equivalent:

(a) z0 is a pole of order m (m = 1, 2, . . .) of f ;

(b) f (z) can be written in the form

f (z) = φ(z)

(z − z0)m
(m = 1, 2, . . .),

where φ(z) is analytic and nonzero at z0.

Moreover, if statements (a) and (b) are true,

Res
z=z0

f (z) = φ(z0) when m = 1

and

Res
z=z0

f (z) = φ(m−1)(z0)

(m − 1)!
when m = 2, 3, . . . .

Observe that these two expressions for residues need not have been written sep-
arately since, with the conventions that φ(0)(z0) = φ(z0) and 0! = 1, the second
expression reduces to the first when m = 1.

To prove the theorem, we first assume that statement (a) is true. That is, f (z) has
a Laurent series representation

f (z) =
∞∑

n=0

an(z − z0)
n + b1

z − z0
+ b2

(z − z0)2
+ · · · + bm−1

(z − z0)m−1
+ bm

(z − z0)m

(bm �= 0),

which is valid in a punctured disk 0 < |z − z0| < R2. Now a function φ(z) defined by
means of the equations

φ(z) =
{

(z − z0)
m f (z) when z �= z0,

bm when z = z0

evidently has the power series representation

φ(z) = bm + bm−1(z − z0) + · · · + b2(z − z0)
m−2 + b1(z − z0)

m−1

+
∞∑

n=0

an(z − z0)
m+n

throughout the entire disk |z − z0| < R2. Consequently, φ(z) is analytic in that disk
(Sec. 71) and, in particular, at z0. Inasmuch as φ(z0) = bm �= 0, the expression for
f (z) in statement (b) follows.
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Suppose, on the other hand, that we know only that f (z) has the form in state-
ment (b) and recall (Sec. 62) that since φ(z) is analytic at z0, it has a Taylor series
representation

φ(z) = φ(z0) + φ′(z0)

1!
(z − z0) + φ′′(z0)

2!
(z − z0)

2 + · · · + φ(m−1)(z0)

(m − 1)!
(z − z0)

m−1

+
∞∑

n=m

φ(n)(z0)

n!
(z − z0)

n

in some neighborhood |z−z0| < ε of z0. The quotient in statement (b) then tells us that

f (z) = φ(z0)

(z − z0)m
+ φ′(z0)/1!

(z − z0)m−1
+ φ′′(z0)/2!

(z − z0)m−2
+ · · · + φ(m−1)(z0)/(m − 1)!

z − z0

+
∞∑

n=m

φ(n)(z0)

n!
(z − z0)

n−m

when 0 < |z − z0| < ε. This Laurent series representation, together with the fact that
φ(z0) �= 0, reveals that z0 is, indeed, a pole of order m of f (z). The coefficient of
1/(z − z0) tells us, of course, that the residue of f (z) at z0 is as stated in the theorem,
whose proof is now complete.

81. EXAMPLES

The following examples serve to illustrate the use of the theorem in Sec. 80.

EXAMPLE 1. The function

f (z) = z + 4

z2 + 1

has an isolated singular point at z = i and can be written

f (z) = φ(z)

z − i
where φ(z) = z + 4

z + i
.

Since φ(z) is analytic at z = i and φ(i) �= 0, that point is a simple pole of f ; and the
residue there is

B1 = φ(i) = i + 4

2i
· i

i
= −1 + 4i

−2
= 1

2
− 2i.

The point z = −i is also a simple pole of f , with residue

B2 = 1

2
+ 2i.

EXAMPLE 2. If

f (z) = z3 + 2z

(z − i)3
,
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then

f (z) = φ(z)

(z − i)3
where φ(z) = z3 + 2z.

The function φ(z) is entire, and φ(i) = i �= 0. Hence f has a pole of order 3 at z = i ,
with residue

B = φ′′(i)
2!

= 6i

2!
= 3i.

The theorem can, of course, be used when branches of multiple-valued functions
are involved.

EXAMPLE 3. Suppose that

f (z) = (log z)3

z2 + 1
,

where the branch

log z = ln r + iθ (r > 0, 0 < θ < 2π)

of the logarithmic function is to be used. To find the residue of f at the singularity
z = i , we write

f (z) = φ(z)

z − i
where φ(z) = (log z)3

z + i
.

