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has a derivative at z = 0. In fact, f ′(0) = 0 + i0 = 0. We saw in Example 2,
Sec. 22, that this function cannot have a derivative at any nonzero point since the
Cauchy–Riemann equations are not satisfied at such points. (See also Example 3,
Sec. 19.)

EXAMPLE 3. When using the theorem in this section to find a derivative at a
point z0, one must be careful not to use the expression for f ′(z) in the statement of the
theorem before the existence of f ′(z) at z0 is established.

Consider, for instance, the function

f (z) = x3 + i(1 − y)3.

Here

u(x, y) = x3 and v(x, y) = (1 − y)3,

and it would be a mistake to say that f ′(z) exists everywhere and that

f ′(z) = ux + ivx = 3x2.(6)

To see this, we observe that the first Cauchy–Riemann equation ux = vy can hold
only if

x2 + (1 − y)2 = 0(7)

and that the second equation uy = −vx is always satisfied. Condition (7) thus tells us
that f ′(z) can exist only when x = 0 and y = 1. In view of equation (6), then, our
theorem tells us that f ′(z) exists only when z = i, in which case f ′(i) = 0.

24. POLAR COORDINATES

Assuming that z0 �= 0, we shall in this section use the coordinate transformation

x = r cos θ, y = r sin θ(1)

to restate the theorem in Sec. 23 in polar coordinates.
Depending on whether we write

z = x + iy or z = reiθ (z �= 0)

when w = f (z), the real and imaginary components of w = u + iv are expressed in
terms of either the variables x and y or r and θ . Suppose that the first-order partial
derivatives of u and v with respect to x and y exist everywhere in some neighborhood
of a given nonzero point z0 and are continuous at z0. The first-order partial derivatives
of u and v with respect to r and θ also have those properties, and the chain rule for
differentiating real-valued functions of two real variables can be used to write them in
terms of the ones with respect to x and y. More precisely, since

∂u

∂r
= ∂u

∂x

∂x

∂r
+ ∂u

∂y

∂y

∂r
,

∂u

∂θ
= ∂u

∂x

∂x

∂θ
+ ∂u

∂y

∂y

∂θ
,
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one can write

ur = ux cos θ + uy sin θ, uθ = −ux r sin θ + uy r cos θ.(2)

Likewise,

vr = vx cos θ + vy sin θ, vθ = −vx r sin θ + vy r cos θ.(3)

If the partial derivatives of u and v with respect to x and y also satisfy the
Cauchy–Riemann equations

ux = vy, uy = −vx(4)

at z0, equations (3) become

vr = −uy cos θ + ux sin θ, vθ = uy r sin θ + ux r cos θ(5)

at that point. It is then clear from equations (2) and (5) that

rur = vθ , uθ = −rvr(6)

at z0.
If, on the other hand, equations (6) are known to hold at z0, it is straightforward

to show (Exercise 7) that equations (4) must hold there. Equations (6) are, therefore,
an alternative form of the Cauchy–Riemann equations (4).

In view of equations (6) and the expression for f ′(z0) that is found in Exercise 8,
we are now able to restate the theorem in Sec. 23 using r and θ.

Theorem. Let the function

f (z) = u(r, θ) + iv(r, θ)

be defined throughout some ε neighborhood of a nonzero point z0 = r0 exp(iθ0), and
suppose that

(a) the first-order partial derivatives of the functions u and v with respect to r and θ

exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at (r0, θ0) and satisfy the polar form

rur = vθ , uθ = − rvr

of the Cauchy–Riemann equations at (r0, θ0).

Then f ′(z0) exists, its value being

f ′(z0) = e−iθ (ur + ivr ),

where the right-hand side is to be evaluated at (r0, θ0).

EXAMPLE 1. If

f (z) = 1

z2
= 1

(rei θ )2
= 1

r2
e−i2θ = 1

r2
(cos 2θ − i sin 2θ),
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where z �= 0, the component functions are

u = cos 2θ

r2
and v = − sin 2θ

r2
.

