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C H A P T E R

3
ELEMENTARY FUNCTIONS

We consider here various elementary functions studied in calculus and define corre-
sponding functions of a complex variable. To be specific, we define analytic functions
of a complex variable z that reduce to the elementary functions in calculus when
z = x + i0. We start by defining the complex exponential function and then use it to
develop the others.

30. THE EXPONENTIAL FUNCTION

The exponential function can be defined by writing

ez = ex eiy (z = x + iy),(1)

where Euler’s formula (see Sec. 7)

eiy = cos y + i sin y(2)

is used and y is to be taken in radians. We see from this definition that ez reduces to
the usual exponential function in calculus when y = 0; and, following the convention
used in calculus, we often write exp z for ez .

Note that since the positive nth root n
√

e of e is assigned to ex when x = 1/n
(n = 2, 3, . . .), expression (1) tells us that the complex exponential function ez is also

n
√

e when z = 1/n (n = 2, 3, . . .). This is an exception to the convention (Sec. 10)
that would ordinarily require us to interpret e1/n as the set of nth roots of e.

87
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Note, too, that when definition (1) is written in the form

ez = ρeiφ where ρ = ex and φ = y,

it becomes clear that

|ez| = ex and arg(ez) = y + 2nπ (n = 0, ±1, ±2, . . .).(3)

Moreover, since ex is never zero,

ez �= 0 for any complex number z.(4)

In addition to property (4), there are a number of other properties that carry over from
ex to ez , and we mention a few of them here.

According to definition (1), ex eiy = ex+iy ; and this is consistent with the additive
property ex1 ex2 = ex1+x2 of the exponential function in calculus. The extension

ez1 ez2 = ez1+z2(5)

to complex analysis is easy to verify. To do this, we write

z1 = x1 + iy1 and z2 = x2 + iy2.

Then

ez1 ez2 = (ex1 eiy1)(ex2 eiy2) = (ex1 ex2)(eiy1 eiy2).

But x1 and x2 are both real, and we know from Sec. 8 that

eiy1 eiy2 = ei(y1+y2).

Hence

ez1 ez2 = e(x1+x2)ei(y1+y2);
and, since

(x1 + x2) + i(y1 + y2) = (x1 + iy1) + (x2 + iy2) = z1 + z2,

the right-hand side of this last equation becomes ez1+z2 . Property (5) is now established.
Observe how property (5) enables us to write ez1−z2 ez2 = ez1 , or

ez1

ez2
= ez1−z2 .(6)

From this and the fact that e0 = 1, it follows that 1/ez = e−z .
There are a number of other important properties of ez that are expected. Accord-

ing to Example 1 in Sec. 23, for instance,

d

dz
ez = ez(7)

everywhere in the z plane. Note that the differentiability of ez for all z tells us that
ez is entire (Sec. 25).
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Some properties of ez are, on the other hand, not expected. For example, since

ez+2π i = eze2π i and e2π i = 1,

we find that ez is periodic, with a pure imaginary period of 2π i :

ez+2π i = ez.(8)

For another property of ez that ex does not have, we note that while ex is always
positive, ez can be negative. We recall (Sec. 6), for instance, that eiπ = −1. In fact,

ei(2n+1)π = ei2nπ+iπ = ei2nπeiπ = (1)(−1) = −1 (n = 0, ±1, ±2, . . .).

There are, moreover, values of z such that ez is any given nonzero complex number.
This is shown in the next section, where the logarithmic function is developed, and is
illustrated in the following example.

EXAMPLE. In order to find numbers z = x + iy such that

ez = 1 +
√

3i,(9)

we write equation (9) as

ex eiy = 2 eiπ/3.

Then, in view of the statement in italics at the beginning of Sec. 10, regarding the
equality of two nonzero complex numbers in exponential form,

ex = 2 and y = π

3
+ 2nπ (n = 0, ±1, ±2, . . .).

