9. Nested Squares. A square $\sigma_{0}: a_{0} \leq x \leq b_{0}, c_{0} \leq y \leq d_{0}$ is divided into four equal squares by line segments parallel to the coordinate axes. One of those four smaller squares $\sigma_{1}: a_{1} \leq x \leq b_{1}, c_{1} \leq y \leq d_{1}$ is selected according to some rule. It, in turn, is divided into four equal squares one of which, called σ_{2}, is selected, etc. (see Sec. 49). Prove that there is a point $\left(x_{0}, y_{0}\right)$ which belongs to each of the closed regions of the infinite sequence $\sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$.

Suggestion: Apply the result in Exercise 8 to each of the sequences of closed intervals $a_{n} \leq x \leq b_{n}$ and $c_{n} \leq y \leq d_{n}(n=0,1,2, \ldots)$.

54. CAUCHY INTEGRAL FORMULA

Another fundamental result will now be established.

Theorem. Let f be analytic everywhere inside and on a simple closed contour C, taken in the positive sense. If z_{0} is any point interior to C, then

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}} . \tag{1}
\end{equation*}
$$

Expression (1) is called the Cauchy integral formula. It tells us that if a function f is to be analytic within and on a simple closed contour C, then the values of f interior to C are completely determined by the values of f on C.

We begin the proof of the theorem by letting C_{ρ} denote a positively oriented circle $\left|z-z_{0}\right|=\rho$, where ρ is small enough that C_{ρ} is interior to C (see Fig. 68). Since the quotient $f(z) /\left(z-z_{0}\right)$ is analytic between and on the contours C_{ρ} and C, it follows from the principle of deformation of paths (Sec. 53) that

$$
\int_{C} \frac{f(z) d z}{z-z_{0}}=\int_{C_{\rho}} \frac{f(z) d z}{z-z_{0}}
$$

This enables us to write

$$
\begin{equation*}
\int_{C} \frac{f(z) d z}{z-z_{0}}-f\left(z_{0}\right) \int_{C_{\rho}} \frac{d z}{z-z_{0}}=\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z \tag{2}
\end{equation*}
$$

But [see Exercise 13, Sec. 46]

$$
\int_{C_{\rho}} \frac{d z}{z-z_{0}}=2 \pi i
$$

FIGURE 68
and so equation (2) becomes

$$
\begin{equation*}
\int_{C} \frac{f(z) d z}{z-z_{0}}-2 \pi i f\left(z_{0}\right)=\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z \tag{3}
\end{equation*}
$$

Now the fact that f is analytic, and therefore continuous, at z_{0} ensures that corresponding to each positive number ε, however small, there is a positive number δ such that

$$
\begin{equation*}
\left|f(z)-f\left(z_{0}\right)\right|<\varepsilon \quad \text { whenever } \quad\left|z-z_{0}\right|<\delta \tag{4}
\end{equation*}
$$

Let the radius ρ of the circle C_{ρ} be smaller than the number δ in the second of these inequalities. Since $\left|z-z_{0}\right|=\rho<\delta$ when z is on C_{ρ}, it follows that the first of inequalities (4) holds when z is such a point; and the theorem in Sec. 47, giving upper bounds for the moduli of contour integrals, tells us that

$$
\left|\int_{C_{\rho}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z\right|<\frac{\varepsilon}{\rho} 2 \pi \rho=2 \pi \varepsilon
$$

In view of equation (3), then,

$$
\left|\int_{C} \frac{f(z) d z}{z-z_{0}}-2 \pi i f\left(z_{0}\right)\right|<2 \pi \varepsilon
$$

Since the left-hand side of this inequality is a nonnegative constant that is less than an arbitrarily small positive number, it follows that

$$
\int_{C} \frac{f(z) d z}{z-z_{0}}-2 \pi i f\left(z_{0}\right)=0
$$

Hence equation (1) is valid, and the theorem is proved.
When the Cauchy integral formula is written as

$$
\begin{equation*}
\int_{C} \frac{f(z) d z}{z-z_{0}}=2 \pi i f\left(z_{0}\right) \tag{5}
\end{equation*}
$$

it can be used to evaluate certain integrals along simple closed contours.