The function φ(z) is clearly analytic at z = i ; and, since

φ(i) = (log i)3

2i
= (ln 1 + iπ/2)3

2i
= −π3

16
�= 0,

f has a simple pole there. The residue is

B = φ(i) = −π3

16
.

While the theorem in Sec. 80 can be extremely useful, the identification of an
isolated singular point as a pole of a certain order is sometimes done most efficiently
by appealing directly to a Laurent series.

EXAMPLE 4. If, for instance, the residue of the function

f (z) = 1 − cos z

z3

is needed at the singularity z = 0, it would be incorrect to write

f (z) = φ(z)

z3
where φ(z) = 1 − cos z

and to attempt an application of the theorem in Sec. 80 with m = 3. For it is necessary
that φ(0) �= 0 if the theorem is to be used here. In this case, the simplest way to obtain
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the desired residue is to write out a few terms in the Laurent series

f (z) = 1

z3

[
1 −

(
1 − z2

2!
+ z4

4!
− z6

6!
+ · · ·

)]
= 1

z3

(
z2

2!
− z4

4!
+ z6

6!
− · · ·

)

= 1

2!
· 1

z
− z

4!
+ z3

6!
− · · · (0 < |z| < ∞).

This shows that f (z) has a simple pole at z = 0, not a pole of order 3, the residue at
z = 0 being B = 1/2.

EXAMPLE 5. Since z2 sinh z is entire and its zeros are (Sec. 39)

z = nπ i (n = 0, ±1, ±2, . . .),

the point z = 0 is clearly an isolated singularity of the function

f (z) = 1

z2 sinh z
.

Here it would be a mistake to write

f (z) = φ(z)

z2
where φ(z) = 1

sinh z
and try to use the theorem in Sec. 80 with m = 2. This is because the function φ(z)
is not even defined at z = 0. The needed residue, namely B = −1/6, follows at once
from the Laurent series

1

z2 sinh z
= 1

z3
− 1

6
· 1

z
+ 7

360
z + · · · (0 < |z| < π)

that was obtained in Exercise 5, Sec.73. The singularity at z = 0 is, of course, a pole
of the third order, not the second order.

EXERCISES
1. In each case, show that any singular point of the function is a pole. Determine the order

m of each pole, and find the corresponding residue B.

(a)
z + 1

z2 + 9
; (b)

z2 + 2

z − 1
; (c)

(
z

2z + 1

)3

; (d)
ez

z2 + π2
.

Ans. (a) m = 1, B = 3 ± i

6
; (b) m = 1, B = 3; (c) m = 3, B = − 3

16
;

(d) m = 1, B = ± i

2π
.

2. Show that

(a) Res
z=−1

z1/4

z + 1
= 1 + i√

2
(|z| > 0, 0 < arg z < 2π);

(b) Res
z=i

Log z

(z2 + 1)2
= π + 2i

8
;

(c) Res
z=i

z1/2

(z2 + 1)2
= 1 − i

8
√

2
(|z| > 0, 0 < arg z < 2π).
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3. In each case, find the order m of the pole and the corresponding residue B at the singularity
z = 0:

(a)
sinh z

z4
; (b)

1

z(ez − 1)
.

Ans. (a) m = 3, B = 1

6
; (b) m = 2, B = −1

2
.

4. Find the value of the integral ∫
C

3z3 + 2

(z − 1)(z2 + 9)
dz,

taken counterclockwise around the circle (a) |z − 2| = 2 ; (b) |z| = 4.
Ans. (a) π i ; (b) 6π i .

5. Find the value of the integral ∫
C

dz

z3(z + 4)
,

taken counterclockwise around the circle (a) |z| = 2 ; (b) |z + 2| = 3.
Ans. (a) π i/32 ; (b) 0 .

6. Evaluate the integral ∫
C

cosh π z

z(z2 + 1)
dz

when C is the circle |z| = 2, described in the positive sense.
Ans. 4π i .

7. Use the theorem in Sec. 77, involving a single residue, to evaluate the integral of f (z)
around the positively oriented circle |z| = 3 when

(a) f (z) = (3z + 2)2

z(z − 1)(2z + 5)
; (b) f (z) = z3e1/z

1 + z3
.

Ans. (a) 9π i ; (b) 2π i .