Because ln(ex) = x , it follows that

x = ln 2 and y = π

3
+ 2nπ (n = 0, ±1, ±2, . . .);

and so

z = ln 2 +
(

2n + 1

3

)
π i (n = 0, ±1, ±2, . . .).(10)

EXERCISES
1. Show that

(a) exp(2 ± 3π i) = −e2; (b) exp
(

2 + π i

4

)
=

√
e

2
(1 + i);

(c) exp(z + π i) = − exp z.

2. State why the function f (z) = 2z2 − 3 − zez + e−z is entire.

3. Use the Cauchy–Riemann equations and the theorem in Sec. 21 to show that the function
f (z) = exp z is not analytic anywhere.

4. Show in two ways that the function f (z) = exp(z2) is entire. What is its derivative?
Ans. f

′
(z) = 2z exp(z2).
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5. Write |exp(2z + i)| and |exp(i z2)| in terms of x and y. Then show that

|exp(2z + i) + exp(i z2)| ≤ e2x + e−2xy .

6. Show that |exp(z2)| ≤ exp(|z|2).
7. Prove that |exp(−2z)| < 1 if and only if Re z > 0.

8. Find all values of z such that

(a) ez = −2; (b) ez = 1 + i ; (c) exp(2z − 1) = 1.

Ans. (a) z = ln 2 + (2n + 1)π i (n = 0, ±1, ±2, . . .);

(b) z = 1

2
ln 2 +

(
2n + 1

4

)
π i (n = 0, ±1, ±2, . . .);

(c) z = 1

2
+ nπ i (n = 0, ±1, ±2, . . .).

9. Show that exp(i z) = exp(i z) if and only if z = nπ (n = 0, ±1, ±2, . . .). (Compare
with Exercise 4, Sec. 29.)

10. (a) Show that if ez is real, then Im z = nπ (n = 0, ±1, ±2, . . .).
(b) If ez is pure imaginary, what restriction is placed on z?

11. Describe the behavior of ez = ex eiy as (a) x tends to −∞; (b) y tends to ∞.

12. Write Re(e1/z) in terms of x and y. Why is this function harmonic in every domain that
does not contain the origin?

13. Let the function f (z) = u(x, y) + iv(x, y) be analytic in some domain D. State why
the functions

U (x, y) = eu(x,y) cos v(x, y), V (x, y) = eu(x,y) sin v(x, y)

are harmonic in D.

14. Establish the identity

(ez)n = enz (n = 0, ±1, ±2, . . .)

in the following way.

(a) Use mathematical induction to show that it is valid when n = 0, 1, 2, . . . .

(b) Verify it for negative integers n by first recalling from Sec. 8 that

zn = (z−1)m (m = −n = 1, 2, . . .)

when z �= 0 and writing (ez)n = (1/ez)m . Then use the result in part (a), together
with the property 1/ez = e−z (Sec. 30) of the exponential function.

31. THE LOGARITHMIC FUNCTION

Our motivation for the definition of the logarithmic function is based on solving the
equation

ew = z(1)
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for w, where z is any nonzero complex number. To do this, we note that when z and
w are written z = rei� (−π < � ≤ π) and w = u + iv, equation (1) becomes

eueiv = rei�.

According to the statement in italics at the beginning of Sec. 10 about the equality of
two nonzero complex numbers expressed in exponential form, this tells us that

eu = r and v = � + 2nπ

where n is any integer. Since the equation eu = r is the same as u = ln r , it follows
that equation (1) is satisfied if and only if w has one of the values

w = ln r + i(� + 2nπ) (n = 0, ±1, ±2, . . .).

Thus, if we write

log z = ln r + i(� + 2nπ) (n = 0, ±1, ±2, . . .),(2)

equation (1) tells us that

elog z = z (z �= 0),(3)

Inasmuch as equation (2) becomes

log x = ln x + 2nπ i (n = 0, ±1, ±2, . . .)

when z = x > 0 and since equation (3) then reduces to the familiar identity

eln x = x (x > 0)(4)

in calculus, equation (4) suggests that we use expression (2) as the definition of the
(multiple-valued) logarithmic function of a nonzero complex variable z = reiθ .