EXAMPLE. Let C be the positively oriented circle $|z|=1$ about the origin. Since the function

$$
f(z)=\frac{\cos z}{z^{2}+9}
$$

is analytic inside and on C and since the origin $z_{0}=0$ is interior to C, equation (5) tells us that

$$
\int_{C} \frac{\cos z}{z\left(z^{2}+9\right)} d z=\int_{C} \frac{(\cos z) /\left(z^{2}+9\right)}{z-0} d z=2 \pi i f(0)=\frac{2 \pi i}{9}
$$

55. AN EXTENSION OF THE CAUCHY
 INTEGRAL FORMULA

The Cauchy integral formula in the theorem in Sec. 50 can be extended so as to provide an integral representation for derivatives $f^{(n)}\left(z_{0}\right)$ of f at z_{0}.

Theorem. Let f be analytic inside and on a simple closed contour C, taken in the positive sense. If z_{0} is any point interior to C, then

$$
\begin{equation*}
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \quad(n=0,1,2, \ldots), \tag{1}
\end{equation*}
$$

With the agreement that

$$
f^{(0)}\left(z_{0}\right)=f\left(z_{0}\right) \quad \text { and } \quad 0!=1
$$

this theorem includes the Cauchy integral formula

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(z) d z}{z-z_{0}} . \tag{2}
\end{equation*}
$$

Verification of expression (1) will be taken up in Sec. 56.
When written in the form

$$
\begin{equation*}
\int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}}=\frac{2 \pi i}{n!} f^{(n)}\left(z_{0}\right) \quad(n=0,1,2, \ldots) \tag{3}
\end{equation*}
$$

expression (1) can be useful in evaluating certain integrals when f is analytic inside and on a simple closed contour C, taken in the positive sense, and z_{0} is any point interior to C. It has already been illustrated in Sec. 50 when $n=0$.

EXAMPLE 1. If C is the positively oriented unit circle $|z|=1$ and

$$
f(z)=\exp (2 z)
$$

then

$$
\int_{C} \frac{\exp (2 z) d z}{z^{4}}=\int_{C} \frac{f(z) d z}{(z-0)^{3+1}}=\frac{2 \pi i}{3!} f^{\prime \prime \prime}(0)=\frac{8 \pi i}{3}
$$

EXAMPLE 2. Let z_{0} be any point interior to a positively oriented simple closed contour C. When $f(z)=1$, expression (3) shows that

$$
\int_{C} \frac{d z}{z-z_{0}}=2 \pi i
$$

and

$$
\int_{C} \frac{d z}{\left(z-z_{0}\right)^{n+1}}=0 \quad(n=1,2, \ldots)
$$

(Compare with Exercise 13, Sec. 46.)

Expression (1) can also be useful in slightly different notation. Namely, if s denotes points on C and if z is a point interior to C, then

$$
\begin{equation*}
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{C} \frac{f(s) d s}{(s-z)^{n+1}} \quad(n=0,1,2, \ldots) \tag{4}
\end{equation*}
$$

where $f^{(0)}(z)=f(z)$ and, of course, $0!=1$. Our next example illustrates the use of expression (4) in the form

$$
\begin{equation*}
\int_{C} \frac{f(s) d s}{(s-z)^{n+1}}=\frac{2 \pi i}{n!} f^{(n)}(z) \quad(n=0,1,2, \ldots) \tag{5}
\end{equation*}
$$

which includes the special case

$$
\begin{equation*}
\int_{C} \frac{f(s) d s}{s-z}=2 \pi i f(z) \tag{6}
\end{equation*}
$$

EXAMPLE 3. If n is a nonnegative integer and $f(z)=\left(z^{2}-1\right)^{n}$, expression (4), becomes

$$
\begin{equation*}
\frac{d^{n}}{d z^{n}}\left(z^{2}-1\right)^{n}=\frac{n!}{2 \pi i} \int_{C} \frac{\left(s^{2}-1\right)^{n} d s}{(s-z)^{n+1}} \quad(n=0,1,2, \ldots) \tag{7}
\end{equation*}
$$

where C is any simple closed contour surrounding z. In view of equation (7), one can write the Legendre polynomial*

$$
\begin{equation*}
P_{n}(z)=\frac{1}{n!2^{n}} \frac{d^{n}}{d z^{n}}\left(z^{2}-1\right)^{n} \quad(n=0,1,2, \ldots) \tag{8}
\end{equation*}
$$

as

$$
\begin{equation*}
P_{n}(z)=\frac{1}{2^{n+1} \pi i} \int_{C} \frac{\left(s^{2}-1\right)^{n} d s}{(s-z)^{n+1}} \quad(n=0,1,2, \ldots) \tag{9}
\end{equation*}
$$