Since

rur = −2 cos 2θ

r2
= vθ , uθ = −2 sin 2θ

r2
= −r vr

and since the other conditions in the theorem are satisfied at every nonzero point
z = rei θ , the derivative of f exists when z �= 0. Moreover, according to the theorem,

f ′(z) = e−i θ

(
−2 cos 2θ

r3
+ i

2 sin 2θ

r3

)
= − 2e−i θ e−i 2θ

r3
= − 2

(rei θ )3
= − 2

z3
.

EXAMPLE 2. The theorem can be used to show that any branch

f (z) = √
r ei θ/2 (r > 0, α < θ < α + 2π)

of the square root function z1/2 has a derivative everywhere in its domain of definition.
Here

u(r, θ) = √
r cos

θ

2
and v(r, θ) = √

r sin
θ

2
.

Inasmuch as

rur =
√

r

2
cos

θ

2
= vθ and uθ = −

√
r

2
sin

θ

2
= −rvr

and since the remaining conditions in the theorem are satisfied, the derivative f ′(z)
exists at each point where f (z) is defined. The theorem also tells us that

f ′(z) = e−iθ

(
1

2
√

r
cos

θ

2
+ i

1

2
√

r
sin

θ

2

)
;

and this reduces to

f ′(z) = 1

2
√

r
e−i θ

(
cos

θ

2
+ i sin

θ

2

)
= 1

2
√

r ei θ/2
= 1

2 f (z)
.

EXERCISES
1. Use the theorem in Sec. 21 to show that f ′(z) does not exist at any point if

(a) f (z) = z ; (b) f (z) = z − z ;

(c) f (z) = 2x + i xy2; (d) f (z) = ex e−iy .

2. Use the theorem in Sec. 23 to show that f ′(z) and its derivative f ′′(z) exist everywhere,
and find f ′′(z) when

(a) f (z) = i z + 2; (b) f (z) = e−x e−iy ;

(c) f (z) = z3; (d) f (z) = cos x cosh y − i sin x sinh y.

Ans. (b) f ′′(z) = f (z); (d) f ′′(z) = − f (z).
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3. From results obtained in Secs. 21 and 23, determine where f ′(z) exists and find its value
when

(a) f (z) = 1/z; (b) f (z) = x2 + iy2; (c) f (z) = z Im z.

Ans. (a) f ′(z) = −1/z2 (z �= 0); (b) f ′(x + i x) = 2x ; (c) f ′(0) = 0.

4. Use the theorem in Sec. 24 to show that each of these functions is differentiable in the
indicated domain of definition, and also to find f ′(z):

(a) f (z) = 1/z4 (z �= 0);
(b) f (z) = e−θ cos(ln r) + i e−θ sin(ln r) (r > 0, 0 < θ < 2π).

Ans. (b) f ′(z) = i
f (z)

z
.

5. Solve equations (2), Sec. 24 for ux and uy to show that

ux = ur cos θ − uθ

sin θ

r
, uy = ur sin θ + uθ

cos θ

r
.

Then use these equations and similar ones for vx and vy to show that in Sec. 24 equations (4)
are satisfied at a point z0 if equations (6) are satisfied there. Thus complete the verification
that equations (6), Sec. 24, are the Cauchy–Riemann equations in polar form.

6. Let a function f (z) = u + iv be differentiable at a nonzero point z0 = r0 exp(iθ0). Use the
expressions for ux and vx found in Exercise 5, together with the polar form (6), Sec. 24,
of the Cauchy–Riemann equations, to rewrite the expression

f ′(z0) = ux + ivx

in Sec. 23 as

f ′(z0) = e−iθ (ur + ivr ),

where ur and vr are to be evaluated at (r0, θ0).

7. (a) With the aid of the polar form (6), Sec. 24, of the Cauchy–Riemann equations, derive
the alternative form

f ′(z0) = −i

z0
(uθ + ivθ )

of the expression for f ′(z0) found in Exercise 6.
(b) Use the expression for f ′(z0) in part (a) to show that the derivative of the function

f (z) = 1/z (z �= 0) in Exercise 3(a) is f ′(z) = −1/z2.