It should be emphasized that it is not true that the left-hand side of equation (3)
with the order of the exponential and logarithmic functions reversed reduces to just z.
More precisely, since expression (2) can be written

log z = ln |z| + i arg z

and since (Sec. 30)

|ez| = ex and arg(ez) = y + 2nπ (n = 0, ±1, ±2, . . .)

when z = x + iy, we know that

log(ez) = ln |ez| + i arg(ez) = ln(ex) + i(y + 2nπ) = (x + iy) + 2nπ i

(n = 0, ±1, ±2, . . .).

That is,

log(ez) = z + 2nπ i (n = 0, ±1, ±2, . . .).(5)

The principal value of log z is the value obtained from equation (2) when n = 0
there and is denoted by Log z. Thus

Log z = ln r + i�.(6)
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Note that Log z is well defined and single-valued when z �= 0 and that

log z = Log z + 2nπ i (n = 0, ±1, ±2, . . .).(7)

It reduces to the usual logarithm in calculus when z is a positive real number. To
see this, one need only write z = x (x > 0), in which case equation (6) becomes
Log z = ln x .

32. EXAMPLES

In this section we illustrate material in Sec. 31.

EXAMPLE 1. If z = −1 − √
3i , then r = 2 and � = −2π/3. Hence

log(−1 −
√

3i) = ln 2 + i

(
−2π

3
+ 2nπ

)
= ln 2 + 2

(
n − 1

3

)
π i

(n = 0, ±1, ±2, . . .).

EXAMPLE 2. From expression (2) in Sec. 31, we find that

log 1 = ln 1 + i(0 + 2nπ) = 2nπ i (n = 0, ±1, ±2, . . .).

As anticipated, Log 1 = 0.

The next example reminds us that although we were unable to find logarithms of
negative real numbers in calculus, it is now possible.

EXAMPLE 3. Observe that

log(−1) = ln 1 + i(π + 2nπ) = (2n + 1)π i (n = 0, ±1, ±2, . . .)

and that Log (−1) = π i .

Special care must be taken in anticipating that familiar properties of ln x in
calculus carry over to be properties of log z and Log z.

EXAMPLE 4. The identity

Log[(1 + i)2] = 2 Log(1 + i)(1)

is valid since

Log[(1 + i)2] = Log (2i) = ln 2 + i
π

2
and

2 Log(1 + i) = 2
(

ln
√

2 + i
π

4

)
= ln 2 + i

π

2
.
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On the other hand,

Log[(−1 + i)2] �= 2 Log(−1 + i)(2)

because
Log[(−1 + i)2] = Log(−2i) = ln 2 − i

π

2
and

2 Log(−1 + i) = 2
(

ln
√

2 + i
3π

4

)
= ln 2 + i

3π

2
.

While statement (1) might be expected, we see that statement (2) would not be
true as an equality.

EXAMPLE 5. It is shown in Exercise 5, Sec. 33, that

log(i1/2) = 1

2
log i(3)

in the sense that the set of values on the left is the same as the set of values on the
right. But

log(i2) �= 2 log i(4)

because

ln(i2) = log(−1) = (2n + 1)π i (n = 0, ±1, ±2, . . .),

according to Example 3, and since

2 log i = 2
[
ln 1 + i

(π

2
+ 2nπ

)]
= (4n + 1)π i (n = 0, ±1, ±2, . . .).

Upon comparing statements (3) and (4), we find that familiar properties of loga-
rithms in calculus are sometimes but not always true in complex analysis.

