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not exist. [Note that it is not sufficient to simply consider nonzero points z = (x, 0) and
z = (0, y), as it was in Example 2, Sec. 15.]

6. Prove statement (8) in Theorem 2 of Sec. 16 using

(a) Theorem 1 in Sec. 16 and properties of limits of real-valued functions of two real
variables;

(b) definition (2), Sec. 15, of limit.

7. Use definition (2), Sec. 15, of limit to prove that

if lim
z→z0

f (z) = w0, then lim
z→z0

| f (z)| = |w0|.
Suggestion: Observe how inequality (2), Sec. 5, enables one to write

|| f (z)| − |w0|| ≤ | f (z) − w0|.
8. Write 
z = z − z0 and show that

lim
z→z0

f (z) = w0 if and only if lim

z→0

f (z0 + 
z) = w0.

9. Show that

lim
z→z0

f (z)g(z) = 0 if lim
z→z0

f (z) = 0

and if there exists a positive number M such that |g(z)| ≤ M for all z in some neighbor-
hood of z0.

10. Use the theorem in Sec. 17 to show that

(a) lim
z→∞

4z2

(z − 1)2
= 4; (b) lim

z→1

1

(z − 1)3
= ∞; (c) lim

z→∞
z2 + 1

z − 1
= ∞.

11. With the aid of the theorem in Sec. 17, show that when

T (z) = az + b

cz + d
(ad − bc �= 0),

(a) lim
z→∞ T (z) = ∞ if c = 0;

(b) lim
z→∞ T (z) = a

c
and lim

z→−d/c
T (z) = ∞ if c �= 0.

12. State why limits involving the point at infinity are unique.

13. Show that a set S is unbounded (Sec. 12) if and only if every neighborhood of the point
at infinity contains at least one point in S.

19. DERIVATIVES

Let f be a function whose domain of definition contains a neighborhood |z−z0| < ε of
a point z0. The derivative of f at z0 is the limit

f ′(z0) = lim
z→z0

f (z) − f (z0)

z − z0
,(1)

and the function f is said to be differentiable at z0 when f ′(z0) exists.
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By expressing the variable z in definition (1) in terms of the new complex variable


z = z − z0 (z �= z0),

one can write that definition as

f ′(z0) = lim

z→0

f (z0 + 
z) − f (z0)


z
.(2)

Because f is defined throughout a neighborhood of z0, the number f (z0 + 
z) is
always defined for |
z| sufficiently small (Fig. 27).

xO

y

z 0

FIGURE 27

When taking form (2) of the definition of derivative, we often drop the subscript
on z0 and introduce the number


w = f (z + 
z) − f (z),

which denotes the change in the value w = f (z) of f corresponding to a change 
z
in the point at which f is evaluated. Then, if we write dw/dz for f ′(z), equation (2)
becomes

dw

dz
= lim


z→0


w


z
.(3)

EXAMPLE 1. Suppose that f (z) = 1/z. At each nonzero point z,

lim

z→0


w


z
= lim


z→0

(
1

z + 
z
− 1

z

)
1


z
= lim


z→0

−1

(z + 
z) z
,

provided these limits exist; and properties of limits in Sec. 16 tell us that

dw

dz
= − 1

z2
, or f ′(z) = − 1

z2
,

when z �= 0.

EXAMPLE 2. If f (z) = z, then


w


z
= z + 
z − z


z
= z + 
z − z


z
= 
z


z
.(4)

If the limit of 
w/
z exists, it can be found by letting the point 
z = (
x, 
y)

approach the origin (0, 0) in the 
z plane in any manner. In particular, as 
z approaches
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(0, 0) horizontally through the points (
x, 0) on the real axis (Fig. 28),


z = 
x + i0 = 
x − i0 = 
x + i0 = 
z.

In that case, expression (4) tells us that


w


z
= 
z


z
= 1.