8. (a) Recall (Sec. 6) that if z = x + iy, then

x = z + z

2
and y = z − z

2i
.

By formally applying the chain rule in calculus to a function F(x, y) of two real
variables, derive the expression

∂ F

∂z
= ∂ F

∂x

∂x

∂z
+ ∂ F

∂y

∂y

∂z
= 1

2

(
∂ F

∂x
+ i

∂ F

∂y

)
.



Brown/Churchill-3930327 book July 19, 2013 11:27

72 ANALYTIC FUNCTIONS CHAP. 2

(b) Define the operator

∂

∂z
= 1

2

(
∂

∂x
+ i

∂

∂y

)
,

suggested by part (a), to show that if the first-order partial derivatives of the real and
imaginary components of a function f (z) = u(x, y) + iv(x, y) satisfy the Cauchy–
Riemann equations, then

∂ f

∂z
= 1

2
[(ux − vy) + i(vx + uy)] = 0.

Thus derive the complex form ∂ f/∂z = 0 of the Cauchy–Riemann equations.

25. ANALYTIC FUNCTIONS

We are now ready to introduce the concept of an analytic function. A function f of
the complex variable z is analytic in an open set S if it has a derivative everywhere in
that set. It is analytic at a point z0 if it is analytic in some neighborhood of z0.∗

Note how it follows that if f is analytic at a point z0, it must be analytic at each
point in some neighborhood of z0. If we should speak of a function that is analytic
in a set S that is not open, it is to be understood that f is analytic in an open set
containing S.

An entire function is a function that is analytic at each point in the entire plane.

EXAMPLES. The function f (z) = 1/z is analytic at each nonzero point in the
finite plane since its derivative f ′(z) = −1/z2 exists at such a point. But the function
f (z) = |z|2 is not analytic anywhere since its derivative exists only at z = 0 and not
throughout any neighborhood. (See Example 3, Sec. 19.) Finally, since the derivative of
a polynomial exists everywhere, it follows that every polynomial is an entire function.

A necessary, but by no means sufficient, condition for a function to be analytic
in a domain D is clearly the continuity of f throughout D. (See the statement in
italics near the end of Sec. 19.) Satisfaction of the Cauchy–Riemann equations is also
necessary, but not sufficient. Sufficient conditions for analyticity in D are provided by
the theorems in Secs. 23 and 24.

Other useful sufficient conditions are obtained from the rules for differentiation
in Sec. 20. The derivatives of the sum and product of two functions exist wherever the
functions themselves have derivatives. Thus, if two functions are analytic in a domain
D, their sum and their product are both analytic in D. Similarly, their quotient is
analytic in D provided the function in the denominator does not vanish at any point in
D. In particular, the quotient P(z)/Q(z) of two polynomials is analytic in any domain
throughout which Q(z) �= 0.

∗The terms regular and holomorphic are also used in the literature to denote analyticity.
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From the chain rule for the derivative of a composite function, we find that
a composition of two analytic functions is analytic. More precisely, suppose that a
function f (z) is analytic in a domain D and that the image (Sec. 13) of D under the
transformation w = f (z) is contained in the domain of definition of a function g(w).
Then the composition g[ f (z)] is analytic in D, with derivative

d

dz
g[ f (z)] = g′[ f (z)] f ′(z).

The following property of analytic functions is especially useful, in addition to
being expected.

Theorem. If f ′(z) = 0 everywhere in a domain D, then f (z) must be constant
throughout D.

We start the proof by writing f (z) = u(x, y)+iv(x, y). Assuming that f ′(z) = 0
in D, we note that ux + ivx = 0; and, in view of the Cauchy–Riemann equations,
vy − iuy = 0. Consequently,

ux = uy = 0 and vx = vy = 0

at each point in D.
Next, we show that u(x, y) is constant along any line segment L extending from

a point P to a point P ′ and lying entirely in D. We let s denote the distance along L
from the point P and let U denote the unit vector along L in the direction of increasing
s (see Fig. 30). We know from calculus that the directional derivative du/ds can be
written as the dot product

du

ds
= (grad u) · U,(1)

where grad u is the gradient vector

grad u = ux i + uy j.(2)