33. BRANCHES AND DERIVATIVES OF LOGARITHMS

If z = reiθ is a nonzero complex number, the argument θ has any one of the values
θ = � + 2nπ (n = 0, ±1, ±2, . . .), where � = Arg z. Hence the definition

log z = ln r + i(� + 2nπ) (n = 0, ±1, ±2, . . .)

of the multiple-valued logarithmic function in Sec. 31 can be written

log z = ln r + iθ.(1)

If we let α denote any real number and restrict the value of θ in expression (1) so
that α < θ < α + 2π, the function

log z = ln r + iθ (r > 0, α < θ < α + 2π),(2)

with components

u(r, θ) = ln r and v(r, θ) = θ,(3)
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is single-valued and continuous in the stated domain (Fig. 35). Note that if the function
(2) were to be defined on the ray θ = α, it would not be continuous there. For if z is
a point on that ray, there are points arbitrarily close to z at which the values of v are
near α and also points such that the values of v are near α + 2π .

xO

y

FIGURE 35

The function (2) is not only continuous but also analytic throughout the domain
r > 0, α < θ < α + 2π since the first-order partial derivatives of u and v are
continuous there and satisfy the polar form (Sec. 24)

rur = vθ , uθ = −rvr

of the Cauchy–Riemann equations. Furthermore, according to Sec. 24,
d

dz
log z = e−iθ (ur + ivr ) = e−iθ

(
1

r
+ i0

)
= 1

reiθ
;

that is,

d

dz
log z = 1

z
(|z| > 0, α < arg z < α + 2π).(4)

In particular,

d

dz
Log z = 1

z
(|z| > 0, −π < Arg z < π).(5)

A branch of a multiple-valued function f is any single-valued function F that
is analytic in some domain at each point z of which the value F(z) is one of the
values of f . The requirement of analyticity, of course, prevents F from taking on a
random selection of the values of f . Observe that for each fixed α, the single-valued
function (2) is a branch of the multiple-valued function (1). The function

Log z = ln r + i� (r > 0, −π < � < π)(6)

is called the principal branch.
A branch cut is a portion of a line or curve that is introduced in order to define a

branch F of a multiple-valued function f . Points on the branch cut for F are singular
points (Sec. 25) of F , and any point that is common to all branch cuts of f is called a
branch point. The origin and the ray θ = α make up the branch cut for the branch (2)
of the logarithmic function. The branch cut for the principal branch (6) consists of the
origin and the ray � = π . The origin is evidently a branch point for branches of the
multiple-valued logarithmic function.
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We saw in Example 5, Sec. 32, that the set of values of log(i2) is not the set of
values of 2 log i . The following example does show, however, that equality can occur
when a specific branch of the logarithm is used. In that case, of course, there is only
one value of log(i2) that is to be taken, and the same is true of 2 log i .

EXAMPLE. In order to show that

log(i2) = 2 log i(7)

when the branch

log z = ln r + iθ

(
r > 0,

π

4
< θ <

9π

4

)
is used, write

log(i2) = log(−1) = ln 1 + iπ = π i

and then observe that

2 log i = 2
(

ln 1 + i
π

2

)
= π i.

It is interesting to contrast equality (7) with the result log(i2) �= 2 log i in Exer-
cise 4, where a different branch of log z is used.

In Sec. 34, we shall consider other identities involving logarithms, sometimes
with qualifications as to how they are to be interpreted. A reader who wishes to pass
to Sec. 35 can simply refer to results in Sec. 34 when needed.

EXERCISES
1. Show that

(a) Log(−ei) = 1 − π

2
i ; (b) Log(1 − i) = 1

2
ln 2 − π

4
i .

2. Show that

(a) log e = 1 + 2nπ i (n = 0, ±1, ±2, . . .);

(b) log i =
(

2n + 1

2

)
π i (n = 0, ±1, ±2, . . .);

(c) log(−1 + √
3i) = ln 2 + 2

(
n + 1

3

)
π i (n = 0, ±1, ±2, . . .).

