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9. Nested Squares. A square σ0 : a0 ≤ x ≤ b0, c0 ≤ y ≤ d0 is divided into four equal
squares by line segments parallel to the coordinate axes. One of those four smaller squares
σ1 : a1 ≤ x ≤ b1, c1 ≤ y ≤ d1 is selected according to some rule. It, in turn, is divided
into four equal squares one of which, called σ2, is selected, etc. (see Sec. 49). Prove
that there is a point (x0, y0) which belongs to each of the closed regions of the infinite
sequence σ0, σ1, σ2, . . . .

Suggestion: Apply the result in Exercise 8 to each of the sequences of closed
intervals an ≤ x ≤ bn and cn ≤ y ≤ dn (n = 0, 1, 2, . . .).

54. CAUCHY INTEGRAL FORMULA

Another fundamental result will now be established.

Theorem. Let f be analytic everywhere inside and on a simple closed contour
C, taken in the positive sense. If z0 is any point interior to C, then

f (z0) = 1

2π i

∫
C

f (z) dz

z − z0
.(1)

Expression (1) is called the Cauchy integral formula. It tells us that if a function
f is to be analytic within and on a simple closed contour C , then the values of f
interior to C are completely determined by the values of f on C .

We begin the proof of the theorem by letting Cρ denote a positively oriented circle
|z − z0| = ρ, where ρ is small enough that Cρ is interior to C (see Fig. 68). Since the
quotient f (z)/(z − z0) is analytic between and on the contours Cρ and C , it follows
from the principle of deformation of paths (Sec. 53) that∫

C

f (z) dz

z − z0
=

∫
Cρ

f (z) dz

z − z0
.

This enables us to write∫
C

f (z) dz

z − z0
− f (z0)

∫
Cρ

dz

z − z0
=

∫
Cρ

f (z) − f (z0)

z − z0
dz.(2)

But [see Exercise 13, Sec. 46] ∫
Cρ

dz

z − z0
= 2π i,

x

z0

O

y

C

C
ρ

ρ

FIGURE 68
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and so equation (2) becomes∫
C

f (z) dz

z − z0
− 2π i f (z0) =

∫
Cρ

f (z) − f (z0)

z − z0
dz.(3)

Now the fact that f is analytic, and therefore continuous, at z0 ensures that
corresponding to each positive number ε, however small, there is a positive number δ

such that

| f (z) − f (z0)| < ε whenever |z − z0| < δ.(4)

Let the radius ρ of the circle Cρ be smaller than the number δ in the second of these
inequalities. Since |z − z0| = ρ < δ when z is on Cρ , it follows that the first of
inequalities (4) holds when z is such a point; and the theorem in Sec. 47, giving upper
bounds for the moduli of contour integrals, tells us that∣∣∣∣∣

∫
Cρ

f (z) − f (z0)

z − z0
dz

∣∣∣∣∣ <
ε

ρ
2πρ = 2πε.

In view of equation (3), then,∣∣∣∣
∫

C

f (z) dz

z − z0
− 2π i f (z0)

∣∣∣∣ < 2πε.

Since the left-hand side of this inequality is a nonnegative constant that is less than an
arbitrarily small positive number, it follows that∫

C

f (z) dz

z − z0
− 2π i f (z0) = 0.

Hence equation (1) is valid, and the theorem is proved.
When the Cauchy integral formula is written as∫

C

f (z) dz

z − z0
= 2π i f (z0),(5)

it can be used to evaluate certain integrals along simple closed contours.

EXAMPLE. Let C be the positively oriented circle |z| = 1 about the origin.
Since the function

f (z) = cos z

z2 + 9

is analytic inside and on C and since the origin z0 = 0 is interior to C , equation (5)
tells us that∫

C

cos z

z(z2 + 9)
dz =

∫
C

(cos z)/(z2 + 9)

z − 0
dz = 2π i f (0) = 2π i

9
.



Brown/Churchill-3930327 book July 18, 2013 10:8

164 INTEGRALS CHAP. 4

55. AN EXTENSION OF THE CAUCHY
INTEGRAL FORMULA

The Cauchy integral formula in the theorem in Sec. 50 can be extended so as to provide
an integral representation for derivatives f (n)(z0) of f at z0.