Because ux and uy are zero everywhere in D, grad u is evidently the zero vector at
all points on L . Hence it follows from equation (1) that the derivative du/ds is zero
along L; and this means that u is constant on L .

xO

y

P

DU
L s P′

Q

FIGURE 30
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Finally, since there is always a finite number of such line segments, joined end
to end, connecting any two points P and Q in D (Sec. 12), the values of u at P and
Q must be the same. We may conclude, then, that there is a real constant a such that
u(x, y) = a throughout D. Similarly, v(x, y) = b; and we find that f (z) = a + bi at
each point in D. That is, f (z) = c where c is the constant c = a + bi.

If a function f fails to be analytic at a point z0 but is analytic at some point in
every neighborhood of z0, then z0 is called a singular point, or singularity, of f . The
point z = 0 is evidently a singular point of the function f (z) = 1/z. The function
f (z) = |z|2, on the other hand, has no singular points since it is nowhere analytic.
Singular points will play an important role in our development of complex analysis in
chapters to follow.

26. FURTHER EXAMPLES

As pointed out in Sec. 25, it is often possible to determine where a given function f (z)
is analytic by simply recalling various differentiation rules in Sec. 20.

EXAMPLE 1. The quotient

f (z) = z2 + 3

(z + 1)(z2 + 5)

is evidently analytic throughout the z plane except for the singular points z = −1 and
z = ±√

5 i. The analyticity is due to the existence of familiar differentiation rules,
which need to be applied only if an expression for f ′(z) is actually wanted.

When a function is given in terms of its component functions u and v, its analyt-
icity can be determined by direct application of the Cauchy–Riemann equations.

EXAMPLE 2. If f (z) = sin x cosh y + i cos x sinh y, the component functions
are

u(x, y) = sin x cosh y and v(x, y) = cos x sinh y.

Because

ux = cos x cosh y = vy and uy = sin x sinh y = − vx

everywhere, it is clear from the theorem in Sec. 23 that f is entire. In fact, according
to that theorem,

f ′(z) = ux + ivx = cos x cosh y − i sin x sinh y.(1)

It is straightforward to show that f ′(z) is also entire by writing expression (1) as

f ′(z) = U (x, y) + i V (x, y)
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where

U (x, y) = cos x cosh y and V (x, y) = − sin x sinh y.

For then

Ux = − sin x cosh y = Vy and Uy = cos x sinh y = − Vx .

Furthermore,

f ′′(z) = Ux + i Vx = −(sin x cosh y + i cos x sinh y) = − f (z).

The next two examples serve to illustrate how the Cauchy–Riemann equations
can be used to obtain various properties of analytic functions.

EXAMPLE 3. Suppose that a function f (z) = u(x, y) + iv(x, y) and its
conjugate f (z) = u(x, y) − iv(x, y) are both analytic in a domain D. Let us show
that f (z) must, then, be constant throughout D.

To do this, we write f (z) = U (x, y) + V (x, y) where

U (x, y) = u(x, y) and V (x, y) = −v(x, y).(2)

Because of the analyticity of f (z), the Cauchy–Riemann equations

ux = vy, uy = −vx(3)

hold in D; and the analyticity of f (z) in D tells us that

Ux = Vy, Uy = −Vx .(4)

In view of relations (2), equations (4) can also be written

ux = −vy, uy = vx .(5)

By adding corresponding sides of the first of equations (3) and (5), we find that
ux = 0 in D. Similarly, subtraction involving corresponding sides of the second of
equations (3) and (5) reveals that vx = 0. According to expression (8) in Sec. 25, then,

f ′(z) = ux + ivx = 0 + i0 = 0;
and it follows from the theorem in Sec. 25 that f (z) is constant throughout D.

EXAMPLE 4. As in Example 3, we consider a function f that is analytic
throughout a given domain D. Assuming further that the modulus | f (z)| is constant
throughout D, one can prove that f (z) must be constant there too. This result is needed
to obtain an important result later on in Chap. 4 (Sec. 59).