8. Let z0 be an isolated singular point of a function f and suppose that

f (z) = φ(z)

(z − z0)m
,

where m is a positive integer and φ(z) is analytic and nonzero at z0. By applying
the extended form (3), Sec. 55, of the Cauchy integral formula to the function φ(z),
show that

Res
z=z0

f (z) = φ(m−1)(z0)

(m − 1)!
,

as stated in the theorem of Sec. 80.
Suggestion: Since there is a neighborhood |z − z0| < ε throughout which φ(z) is

analytic (see Sec. 25), the contour used in the extended Cauchy integral formula can be
the positively oriented circle |z − z0| = ε/2.
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82. ZEROS OF ANALYTIC FUNCTIONS

Zeros and poles of functions are closely related. In fact, we shall see in the next
section how zeros can be a source of poles. We need, however, some preliminary
results regarding zeros of analytic functions.

Suppose that a function f is analytic at a point z0. We know from Sec. 57 that
all of the derivatives f (n)(z) (n = 1, 2, . . .) exist at z0. If f (z0) = 0 and if there is a
positive integer m such that

f (z0) = f ′(z0) = f ′′(z0) = · · · = f (m−1)(z0) = 0 and f (m)(z0) �= 0,(1)

where m is a positive integer, f is said to have a zero of order m at z0. We agree, of
course, that f (0)(z0) = f (z0) when m = 1. Our first theorem here provides a useful
alternative definition of zeros of order m.

Theorem 1. Let f denote a function that is analytic at a point z0. The following
two statements are equivalent:

(a) f has a zero of order m at z0;
(b) there is a function g, which is analytic and nonzero at z0 , such that

f (z) = (z − z0)
m g(z).

Our proof of this theorem has two parts. First, we need to show that the truth of
statement (a) implies the truth of statement (b). Once that is accomplished, we need
to show that if statement (b) is true, then so is statement (a). Both parts use the fact
(Sec. 62) that if a given function is analytic at a point z0, then it must have a Taylor
series representation in powers of (z − z0) that is valid throughout some neighborhood
|z − z0| < ε of z0.

(a) implies (b)

We start the first part of the proof by assuming that f has a zero of order m at z0 and
showing how statement (b) follows. The analyticity of f at z0 and conditions (1) tell us
that in some neighborhood |z − z0| < ε there is a Taylor series representation

f (z) = f (m)(z0)

m!
(z − z0)

m + f (m+1)(z0)

(m + 1)!
(z − z0)

m+1 + f (m+2)(z0)

(m + 2)!
(z − z0)

m+2 + · · ·

= (z − z0)
m

[
f (m)(z0)

m!
+ f (m+1)(z0)

(m + 1)!
(z − z0) + f (m+2)(z0)

(m + 2)!
(z − z0)

2 + · · ·
]
.

Consequently, f (z) has the form shown in statement (b), where

g(z) = f (m)(z0)

m!
+ f (m+1)(z0)

(m + 1)!
(z − z0) + f (m+2)(z0)

(m + 2)!
(z − z0)

2 + · · ·
(|z − z0| < ε).
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The convergence of this last series when |z − z0| < ε ensures that g is analytic in that
neighborhood and, in particular, at z0 (Sec. 71). Moreover,

g(z0) = f (m)(z0)

m!
�= 0.

This completes the proof of the first part of the theorem.

(b) implies (a)

Here we assume that the expression for f (z) in part (b) holds; and we note that since
the function g(z) is analytic at z0, it has a Taylor series representation

g(z) = g(z0) + g′(z0)

1!
(z − z0) + g′′(z0)

2!
(z − z0)

2 + · · ·
in some neighborhood |z − z0| < ε of z0. The expression for f (z) in part (b) thus
takes the form

f (z) = g(z0)(z − z0)
m + g′(z0)

1!
(z − z0)

m+1 + g′′(z0)

2!
(z − z0)

m+2 + · · ·
when |z − z0| < ε. Since this is actually a Taylor series expansion for f (z), according
to Theorem 1 in Sec. 72, conditions (1) hold; in particular,

f (m)(z0) = m!g(z0) �= 0.

Hence z0 is a zero of order m of f . The proof is now complete.

EXAMPLE. The polynomial f (z) = z3 −1 has a zero of order m = 1 at z0 = 1
since

f (z) = (z − 1)g(z),

where g(z) = z2 + z + 1, and because f and g are entire and g(1) = 3 �= 0. Note how
the fact that z0 = 1 is a zero of order m = 1 of f also follows from the observations
that

f (1) = 0 and f ′(1) = 3 �= 0.