Theorem. Let f be analytic inside and on a simple closed contour C, taken in
the positive sense. If z0 is any point interior to C, then

f (n)(z0) = n!

2π i

∫
C

f (z) dz

(z − z0)n+1
(n = 0, 1, 2, . . .),(1)

With the agreement that

f (0)(z0) = f (z0) and 0! = 1,

this theorem includes the Cauchy integral formula

f (z0) = 1

2π i

∫
C

f (z) dz

z − z0
.(2)

Verification of expression (1) will be taken up in Sec. 56.
When written in the form∫

C

f (z) dz

(z − z0)n+1
= 2π i

n!
f (n)(z0) (n = 0, 1, 2, . . .),(3)

expression (1) can be useful in evaluating certain integrals when f is analytic inside
and on a simple closed contour C , taken in the positive sense, and z0 is any point
interior to C . It has already been illustrated in Sec. 50 when n = 0.

EXAMPLE 1. If C is the positively oriented unit circle |z| = 1 and

f (z) = exp(2z),

then ∫
C

exp(2z) dz

z4
=

∫
C

f (z) dz

(z − 0)3+1
= 2π i

3!
f ′′′(0) = 8π i

3
.

EXAMPLE 2. Let z0 be any point interior to a positively oriented simple closed
contour C . When f (z) = 1, expression (3) shows that∫

C

dz

z − z0
= 2π i

and ∫
C

dz

(z − z0)n+1
= 0 (n = 1, 2, . . .).

(Compare with Exercise 13, Sec. 46.)
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Expression (1) can also be useful in slightly different notation. Namely, if s
denotes points on C and if z is a point interior to C , then

f (n)(z) = n!

2π i

∫
C

f (s) ds

(s − z)n+1
(n = 0, 1, 2, . . .),(4)

where f (0)(z) = f (z) and, of course, 0! = 1. Our next example illustrates the use of
expression (4) in the form∫

C

f (s) ds

(s − z)n+1
= 2π i

n!
f (n)(z) (n = 0, 1, 2, . . .),(5)

which includes the special case∫
C

f (s) ds

s − z
= 2π i f (z).(6)

EXAMPLE 3. If n is a nonnegative integer and f (z) = (z2 − 1)n, expression
(4), becomes

dn

dzn
(z2 − 1)n = n!

2π i

∫
C

(s2 − 1)nds

(s − z)n+1
(n = 0, 1, 2, . . .),(7)

where C is any simple closed contour surrounding z. In view of equation (7), one can
write the Legendre polynomial∗

Pn(z) = 1

n!2n

dn

dzn
(z2 − 1)n (n = 0, 1, 2, . . .)(8)

as

Pn(z) = 1

2n+1π i

∫
C

(s2 − 1)nds

(s − z)n+1
(n = 0, 1, 2, . . .).(9)

Because

(s2 − 1)n

(s − 1)n+1
= (s − 1)n(s + 1)n

(s − 1)n+1
= (s + 1)n

s − 1
,

expression (9) reveals that

Pn(1) = 1

2n+1π i

∫
C

(s + 1)nds

s − 1
(n = 0, 1, 2, . . .);

and by writing f (s) = (s + 1)n and z = 1 in equation (6), we arrive at the values

Pn(1) = 1

2n+1π i
2π i (1 + 1)n = 1 (n = 0, 1, 2, . . .).

The values Pn(−1) = (−1)n(n = 0, 1, 2, . . .) can be found (Exercise 8, Sec. 57) in a
similar way.

∗See Exercise 10, Sec. 20, and the footnote with it.
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maximum value of | f (z)| on CR, then

| f (n)(z0)| ≤ n!MR

Rn
(n = 1, 2, . . .).(2)

Inequality (2) is called Cauchy’s inequality and is an immediate consequence of
the expression

f (n)(z0) = n!