The proof is accomplished by writing

| f (z)| = c for all z in D,(6)
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where c is a real constant. If c = 0, it follows that f (z) = 0 everywhere in D. If
c �= 0, the property zz̄ = |z|2 of complex numbers tells us that

f (z) f (z) = c2 �= 0

and hence that f (z) is never zero in D. So

f (z) = c2

f (z)
for all z in D,

and it follows from this that f (z) is analytic everywhere in D. The main result in
Example 3 just above thus ensures that f (z) is constant throughout D.

EXERCISES
1. Apply the theorem in Sec. 23 to verify that each of these functions is entire:

(a) f (z) = 3x + y + i(3y − x); (b) f (z) = cosh x cos y + i sinh x sin y;

(c) f (z) = e−y sin x − ie−y cos x ; (d) f (z) = (z2 − 2)e−x e−iy .

2. With the aid of the theorem in Sec. 21, show that each of these functions is nowhere
analytic:

(a) f (z) = xy + iy; (b) f (z) = 2xy + i(x2 − y2);

(c) f (z) = eyeix .

3. State why a composition of two entire functions is entire. Also, state why any linear
combination c1 f1(z) + c2 f2(z) of two entire functions, where c1 and c2 are complex
constants, is entire.

4. In each case, determine the singular points of the function and state why the function is
analytic everywhere else:

(a) f (z) = 2z + 1

z(z2 + 1)
; (b) f (z) = z3 + i

z2 − 3z + 2
;

(c) f (z) = z2 + 1

(z + 2)(z2 + 2z + 2)
.

Ans. (a) z = 0, ± i ; (b) z = 1, 2 ; (c) z = −2, −1 ± i .

5. According to Example 2, Sec. 24, the function

g(z) = √
reiθ/2 (r > 0, −π < θ < π)

is analytic in its domain of definition, with derivative

g′(z) = 1

2 g(z)
.
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Show that the composite function G(z) = g(2z − 2 + i) is analytic in the half plane
x > 1, with derivative

G ′(z) = 1

g(2z − 2 + i)
.

Suggestion: Observe that Re(2z − 2 + i) > 0 when x > 1.

6. Use results in Sec. 24 to verify that the function

g(z) = ln r + iθ (r > 0, 0 < θ < 2π)

is analytic in the indicated domain of definition, with derivative g′(z) = 1/z. Then show
that the composite function G(z) = g(z2 + 1) is analytic in the quadrant x > 0, y > 0,
with derivative

G ′(z) = 2z

z2 + 1
.

Suggestion: Observe that Im(z2 + 1) > 0 when x > 0, y > 0.

7. Let a function f be analytic everywhere in a domain D. Prove that if f (z) is real-valued
for all z in D, then f (z) must be constant throughout D.

27. HARMONIC FUNCTIONS

A real-valued function H of two real variables x and y is said to be harmonic in
a given domain of the xy plane if, throughout that domain, it has continuous partial
derivatives of the first and second order and satisfies the partial differential equation

Hx x(x, y) + Hy y(x, y) = 0,(1)

known as Laplace’s equation.
Harmonic functions play an important role in applied mathematics. For

example, the temperatures T (x, y) in thin plates lying in the xy plane are often har-
monic. A function V (x, y) is harmonic when it denotes an electrostatic potential that
varies only with x and y in the interior of a region of three-dimensional space that is
free of charges.

EXAMPLE 1. It is easy to verify that the function T (x, y) = e−y sin x is har-
monic in any domain of the xy plane and, in particular, in the semi-infinite vertical
strip 0 < x < π, y > 0. It also assumes the values on the edges of the strip that are
indicated in Fig. 31. More precisely, it satisfies all of the conditions

Txx(x, y) + Tyy(x, y) = 0,

T (0, y) = 0, T (π, y) = 0,

T (x, 0) = sin x, lim
y→∞ T (x, y) = 0,

which describe steady temperatures T (x, y) in a thin homogeneous plate in the xy
plane that has no heat sources or sinks and is insulated except for the stated conditions
along the edges.
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xO

y

T = 0 Txx + Tyy = 0

T = sin x

T = 0

FIGURE 31

The use of the theory of functions of a complex variable in discovering solutions,
such as the one in Example 1, of temperature and other problems is described in
considerable detail later on in Chap. 10 and in parts of chapters following it.∗ That
theory is based on the theorem below, which provides a source of harmonic functions.