Our next theorem is a precise statement of the fact that an analytic function f (z)
has only isolated zeros when is not identically equal to zero. This means that if z0 is
a zero of such a function f (z), there is a deleted neighborhood 0 < |z − z0| < ε of
z0 in which f (z) is nonzero. (Compare with the definition of an isolated singularity in
Sec. 74.)

Theorem 2. Given a function f and a point z0 , suppose that

(a) f is analytic at z0 ;

(b) f (z0) = 0 but f (z) is not identically equal to zero in any neighborhood of z0 .

Then f (z) �= 0 throughout some deleted neighborhood 0 < |z − z0| < ε of z0 .
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To prove this, let f be as stated and observe that not all of the derivatives of f at z0

are zero. If they were, all of the coefficients in the Taylor series for f about z0 would be
zero; and that would mean that f (z) is identically equal to zero in some neighborhood
of z0 . So it is clear from the definition of zeros of order m at the beginning of this section
that f must have a zero of some finite order m at z0. According to Theorem 1, then,

f (z) = (z − z0)
m g(z)(2)

where g(z) is analytic and nonzero at z0 .
Now g is continuous, in addition to being nonzero, at z0 because it is analytic

there. Hence there is some neighborhood |z − z0| < ε in which equation (2) holds and
in which g(z) �= 0 (see Sec. 18). Consequently, f (z) �= 0 in the deleted neighborhood
0 < |z − z0| < ε; and the proof is complete.

Our final theorem here concerns functions with zeros that are not all isolated. It
was referred to earlier in Sec. 28 and makes an interesting contrast to Theorem 2 just
above.

Theorem 3. Given a function f and a point z0 , suppose that

(a) f is analytic throughout a neighborhood N0 of z0 ;

(b) f (z) = 0 at each point z of a domain D or line segment L containing z0 (Fig. 96).

Then f (z) ≡ 0 in N0; that is, f (z) is identically equal to zero throughout N0.

x

z0

N0

D

L

O

y

FIGURE 96

We begin the proof with the observation that under the stated conditions, f (z) ≡ 0
in some neighborhood N of z0. For, otherwise, there would be a deleted neighborhood
of z0 throughout which f (z) �= 0, according to Theorem 2; and that would be in-
consistent with the condition that f (z) = 0 everywhere in a domain D or on a line
segment L containing z0. Since f (z) ≡ 0 in the neighborhood N , then, it follows that
all of the coefficients

an = f (n)(z0)

n!
(n = 0, 1, 2, . . .)

in the Taylor series for f (z) about z0 must be zero. Thus f (z) ≡ 0 in the neighborhood
N0, since the Taylor series also represents f (z) in N0. This completes the proof.



Brown/Churchill-3930327 book July 19, 2013 11:32

SEC. 83 ZEROS AND POLES 251

83. ZEROS AND POLES

The following theorem establishes a connection between zeros of order m and poles
of order m.

Theorem 1. Suppose that

(a) two functions p and q are analytic at a point z0;

(b) p(z0) �= 0 and q has a zero of order m at z0 .

Then the quotient p(z)/q(z) has a pole of order m at z0 .

The proof is easy. Let p and q be as in the statement of the theorem. Since q has
a zero of order m at z0, we know from Theorem 2 in Sec. 82 that there is a deleted
neighborhood of z0 throughout which q(z) �= 0 ; and so z0 is an isolated singular point
of the quotient p(z)/q(z). Theorem 1 in Sec. 82 tells us, moreover, that

q(z) = (z − z0)
m g(z),

where g(z) is analytic and nonzero at z0. Consequently,

p(z)

q(z)
= φ(z)

(z − z0)m
where φ(z) = p(z)

g(z)
.(1)

Since φ(z) is analytic and nonzero at z0, it now follows from the theorem in Sec. 80
that z0 is a pole of order m of p(z)/q(z).

EXAMPLE 1. The two functions

p(z) = 1 and q(z) = 1 − cos z

are entire, and we know from Exercise 2 that q(z) has a zero of order m = 2 at the
point z0 = 0. Hence it follows from Theorem 1 that the quotient

p(z)

q(z)
= 1

1 − cos z

has a pole of order m = 2 at that point.