3. Show that Log(i3) �= 3 Log i .

4. Show that log(i2) �= 2 log i when the branch

log z = ln r + iθ
(

r > 0,
3π

4
< θ <

11π

4

)

is used. (Compare this with the example in Sec. 33.)
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5. (a) Show that the two square roots of i are

eiπ/4 and ei5π/4

Then show that

log(eiπ/4) =
(

2n + 1

4

)
π i (n = 0, ±1, ±2, . . .)

and

log(ei5π/4) =
[
(2n + 1) + 1

4

]
π i (n = 0, ±1, ±2, . . .).

Conclude that

log(i1/2) =
(

n + 1

4

)
π i (n = 0, ±1, ±2, . . .).

(b) Show that

log(i1/2) = 1

2
log i,

as stated in Example 5, Sec. 32, by finding the values on the right-hand side of this
equation and then comparing them with the final result in part (a).

6. Given that the branch log z = ln r + iθ (r > 0, α < θ < α + 2π) of the logarith-
mic function is analytic at each point z in the stated domain, obtain its derivative by
differentiating each side of the identity (Sec. 31)

elog z = z (|z| > 0, α < arg z < α + 2π)

and using the chain rule.

7. Show that a branch (Sec. 33)

log z = ln r + iθ (r > 0, α < θ < α + 2π)

of the logarithmic function can be written

log z = 1

2
ln(x2 + y2) + i tan−1

(
y

x

)

in rectangular coordinates. Then, using the theorem in Sec. 23, show that the given branch
is analytic in its domain of definition and that

d

dz
log z = 1

z

there.

8. Find all roots of the equation log z = iπ/2.

Ans. z = i.

9. Suppose that the point z = x + iy lies in the horizontal strip α < y < α +2π. Show that
when the branch log z = ln r + iθ (r > 0, α < θ < α + 2π) of the logarithmic function
is used, log(ez) = z. [Compare with equation (5), Sec. 31.]
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10. Show that

(a) the function f (z) = Log(z − i) is analytic everywhere except on the portion x ≤ 0
of the line y = 1;

(b) the function

f (z) = Log(z + 4)

z2 + i

is analytic everywhere except at the points ±(1 − i)/
√

2 and on the portion
x ≤ −4 of the real axis.

11. Show in two ways that the function ln(x2 + y2) is harmonic in every domain that does
not contain the origin.

12. Show that

Re [log(z − 1)] = 1

2
ln[(x − 1)2 + y2] (z �= 1).

Why must this function satisfy Laplace’s equation when z �= 1?

34. SOME IDENTITIES INVOLVING LOGARITHMS

If z1 and z2 denote any two nonzero complex numbers, it is straightforward to show
that

log(z1z2) = log z1 + log z2.(1)

This statement, involving a multiple-valued function, is to be interpreted in the same
way that the statement

arg(z1z2) = arg z1 + arg z2(2)

was in Sec. 9. That is, if values of two of the three logarithms are specified, then there
is a value of the third such that equation (1) holds.

The verification of statement (1) can be based on statement (2) in the following
way. Since |z1z2| = |z1||z2| and since these moduli are all positive real numbers, we
know from experience with logarithms of such numbers in calculus that

ln |z1z2| = ln |z1| + ln |z2|.
So it follows from this and equation (2) that

ln |z1z2| + i arg(z1z2) = (ln |z1| + i arg z1) + (ln |z2| + i arg z2).(3)

Finally, because of the way in which equations (1) and (2) are to be interpreted,
equation (3) is the same as equation (1).

EXAMPLE 1. To illustrate statement (1), write z1 = z2 = −1 and recall from
Examples 2 and 3 in Sec. 32 that

log 1 = 2nπ i and log(−1) = (2n + 1)π i,
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where n = 0, ±1, ±2, . . . . Noting that z1z2 = 1 and using the values

log(z1z2) = 0 and log z1 = π i,

we find that equation (1) is satisfied when the value log z2 = −π i is chosen.
If, on the other hand, principal values are used when z1 = z2 = −1,

Log(z1z2) = 0 and Log z1 + Log z2 = 2π i.