Hence if the limit of 
w/
z exists, its value must be unity. However, when 
z
approaches (0, 0) vertically through the points (0, 
y) on the imaginary axis, so that


z = 0 + i
y = 0 − i
y = −(0 + i
y) = −
z,

we find from expression (4) that


w


z
= −
z


z
= −1.

Hence the limit must be −1 if it exists. Since limits are unique (Sec. 15), it follows
that dw/dz does not exist anywhere.

(0, 0)
FIGURE 28

EXAMPLE 3. Consider the real-valued function f (z) = |z|2. Here


w


z
= |z + 
z|2 − |z|2


z
= (z + 
z)(z + 
z) − z z


z
;

and since z + 
z = z + 
z , this becomes


w


z
= z + 
z + z


z


z
.(5)

Proceeding as in Example 2, where horizontal and vertical approaches of 
z toward
the origin gave us


z = 
z and 
z = −
z,

respectively, we have the expressions


w


z
= z + 
z + z when 
z = (
x, 0)



Brown/Churchill-3930327 book July 19, 2013 11:27

58 ANALYTIC FUNCTIONS CHAP. 2

and


w


z
= z − 
z − z when 
z = (0, 
y).

Hence if the limit of 
w/
z exists as 
z tends to zero, the uniqueness of limits, used
in Example 2, tells us that

z + z = z − z,

or that z = 0. Evidently, then, dw/dz cannot exist if z �= 0.

To show that dw/dz does, in fact, exist at z = 0, we need only observe that
expression (5) reduces to


w


z
= 
z

when z = 0. We conclude, therefore, that dw/dz exists only at z = 0, its value there
being 0.

Example 3 illustrates the following three facts, the first two of which may be
surprising.

(a) A function f (z) = u(x, y) + iv(x, y) can be differentiable at a point z = (x, y)

but nowhere else in any neighborhood of that point.

(b) Since u(x, y) = x2 + y2 and v(x, y) = 0 when f (z) = |z|2, one can see that
the real and imaginary components of a function of a complex variable can have
continuous partial derivatives of all orders at a point z = (x, y) and yet the function
of z may not be differentiable there.

(c) Because the component functions u(x, y) = x2 + y2 and v(x, y) = 0 of the
function f (z) = |z|2 are continuous everywhere in the plane, it is also evident
that the continuity of a function of a complex variable at a point does not imply
the existence of its derivative there. More precisely, the components

u(x, y) = x2 + y2 and v(x, y) = 0

of f (z) = |z|2 are continuous at each nonzero point z = (x, y) but f ′(z) does not
exist there. It is, however, true that the existence of the derivative of a function at
a point implies the continuity of the function at that point. To see this, we assume
that f ′(z0) exists and write

lim
z→z0

[ f (z) − f (z0)] = lim
z→z0

f (z) − f (z0)

z − z0
lim
z→z0

(z − z0) = f ′(z0) · 0 = 0,

from which it follows that

lim
z→z0

f (z) = f (z0).

This is the statement of continuity of f at z0 (Sec. 18).
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Geometric interpretations of derivatives of functions of a complex variable are
not as immediate as they are for derivatives of functions of a real variable. We defer
the development of such interpretations until Chap. 9.

20. RULES FOR DIFFERENTIATION

The definition of derivative in Sec. 19 is formally the same as the definition in calculus
when z is substituted for x . Hence the basic differentiation rules given below can be
derived from the definition in Sec. 19 by the same steps as the ones used in calculus.
In stating such rules, we shall use either

d

dz
f (z) or f ′(z),

depending on which notation is more convenient.
Let c be a complex constant, and let f be a function whose derivative exists at a

point z. It is easy to show that

d

dz
c = 0,

d

dz
z = 1,

d

dz
[c f (z)] = c f ′(z).(1)

Also, if n is a positive integer,

d

dz
zn = nzn−1.(2)