Theorem 1 leads us to another method for identifying simple poles and finding the
corresponding residues. This method, stated just below as Theorem 2, is sometimes
easier to use than the theorem in Sec. 80.

Theorem 2. Let two functions p and q be analytic at a point z0 . If

p(z0) �= 0, q(z0) = 0, and q ′(z0) �= 0,

then z0 is a simple pole of the quotient p(z)/q(z) and

Res
z=z0

p(z)

q(z)
= p(z0)

q ′(z0)
.(2)
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To show this, we assume that p and q are as stated and observe that because of
the conditions on q , the point z0 is a zero of order m = 1 of that function. According
to Theorem 1 in Sec. 82, then,

q(z) = (z − z0)g(z)(3)

where g(z) is analytic and nonzero at z0. Furthermore, Theorem 1 in this section tells
us that z0 is a simple pole of p(z)/q(z); and expression (1) for p(z)/q(z) in the proof
of that theorem becomes

p(z)

q(z)
= φ(z)

z − z0
where φ(z) = p(z)

g(z)
.

Since this φ(z) is analytic and nonzero at z0, we know from the theorem in Sec. 80 that

Res
z=z0

p(z)

q(z)
= p(z0)

g(z0)
.(4)

But g(z0) = q ′(z0), as is seen by differentiating each side of equation (3) and then
setting z = z0. Expression (4) thus takes the form (2).

EXAMPLE 2. Consider the function

f (z) = cot z = cos z

sin z
,

which is a quotient of the entire functions p(z) = cos z and q(z) = sin z. Its singular-
ities occur at the zeros of q , or at the points

z = nπ (n = 0, ±1, ±2, . . .).

Since
p(nπ) = (−1)n �= 0, q(nπ) = 0, and q ′(nπ) = (−1)n �= 0,

Theorem 2 tells us that each singular point z = nπ of f is a simple pole, with residue

Bn = p(nπ)

q ′(nπ)
= (−1)n

(−1)n
= 1.

EXAMPLE 3. The residue of the function

f (z) = z − sinh z

z2 sinh z

at the zero z = π i of sinh z (see Sec. 39) is readily found by writing

p(z) = z − sinh z and q(z) = z2 sinh z.
Because

p(π i) = π i �= 0, q(π i) = 0, and q ′(π i) = π2 �= 0,

Theorem 2 tells us that z = π i is a simple pole of f and that the residue there is

B = p(π i)

q ′(π i)
= π i

π2
= i

π
.
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EXAMPLE 4. Since the point

z0 =
√

2eiπ/4 = 1 + i

is a zero of the polynomial z4 + 4 (see Exercise 6, Sec. 11), it is also an isolated
singularity of the function

f (z) = z

z4 + 4
.

Writing p(z) = z and q(z) = z4 + 4, we find that

p(z0) = z0 �= 0, q(z0) = 0, and q ′(z0) = 4z3
0 �= 0.

Theorem 2 then reveals that z0 is a simple pole of f . The residue there is, moreover,

B0 = p(z0)

q ′(z0)
= z0

4z3
0

= 1

4z2
0

= 1

8i
= − i

8
.

Although this residue can also be found by the method in Sec. 80, the computation is
somewhat more involved.

There are expressions similar to expression (2) for residues at poles of higher
order, but they are lengthier and, in general, not practical.

EXERCISES
1. Show that the point z = 0 is a simple pole of the function

f (z) = csc z = 1

sin z

and that the residue there is unity by appealing to Theorem 2 in Sec. 83. (Compare with
Exercise 3, Sec. 73, where this result is evident from a Laurent series.)

2. Use conditions (1) in Sec. 82 to show that the function

q(z) = 1 − cos z

has a zero of order m = 2 at the point z0 = 0.

3. Show that

(a) Res
z=π i/2

sinh z

z2 cosh z
= − 4

π2
;

(b) Res
z=π i

exp(zt)

sinh z
+ Res

z=−π i

exp(zt)

sinh z
= −2 cos(π t).

4. Show that

(a) Res
z=zn

(z sec z) = (−1)n+1 zn where zn = π

2
+ nπ (n = 0, ±1, ±2, . . .);

(b) Res
z=zn

(tanh z) = 1 where zn =
(

π

2
+ nπ

)
i (n = 0, ±1, ±2, . . .).