2π i

∫
CR

f (z) dz

(z − z0)n+1
(n = 1, 2, . . .),

in the theorem in Sec. 55 when n is a positive integer. We need only apply the theorem
in Sec. 47, which gives upper bounds for the moduli of the values of contour integrals,
to see that

| f (n)(z0)| ≤ n!

2π
.

MR

Rn+1
2πR (n = 1, 2, . . .),

where MR is as in the statement of Theorem 3. This inequality is, of course, the same
as inequality (2).

EXERCISES
1. Let C denote the positively oriented boundary of the square whose sides lie along the

lines x = ± 2 and y = ± 2. Evaluate each of these integrals:

(a)

∫
C

e−z dz

z − (π i/2)
; (b)

∫
C

cos z

z(z2 + 8)
dz; (c)

∫
C

z dz

2z + 1
;

(d)

∫
C

cosh z

z4
dz; (e)

∫
C

tan(z/2)

(z − x0)2
dz (−2 < x0 < 2).

Ans. (a) 2π ; (b) π i/4; (c) − π i/2; (d) 0; (e) iπ sec2(x0/2).

2. Find the value of the integral of g(z) around the circle |z − i | = 2 in the positive sense
when

(a) g(z) = 1

z2 + 4
; (b) g(z) = 1

(z2 + 4)2
.

Ans. (a) π/2 ; (b) π/16.

3. Let C be the circle |z| = 3, described in the positive sense. Show that if

g(z) =
∫

C

2s2 − s − 2

s − z
ds (|z| �= 3),

then g(2) = 8π i . What is the value of g(z) when |z| > 3?

4. Let C be any simple closed contour, described in the positive sense in the z plane, and
write

g(z) =
∫

C

s3 + 2s

(s − z)3
ds.

Show that g(z) = 6π i z when z is inside C and that g(z) = 0 when z is outside.



Brown/Churchill-3930327 book July 18, 2013 10:8

SEC. 57 SOME CONSEQUENCES OF THE EXTENSION 171

5. Show that if f is analytic within and on a simple closed contour C and z0 is not on C ,
then ∫

C

f ′(z) dz

z − z0
=

∫
C

f (z) dz

(z − z0)2
.

6. Let f denote a function that is continuous on a simple closed contour C . Following the
procedure used in Sec. 56, prove that the function

g(z) = 1

2π i

∫
C

f (s) ds

s − z

is analytic at each point z interior to C and that

g′(z) = 1

2π i

∫
C

f (s) ds

(s − z)2

at such a point.

7. Let C be the unit circle z = eiθ (−π ≤ θ ≤ π). First show that for any real constant a,∫
C

eaz

z
dz = 2π i.

Then write this integral in terms of θ to derive the integration formula∫ π

0
ea cos θ cos(a sin θ) dθ = π.

8. Show that Pn(−1) = (−1)n(n = 0, 1, 2, . . .), where Pn(z) are the Legendre polynomials
in Example 3, Sec. 55.

Suggestion: Note that

(s2 − 1)n

(s + 1)n+1
= (s − 1)n

s + 1
.

9. Follow the steps below to verify the expression

f ′′(z) = 1

π i

∫
C

f (s) ds

(s − z)3

in Sec. 56.

(a) Use expression (2) in Sec. 56 for f ′(z) to show that

f ′(z + 
z) − f ′(z)

z

− 1

π i

∫
C

f (s) ds

(s − z)3
= 1

2π i

∫
C

3(s − z)
z − 2(
z)2

(s − z − 
z)2(s − z)3
f (s) ds.

(b) Let D and d denote the largest and smallest distances, respectively, from z to points
on C . Also, let M be the maximum value of | f (s)| on C and L the length of C . With
the aid of the triangle inequality and by referring to the derivation of expression (2)
in Sec. 56 for f ′(z), show that when 0 < |
z| < d, the value of the integral on the
right-hand side in part (a) is bounded from above by

(3D|
z| + 2|
z|2)M

(d − |
z|)2d3
L .

(c) Use the results in parts (a) and (b) to obtain the desired expression for f ′′(z).
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10. Let f be an entire function such that | f (z)| ≤ A|z| for all z, where A is a fixed positive
number. Show that f (z) = a1z, where a1 is a complex constant.