Thus statement (1) is not always true when principal values are used in all three terms.
In our next example, however, principal values can be used everywhere in equation (1)
when certain restrictions are placed on the nonzero numbers z1 and z2.

EXAMPLE 2. Let z1 and z2 denote nonzero complex numbers lying to the right
of the imaginary axis, so that

Re z1 > 0 and Re z2 > 0.

Thus

z1 = r1 exp(i�1) and z2 = r2 exp(i�2),

where

−π

2
< �1 <

π

2
and −π

2
< �2 <

π

2
.

Now it is important to notice that −π < �1 + �2 < π since this means that

Arg (z1z2) = �1 + �2.

Consequently,

Log(z1z2) = ln |z1z2| + iArg (z1z2)

= ln(r1r2) + i(�1 + �2)

= (ln r1 + i�1) + (ln r2 + i�2).

That is,

Log(z1z) = Log z1 + Log z2.

(Compare this result with the one in Exercise 6, Sec. 9.)

Verification of the statement

log
(

z1

z2

)
= log z1 − log z2,(4)

which is to be interpreted in the same way as statement (1), is left to the exercises.
We include here two other properties of log z that will be of special interest in

Sec. 35. If z is a nonzero complex number, then

zn = en log z (n = 0 ± 1, ±2, . . .)(5)
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for any value of log z that is taken. When n = 1, this reduces, of course, to relation
(3), Sec. 31. Equation (5) is readily verified by writing z = reiθ and noting that each
side becomes rneinθ .

It is also true that when z �= 0,

z1/n = exp
(

1

n
log z

)
(n = 1, 2, . . .).(6)

That is, the term on the right here has n distinct values, and those values are the nth
roots of z. To prove this, we write z = r exp(i�), where � is the principal value of
arg z. Then, in view of definition (2), Sec. 31, of log z,

exp
(

1

n
log z

)
= exp

[
1

n
ln r + i(� + 2kπ)

n

]

where k = 0, ±1, ±2, . . . . Thus

exp
(

1

n
log z

)
= n

√
r exp

[
i

(
�

n
+ 2kπ

n

)]
(k = 0, ±1, ±2, . . .).(7)

Because exp(i2kπ/n) has distinct values only when k = 0, 1, . . . , n−1, the right-hand
side of equation (7) has only n values. That right-hand side is, in fact, an expression for
the nth roots of z (Sec. 10), and so it can be written z1/n . This establishes property (6),
which is actually valid when n is a negative integer too (see Exercise 4).

EXERCISES
1. Show that for any two nonzero complex numbers z1 and z2,

Log(z1z2) = Log z1 + Log z2 + 2Nπ i

where N has one of the values 0, ±1. (Compare with Example 2 in Sec. 34.)

2. Verify expression (4), Sec. 34, for log(z1/z2) by

(a) using the fact that arg(z1/z2) = arg z1 − arg z2 (Sec. 9);
(b) showing that log(1/z) = − log z (z �= 0), in the sense that log(1/z) and − log z have

the same set of values, and then referring to expression (1), Sec. 34, for log(z1z2).

3. By choosing specific nonzero values of z1 and z2, show that expression (4), Sec. 34, for
log(z1/z2) is not always valid when log is replaced by Log.

4. Show that property (6), Sec. 34, also holds when n is a negative integer. Do this by writing
z1/n = (z1/m)−1 (m = −n), where n has any one of the negative values n = −1, −2, . . .

(see Exercise 9, Sec. 11), and using the fact that the property is already known to be valid
for positive integers.

5. Let z denote any nonzero complex number, written z = rei� (−π < � ≤ π), and let n
denote any fixed positive integer (n = 1, 2, . . .). Show that all of the values of log(z1/n)

are given by the equation

log(z1/n) = 1

n
ln r + i

� + 2(pn + k)π

n
,