This rule remains valid when n is a negative integer, provided that z �= 0.
If the derivatives of two functions f and g exist at a point z, then

d

dz
[ f (z) + g(z)] = f ′(z) + g′(z),(3)

d

dz
[ f (z)g(z)] = f (z)g′(z) + f ′(z)g(z);(4)

and, when g(z) �= 0,

d

dz

[
f (z)

g(z)

]
= g(z) f ′(z) − f (z)g′(z)

[g(z)]2
.(5)

Let us derive rule (4). To do this, we write the following expression for the change
in the product w = f (z)g(z):


w = f (z + 
z)g(z + 
z) − f (z)g(z)

= f (z)[g(z + 
z) − g(z)] + [ f (z + 
z) − f (z)]g(z + 
z).

Thus

w


z
= f (z)

g(z + 
z) − g(z)


z
+ f (z + 
z) − f (z)


z
g(z + 
z);

and, letting 
z tend to zero, we arrive at the desired rule for the derivative of f (z)g(z).
Here we have used the fact that g is continuous at the point z, since g′(z) exists; thus
g(z + 
z) tends to g(z) as 
z tends to zero (see Exercise 8, Sec. 18).
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There is also a chain rule for differentiating composite functions. Suppose that f
has a derivative at z0 and that g has a derivative at the point f (z0). Then the function
F(z) = g[ f (z)] has a derivative at z0, and

F ′(z0) = g′[ f (z0)] f ′(z0).(6)

If we write w = f (z) and W = g(w), so that W = F(z), the chain rule becomes

dW

dz
= dW

dw

dw

dz
.

EXAMPLE. To find the derivative of (1 − 4z2)3, one can write w = 1 − 4z2 and
W = w3. Then

d

dz
(1 − 4z2)3 = 3w2(−8z) = −24z(1 − 4z2)2.

To start the derivation of rule (6), choose a specific point z0 at which f ′(z0)

exists. Write w0 = f (z0) and also assume that g′(w0) exists. There is, then, some ε

neighborhood |w − w0| < ε of w0 such that for all points w in that neighborhood, we
can define a function � having the values �(w0) = 0 and

�(w) = g(w) − g(w0)

w − w0
− g′(w0) when w �= w0.(7)

Note that in view of the definition of derivative,

lim
w→w0

�(w) = 0.(8)

Hence � is continuous at w0.
Now expression (7) can be put in the form

g(w) − g(w0) = [g′(w0) + �(w)](w − w0) (|w − w0| < ε),(9)

which is valid even when w = w0; and since f ′(z0) exists and f is therefore contin-
uous at z0, we can choose a positive number δ such that the point f (z) lies in the ε

neighborhood |w − w0| < ε of w0 if z lies in the δ neighborhood |z − z0| < δ of z0.
Thus it is legitimate to replace the variable w in equation (9) by f (z) when z is any
point in the neighborhood |z − z0| < δ. With that substitution, and with w0 = f (z0),
equation (9) becomes

g[ f (z)] − g[ f (z0)]

z − z0
= {g′[ f (z0)] + �[ f (z)]} f (z) − f (z0)

z − z0
(10)

(0 < |z − z0| < δ),

where we must stipulate that z �= z0 so that we are not dividing by zero. As already
noted, f is continuous at z0 and � is continuous at the point w0 = f (z0). Hence the
composition �[ f (z)] is continuous at z0; and since �(w0) = 0,

lim
z→z0

�[ f (z)] = 0.

So equation (10) becomes equation (6) in the limit as z approaches z0.
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EXERCISES
1. Use definition (3), Sec. 19, to give a direct proof that

dw

dz
= 2z when w = z2.

2. Use results in Sec. 20 to find f ′(z) when

(a) f (z) = 3z2 − 2z + 4; (b) f (z) = (2z2 + i)5;

(c) f (z) = z − 1

2z + 1

(
z �= −1

2

)
; (d) f (z) = (1 + z2)4

z2
(z �= 0).