Suggestion: Use Cauchy’s inequality (Sec. 57) to show that the second derivative
f ′′(z) is zero everywhere in the plane. Note that the constant MR in Cauchy’s inequality
is less than or equal to A(|z0| + R).

58. LIOUVILLE’S THEOREM AND THE FUNDAMENTAL
THEOREM OF ALGEBRA

Cauchy’s inequality in Theorem 3 of Sec. 57 can be used to show that no entire function
except a constant is bounded in the complex plane. Our first theorem here, which is
known as Liouville’s theorem, states this result in a slightly different way.

Theorem 1. If a function f is entire and bounded in the complex plane, then f (z)
is constant throughout the plane.

To start the proof, we assume that f is as stated and note that since f is entire,
Theorem 3 in Sec. 57 can be applied with any choice of z0 and R. In particular,
Cauchy’s inequality (2) in that theorem tells us that when n = 1,

| f ′(z0)| ≤ MR

R
.(1)

Moreover, the boundedness condition on f tells us that a nonnegative constant M
exists such that | f (z)| ≤ M for all z; and, because the constant MR in inequality (1)
is always less than or equal to M , it follows that∣∣ f ′(z0)

∣∣ ≤ M

R
,(2)

where R can be arbitrarily large. Now the number M in inequality (2) is independent
of the value of R that is taken. Hence that inequality holds for arbitrarily large values
of R only if f ′(z0) = 0. Since the choice of z0 was arbitrary, this means that f ′(z) = 0
everywhere in the complex plane. Consequently, f is a constant function, according
to the theorem in Sec. 25.

The following theorem is called the fundamental theorem of algebra and follows
readily from Liouville’s theorem.

Theorem 2. Any polynomial

P(z) = a0 + a1z + a2z2 + · · · + anzn (an �= 0)

of degree n (n ≥ 1) has at least one zero. That is, there exists at least one point z0 such
that P(z0) = 0.

The proof here is by contradiction. Suppose that P(z) is not zero for any value of
z. Then the quotient 1/P(z) is clearly entire. It is also bounded in the complex plane.
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To see that it is bounded, we first recall statement (6) in Sec. 5. Namely, there is a
positive number R such that∣∣∣∣ 1

P(z)

∣∣∣∣ <
2

|an|Rn
whenever |z| > R.

So 1/P(z) is bounded in the region exterior to the disk |z| ≤ R. But 1/P(z)
is continuous on that closed disk, and this means that 1/P(z) is bounded there too
(Sec. 18). Hence 1/P(z) is bounded in the entire plane.

It now follows from Liouville’s theorem that 1/P(z), and consequentlyP(z), is
constant. But P(z) is not constant, and we have reached a contradiction.∗

The fundamental theorem tells us that any polynomial P(z) of degree n (n ≥ 1)

can be expressed as a product of linear factors:

P(z) = c(z − z1)(z − z2) · · · (z − zn),(3)

where c and zk (k = 1, 2, . . . , n) are complex constants. More precisely, the theorem
ensures that P(z) has a zero z1. Then, according to Exercise 8, Sec. 59,

P(z) = (z − z1)Q1(z),

where Q1(z) is a polynomial of degree n − 1. The same argument, applied to Q1(z),
reveals that there is a number z2 such that

P(z) = (z − z1)(z − z2)Q2(z),

where Q2(z) is a polynomial of degree n − 2. Continuing in this way, we arrive at
expression (3). Some of the constants zk in expression (3) may, of course, appear more
than once, but it is clear that P(z) can have no more than n distinct zeros.

59. MAXIMUM MODULUS PRINCIPLE

In this section, we derive an important result involving maximum values of the moduli
of analytic functions. We begin with a needed lemma.

Lemma. Suppose that | f (z)| ≤ | f (z0)| at each point z in some neighborhood
|z − z0| < ε in which f is analytic. Then f (z) has the constant value f (z0) throughout
that neighborhood.