Because

$$
\frac{\left(s^{2}-1\right)^{n}}{(s-1)^{n+1}}=\frac{(s-1)^{n}(s+1)^{n}}{(s-1)^{n+1}}=\frac{(s+1)^{n}}{s-1}
$$

expression (9) reveals that

$$
P_{n}(1)=\frac{1}{2^{n+1} \pi i} \int_{C} \frac{(s+1)^{n} d s}{s-1} \quad(n=0,1,2, \ldots)
$$

and by writing $f(s)=(s+1)^{n}$ and $z=1$ in equation (6), we arrive at the values

$$
P_{n}(1)=\frac{1}{2^{n+1} \pi i} 2 \pi i(1+1)^{n}=1 \quad(n=0,1,2, \ldots) .
$$

The values $P_{n}(-1)=(-1)^{n}(n=0,1,2, \ldots)$ can be found (Exercise 8, Sec. 57) in a similar way.

[^0]maximum value of $|f(z)|$ on C_{R}, then
\[

$$
\begin{equation*}
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!M_{R}}{R^{n}} \quad(n=1,2, \ldots) . \tag{2}
\end{equation*}
$$

\]

Inequality (2) is called Cauchy's inequality and is an immediate consequence of the expression

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C_{R}} \frac{f(z) d z}{\left(z-z_{0}\right)^{n+1}} \quad(n=1,2, \ldots)
$$

in the theorem in Sec. 55 when n is a positive integer. We need only apply the theorem in Sec. 47, which gives upper bounds for the moduli of the values of contour integrals, to see that

$$
\left|f^{(n)}\left(z_{0}\right)\right| \leq \frac{n!}{2 \pi} \cdot \frac{M_{R}}{R^{n+1}} 2 \pi R \quad(n=1,2, \ldots)
$$

where M_{R} is as in the statement of Theorem 3. This inequality is, of course, the same as inequality (2).

EXERCISES

1. Let C denote the positively oriented boundary of the square whose sides lie along the lines $x= \pm 2$ and $y= \pm 2$. Evaluate each of these integrals:
(a) $\int_{C} \frac{e^{-z} d z}{z-(\pi i / 2)}$;
(b) $\int_{C} \frac{\cos z}{z\left(z^{2}+8\right)} d z$;
(c) $\int_{C} \frac{z d z}{2 z+1}$;
(d) $\int_{C} \frac{\cosh z}{z^{4}} d z$;
(e) $\int_{C} \frac{\tan (z / 2)}{\left(z-x_{0}\right)^{2}} d z \quad\left(-2<x_{0}<2\right)$.
Ans. (a) 2π;
(b) $\pi i / 4$;
(c) $-\pi i / 2$;
(d) 0 ;
(e) $i \pi \sec ^{2}\left(x_{0} / 2\right)$.
2. Find the value of the integral of $g(z)$ around the circle $|z-i|=2$ in the positive sense when
(a) $g(z)=\frac{1}{z^{2}+4}$;
(b) $g(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$.

Ans. (a) $\pi / 2$; (b) $\pi / 16$.
3. Let C be the circle $|z|=3$, described in the positive sense. Show that if

$$
g(z)=\int_{C} \frac{2 s^{2}-s-2}{s-z} d s \quad(|z| \neq 3)
$$

then $g(2)=8 \pi i$. What is the value of $g(z)$ when $|z|>3$?
4. Let C be any simple closed contour, described in the positive sense in the z plane, and write

$$
g(z)=\int_{C} \frac{s^{3}+2 s}{(s-z)^{3}} d s
$$

Show that $g(z)=6 \pi i z$ when z is inside C and that $g(z)=0$ when z is outside.
5. Show that if f is analytic within and on a simple closed contour C and z_{0} is not on C, then

$$
\int_{C} \frac{f^{\prime}(z) d z}{z-z_{0}}=\int_{C} \frac{f(z) d z}{\left(z-z_{0}\right)^{2}}
$$