Theorem. If a function f (z) = u(x, y) + iv(x, y) is analytic in a domain D,
then its component functions u and v are harmonic in D.

To show this, we need a result that is to be proved in Chap. 4 (Sec. 57). Namely,
if a function of a complex variable is analytic at a point, then its real and imaginary
components have continuous partial derivatives of all orders at that point.

Assuming that f is analytic in D, we start with the observation that the first-
order partial derivatives of its component functions must satisfy the Cauchy–Riemann
equations throughout D:

ux = vy, uy = −vx .(2)

Differentiating both sides of these equations with respect to x , we have

uxx = vyx , uyx = −vxx .(3)

Likewise, differentiation with respect to y yields

uxy = vyy, uyy = −vxy .(4)

Now, by a theorem in advanced calculus,† the continuity of the partial derivatives of
u and v ensures that uyx = uxy and vyx = vxy . It then follows from equations (3) and
(4) that

uxx + uyy = 0 and vxx + vyy = 0.

That is, u and v are harmonic in D.

∗Another important method is developed in the authors’ “Fourier Series and Boundary Value Problems,”
8th ed., 2012.
†See, for instance, A. E. Taylor and W. R. Mann, “Advanced Calculus,” 3d ed., pp. 199–201, 1983.
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EXAMPLE 2. The function f (z) = e−y sin x − ie−y cos x is entire, as is shown
in Exercise 1(c), Sec. 26. Hence its real component, which is the temperature function
T (x, y) = e−y sin x in Example 1, must be harmonic in every domain of the xy plane.

EXAMPLE 3. Since the function f (z) = 1/z2 is analytic at every nonzero
point z and since

1

z2
= 1

z2
· z̄2

z̄2
= z̄2

(z z̄)2
= z̄2

|z2| 2
= (x2 − y2) − i2xy

(x2 + y2)2
,

the two functions

u(x, y) = x2 − y2

(x2 + y2)2
and v(x, y) = − 2xy

(x2 + y2)2

are harmonic throughout any domain in the xy plane that does not contain the origin.

Further discussion of harmonic functions related to the theory of functions of a
complex variable appears in Chaps. 9 and 10, where they are needed in solving physical
problems, such as in Example 1 here.

EXERCISES
1. Let the function f (z) = u(r, θ) + iv(r, θ) be analytic in a domain D that does not

include the origin. Using the Cauchy–Riemann equations in polar coordinates (Sec. 24)
and assuming continuity of partial derivatives, show that throughout D the function u(r, θ)

satisfies the partial differential equation

r2urr (r, θ) + rur (r, θ) + uθθ (r, θ) = 0,

which is the polar form of Laplace’s equation. Show that the same is true of the function
v(r, θ).

2. Let the function f (z) = u(x, y) + iv(x, y) be analytic in a domain D, and consider the
families of level curves u(x, y) = c1 and v(x, y) = c2, where c1 and c2 are arbitrary
real constants. Prove that these families are orthogonal. More precisely, show that if
z0 = (x0, y0) is a point in D which is common to two particular curves u(x, y) = c1

and v(x, y) = c2 and if f ′(z0) �= 0, then the lines tangent to those curves at (x0, y0) are
perpendicular.

Suggestion: Note how it follows from the pair of equations u(x, y) = c1 and
v(x, y) = c2 that

∂u

∂x
+ ∂u

∂y

dy

dx
= 0 and

∂v

∂x
+ ∂v

∂y

dy

dx
= 0.

3. Show that when f (z) = z2, the level curves u(x, y) = c1 and v(x, y) = c2 of the
component functions are the hyperbolas indicated in Fig. 32. Note the orthogonality
of the two families, described in Exercise 2. Observe that the curves u(x, y) = 0 and
v(x, y) = 0 intersect at the origin but are not, however, orthogonal to each other. Why is
this fact in agreement with the result in Exercise 2?