To prove this, we assume that f satisfies the stated conditions and let z1 be any
point other than z0 in the given neighborhood. We then let ρ be the distance between
z1 and z0. If Cρ denotes the positively oriented circle |z − z0| = ρ, centered at z0 and

∗For an interesting proof of the fundamental theorem of algebra using the Cauchy–Goursat theorem,
see R. P. Boas, Jr., Amer. Math. Monthly, Vol. 71, No. 2, p. 180, 1964.
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passing through z1 (Fig. 72), the Cauchy integral formula tells us that

f (z0) = 1

2π i

∫
Cρ

f (z) dz

z − z0
;(1)

and the parametric representation

z = z0 + ρeiθ (0 ≤ θ ≤ 2π)

for Cρ enables us to write equation (1) as

f (z0) = 1

2π

∫ 2π

0
f (z0 + ρeiθ ) dθ.(2)

We note from expression (2) that when a function is analytic within and on a given
circle, its value at the center is the arithmetic mean of its values on the circle. This
result is called Gauss’s mean value theorem.

x

z0

z1

O

y

FIGURE 72

From equation (2), we obtain the inequality

| f (z0)| ≤ 1

2π

∫ 2π

0
| f (z0 + ρeiθ )| dθ.(3)

On the other hand, since

| f (z0 + ρeiθ )| ≤ | f (z0)| (0 ≤ θ ≤ 2π),(4)

we find that ∫ 2π

0
| f (z0 + ρeiθ )| dθ ≤

∫ 2π

0
| f (z0)| dθ = 2π | f (z0)|.

Thus

| f (z0)| ≥ 1

2π

∫ 2π

0
| f (z0 + ρeiθ )| dθ.(5)

It is now evident from inequalities (3) and (5) that

| f (z0)| = 1

2π

∫ 2π

0
| f (z0 + ρeiθ )| dθ,

or ∫ 2π

0
[| f (z0)| − | f (z0 + ρeiθ )|] dθ = 0.
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The integrand in this last integral is continuous in the variable θ ; and, in view of
condition (4), it is greater than or equal to zero on the entire interval 0 ≤ θ ≤ 2π .
Because the value of the integral is zero, then, the integrand must be identically equal
to zero. That is,

| f (z0 + ρeiθ )| = | f (z0)| (0 ≤ θ ≤ 2π).(6)

This shows that | f (z)| = | f (z0)| for all points z on the circle |z − z0| = ρ.
Finally, since z1 is any point in the deleted neighborhood 0 < |z − z0| < ε, we

see that the equation | f (z)| = | f (z0)| is, in fact, satisfied by all points z lying on any
circle |z − z0| = ρ, where 0 < ρ < ε. Consequently, | f (z)| = | f (z0)| everywhere in
the neighborhood |z − z0| < ε. But we know from Example 4. Sec. 26, that when the
modulus of an analytic function is constant in a domain, the function itself is constant
there. Thus f (z) = f (z0) for each point z in the neighborhood, and the proof of the
lemma is complete.

This lemma can be used to prove the following theorem, which is known as the
maximum modulus principle.

Theorem. If a function f is analytic and not constant in a given domain D, then
| f (z)| has no maximum value in D. That is, there is no point z0 in the domain such
that | f (z)| ≤ | f (z0)| for all points z in it.

Given that f is analytic in D, we shall prove the theorem by assuming that | f (z)|
does have a maximum value at some point z0 in D and then showing that f (z) must
be constant throughout D.

The general approach here is similar to that taken in the proof of the lemma in
Sec. 28. We draw a polygonal line L lying in D and extending from z0 to any other
point P in D. Also, d represents the shortest distance from points on L to the boundary
of D. When D is the entire plane, d may have any positive value. Next, we observe
that there is a finite sequence of points

z0, z1, z2, . . . , zn−1, zn

along L such that zn coincides with the point P and

|zk − zk−1| < d (k = 1, 2, . . . , n).

In forming a finite sequence of neighborhoods (Fig. 73)

N0, N1, N2, . . . , Nn−1, Nn

z0

N0
N1

N2 Nn
L

P
z2

zn – 1 znz1

Nn – 1

FIGURE 73
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