6. Let f denote a function that is continuous on a simple closed contour C. Following the procedure used in Sec. 56, prove that the function

$$
g(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s) d s}{s-z}
$$

is analytic at each point z interior to C and that

$$
g^{\prime}(z)=\frac{1}{2 \pi i} \int_{C} \frac{f(s) d s}{(s-z)^{2}}
$$

at such a point.
7. Let C be the unit circle $z=e^{i \theta}(-\pi \leq \theta \leq \pi)$. First show that for any real constant a,

$$
\int_{C} \frac{e^{a z}}{z} d z=2 \pi i
$$

Then write this integral in terms of θ to derive the integration formula

$$
\int_{0}^{\pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta=\pi .
$$

8. Show that $P_{n}(-1)=(-1)^{n}(n=0,1,2, \ldots)$, where $P_{n}(z)$ are the Legendre polynomials in Example 3, Sec. 55.

Suggestion: Note that

$$
\frac{\left(s^{2}-1\right)^{n}}{(s+1)^{n+1}}=\frac{(s-1)^{n}}{s+1}
$$

9. Follow the steps below to verify the expression

$$
f^{\prime \prime}(z)=\frac{1}{\pi i} \int_{C} \frac{f(s) d s}{(s-z)^{3}}
$$

in Sec. 56.
(a) Use expression (2) in Sec. 56 for $f^{\prime}(z)$ to show that

$$
\frac{f^{\prime}(z+\Delta z)-f^{\prime}(z)}{\Delta z}-\frac{1}{\pi i} \int_{C} \frac{f(s) d s}{(s-z)^{3}}=\frac{1}{2 \pi i} \int_{C} \frac{3(s-z) \Delta z-2(\Delta z)^{2}}{(s-z-\Delta z)^{2}(s-z)^{3}} f(s) d s
$$

(b) Let D and d denote the largest and smallest distances, respectively, from z to points on C. Also, let M be the maximum value of $|f(s)|$ on C and L the length of C. With the aid of the triangle inequality and by referring to the derivation of expression (2) in Sec. 56 for $f^{\prime}(z)$, show that when $0<|\Delta z|<d$, the value of the integral on the right-hand side in part (a) is bounded from above by

$$
\frac{\left(3 D|\Delta z|+2|\Delta z|^{2}\right) M}{(d-|\Delta z|)^{2} d^{3}} L
$$

(c) Use the results in parts (a) and (b) to obtain the desired expression for $f^{\prime \prime}(z)$.
10. Let f be an entire function such that $|f(z)| \leq A|z|$ for all z, where A is a fixed positive number. Show that $f(z)=a_{1} z$, where a_{1} is a complex constant.

Suggestion: Use Cauchy's inequality (Sec. 57) to show that the second derivative $f^{\prime \prime}(z)$ is zero everywhere in the plane. Note that the constant M_{R} in Cauchy's inequality is less than or equal to $A\left(\left|z_{0}\right|+R\right)$.

58. LIOUVILLE'S THEOREM AND THE FUNDAMENTAL THEOREM OF ALGEBRA

Cauchy's inequality in Theorem 3 of Sec. 57 can be used to show that no entire function except a constant is bounded in the complex plane. Our first theorem here, which is known as Liouville's theorem, states this result in a slightly different way.

Theorem 1. If a function f is entire and bounded in the complex plane, then $f(z)$ is constant throughout the plane.

To start the proof, we assume that f is as stated and note that since f is entire, Theorem 3 in Sec. 57 can be applied with any choice of z_{0} and R. In particular, Cauchy's inequality (2) in that theorem tells us that when $n=1$,

$$
\begin{equation*}
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M_{R}}{R} \tag{1}
\end{equation*}
$$

Moreover, the boundedness condition on f tells us that a nonnegative constant M exists such that $|f(z)| \leq M$ for all z; and, because the constant M_{R} in inequality (1) is always less than or equal to M, it follows that

$$
\begin{equation*}
\left|f^{\prime}\left(z_{0}\right)\right| \leq \frac{M}{R} \tag{2}
\end{equation*}
$$

where R can be arbitrarily large. Now the number M in inequality (2) is independent of the value of R that is taken. Hence that inequality holds for arbitrarily large values of R only if $f^{\prime}\left(z_{0}\right)=0$. Since the choice of z_{0} was arbitrary, this means that $f^{\prime}(z)=0$ everywhere in the complex plane. Consequently, f is a constant function, according to the theorem in Sec. 25.

The following theorem is called the fundamental theorem of algebra and follows readily from Liouville's theorem.

Theorem 2. Any polynomial

$$
P(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n} \quad\left(a_{n} \neq 0\right)
$$

of degree $n(n \geq 1)$ has at least one zero. That is, there exists at least one point z_{0} such that $P\left(z_{0}\right)=0$.

The proof here is by contradiction. Suppose that $P(z)$ is not zero for any value of z. Then the quotient $1 / P(z)$ is clearly entire. It is also bounded in the complex plane.

To see that it is bounded, we first recall statement (6) in Sec. 5. Namely, there is a positive number R such that

$$
\left|\frac{1}{P(z)}\right|<\frac{2}{\left|a_{n}\right| R^{n}} \quad \text { whenever }|z|>R
$$

So $1 / P(z)$ is bounded in the region exterior to the disk $|z| \leq R$. But $1 / P(z)$ is continuous on that closed disk, and this means that $1 / P(z)$ is bounded there too (Sec. 18). Hence $1 / P(z)$ is bounded in the entire plane.

It now follows from Liouville's theorem that $1 / P(z)$, and consequently $P(z)$, is constant. But $P(z)$ is not constant, and we have reached a contradiction.*

The fundamental theorem tells us that any polynomial $P(z)$ of degree $n(n \geq 1)$ can be expressed as a product of linear factors:

$$
\begin{equation*}
P(z)=c\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right), \tag{3}
\end{equation*}
$$

where c and $z_{k}(k=1,2, \ldots, n)$ are complex constants. More precisely, the theorem ensures that $P(z)$ has a zero z_{1}. Then, according to Exercise 8, Sec. 59,

$$
P(z)=\left(z-z_{1}\right) Q_{1}(z)
$$

where $Q_{1}(z)$ is a polynomial of degree $n-1$. The same argument, applied to $Q_{1}(z)$, reveals that there is a number z_{2} such that

$$
P(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) Q_{2}(z)
$$

where $Q_{2}(z)$ is a polynomial of degree $n-2$. Continuing in this way, we arrive at expression (3). Some of the constants z_{k} in expression (3) may, of course, appear more than once, but it is clear that $P(z)$ can have no more than n distinct zeros.

59. MAXIMUM MODULUS PRINCIPLE

In this section, we derive an important result involving maximum values of the moduli of analytic functions. We begin with a needed lemma.

Lemma. Suppose that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ at each point z in some neighborhood $\left|z-z_{0}\right|<\varepsilon$ in which f is analytic. Then $f(z)$ has the constant value $f\left(z_{0}\right)$ throughout that neighborhood.

To prove this, we assume that f satisfies the stated conditions and let z_{1} be any point other than z_{0} in the given neighborhood. We then let ρ be the distance between z_{1} and z_{0}. If C_{ρ} denotes the positively oriented circle $\left|z-z_{0}\right|=\rho$, centered at z_{0} and

[^1]passing through z_{1} (Fig. 72), the Cauchy integral formula tells us that
\[

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C_{\rho}} \frac{f(z) d z}{z-z_{0}} ; \tag{1}
\end{equation*}
$$

\]

and the parametric representation

$$
z=z_{0}+\rho e^{i \theta} \quad(0 \leq \theta \leq 2 \pi)
$$

for C_{ρ} enables us to write equation (1) as

$$
\begin{equation*}
f\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(z_{0}+\rho e^{i \theta}\right) d \theta \tag{2}
\end{equation*}
$$

We note from expression (2) that when a function is analytic within and on a given circle, its value at the center is the arithmetic mean of its values on the circle. This result is called Gauss's mean value theorem.

FIGURE 72

From equation (2), we obtain the inequality

$$
\begin{equation*}
\left|f\left(z_{0}\right)\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \tag{3}
\end{equation*}
$$

On the other hand, since

$$
\begin{equation*}
\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| \leq\left|f\left(z_{0}\right)\right| \quad(0 \leq \theta \leq 2 \pi) \tag{4}
\end{equation*}
$$

we find that

$$
\int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \leq \int_{0}^{2 \pi}\left|f\left(z_{0}\right)\right| d \theta=2 \pi\left|f\left(z_{0}\right)\right| .
$$

Thus

$$
\begin{equation*}
\left|f\left(z_{0}\right)\right| \geq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta \tag{5}
\end{equation*}
$$

It is now evident from inequalities (3) and (5) that

$$
\left|f\left(z_{0}\right)\right|=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(z_{0}+\rho e^{i \theta}\right)\right| d \theta
$$

or

$$
\int_{0}^{2 \pi}\left[\left|f\left(z_{0}\right)\right|-\left|f\left(z_{0}+\rho e^{i \theta}\right)\right|\right] d \theta=0 .
$$

The integrand in this last integral is continuous in the variable θ; and, in view of condition (4), it is greater than or equal to zero on the entire interval $0 \leq \theta \leq 2 \pi$. Because the value of the integral is zero, then, the integrand must be identically equal to zero. That is,

$$
\begin{equation*}
\left|f\left(z_{0}+\rho e^{i \theta}\right)\right|=\left|f\left(z_{0}\right)\right| \quad(0 \leq \theta \leq 2 \pi) \tag{6}
\end{equation*}
$$

This shows that $|f(z)|=\left|f\left(z_{0}\right)\right|$ for all points z on the circle $\left|z-z_{0}\right|=\rho$.
Finally, since z_{1} is any point in the deleted neighborhood $0<\left|z-z_{0}\right|<\varepsilon$, we see that the equation $|f(z)|=\left|f\left(z_{0}\right)\right|$ is, in fact, satisfied by all points z lying on any circle $\left|z-z_{0}\right|=\rho$, where $0<\rho<\varepsilon$. Consequently, $|f(z)|=\left|f\left(z_{0}\right)\right|$ everywhere in the neighborhood $\left|z-z_{0}\right|<\varepsilon$. But we know from Example 4. Sec. 26, that when the modulus of an analytic function is constant in a domain, the function itself is constant there. Thus $f(z)=f\left(z_{0}\right)$ for each point z in the neighborhood, and the proof of the lemma is complete.

This lemma can be used to prove the following theorem, which is known as the maximum modulus principle.

Theorem. If a function f is analytic and not constant in a given domain D, then $|f(z)|$ has no maximum value in D. That is, there is no point z_{0} in the domain such that $|f(z)| \leq\left|f\left(z_{0}\right)\right|$ for all points z in it.

Given that f is analytic in D, we shall prove the theorem by assuming that $|f(z)|$ does have a maximum value at some point z_{0} in D and then showing that $f(z)$ must be constant throughout D.

The general approach here is similar to that taken in the proof of the lemma in Sec. 28. We draw a polygonal line L lying in D and extending from z_{0} to any other point P in D. Also, d represents the shortest distance from points on L to the boundary of D. When D is the entire plane, d may have any positive value. Next, we observe that there is a finite sequence of points

$$
z_{0}, z_{1}, z_{2}, \ldots, z_{n-1}, z_{n}
$$

along L such that z_{n} coincides with the point P and

$$
\left|z_{k}-z_{k-1}\right|<d \quad(k=1,2, \ldots, n)
$$

In forming a finite sequence of neighborhoods (Fig. 73)

$$
N_{0}, N_{1}, N_{2}, \ldots, N_{n-1}, N_{n}
$$

FIGURE 73

[^0]: *See Exercise 10, Sec. 20, and the footnote with it.

[^1]: *For an interesting proof of the fundamental theorem of algebra using the Cauchy-Goursat theorem, see R. P. Boas, Jr., Amer. Math. Monthly, Vol. 71, No. 2, p. 180, 1964.