3. Using results in Sec. 20, show that

(a) a polynomial

P(z) = a0 + a1z + a2z2 + · · · + anzn (an �= 0)

of degree n (n ≥ 1) is differentiable everywhere, with derivative

P ′(z) = a1 + 2a2z + · · · + nanzn−1;
(b) the coefficients in the polynomial P(z) in part (a) can be written

a0 = P(0), a1 = P ′(0)

1!
, a2 = P ′′(0)

2!
, . . . , an = P (n)(0)

n!
.

4. Suppose that f (z0) = g(z0) = 0 and that f ′(z0) and g′(z0) exist, where g′(z0) �= 0. Use
definition (1), Sec. 19, of derivative to show that

lim
z→z0

f (z)

g(z)
= f ′(z0)

g′(z0)
.

5. Derive expression (3), Sec. 20, for the derivative of the sum of two functions.

6. Derive expression (2), Sec. 20, for the derivative of zn when n is a positive integer
by using

(a) mathematical induction and expression (4), Sec. 20, for the derivative of the product
of two functions;

(b) definition (3), Sec. 19, of derivative and the binomial formula (Sec. 3).

7. Prove that expression (2), Sec. 20, for the derivative of zn remains valid when n is a
negative integer (n = −1, −2, . . .), provided that z �= 0.

Suggestion: Write m = −n and use the rule for the derivative of a quotient of two
functions.

8. Use the method in Example 2, Sec. 19, to show that f ′(z) does not exist at any point
z when

(a) f (z) = Re z; (b) f (z) = Im z.
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9. Let f denote the function whose values are

f (z) =
{

z2/z when z �= 0,

0 when z = 0.

Show that if z = 0, then 
w/
z = 1 at each nonzero point on the real and imaginary
axes in the 
z, or 
x 
y, plane. Then show that 
w/
z = −1 at each nonzero point
(
x, 
x) on the line 
y = 
x in that plane (Fig. 29). Conclude from these observations
that f ′(0) does not exist. Note that to obtain this result, it is not sufficient to consider
only horizontal and vertical approaches to the origin in the 
z plane. (Compare with
Exercise 5, Sec. 18, as well as Example 2, Sec. 19.)

(0, 0)

(Δx, Δx)

(Δx, 0)

(0, Δy)

Δy

Δx
FIGURE 29

10. With the aid of the binomial formula (13) in Sec. 3, point out why each of the functions

Pn(z) = 1

n!2n

dn

dzn
(z2 − 1)n (n = 0, 1, 2, . . .)

is a polynomial (Sec. 13) of degree n∗. (We use the convention that the derivative of
order zero of a function is the function itself.)

21. CAUCHY–RIEMANN EQUATIONS

In this section, we obtain a pair of equations that the first-order partial derivatives of
the component functions u and v of a function

f (z) = u(x, y) + iv(x, y)(1)

must satisfy at a point z0 = (x0, y0) when the derivative of f exists there. We also
show how to express f ′(z0) in terms of those partial derivatives.

Starting with the assumption that f ′(z0) exists, we write

z0 = x0 + iy0, 
z = 
x + i
y,

∗These are called Legendre polynomials and are important in applied mathematics. See, for instance,
Chap. 10 of the authors’ book (2012), listed in the Bibliography.
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and


w = f (z0 + 
z) − f (z0),

which is the same as


w = [u(x0 + 
x, y0 + 
y) + iv(x0 + 
x, y0 + 
y)] − [u(x0, y0) + iv(x0, y0)].

This last equation enables us to write


w


z
= u(x0 + 
x, y0 + 
y) − u(x0 y0)


x + i
y
+ i

v(x0 + 
x, y0 + 
y) − v(x0 y0)


x + i
y
.(2)

Now it is important to keep in mind that expression (2) remains valid as (
x, 
y)

tends to (0, 0) in any manner that we may choose.

Horizontal approach

In particular, write 
y = 0 and let (
x, 0) tend to (0, 0) horizontally. Then, in view
of Theorem 1 in Sec. 16, equation (2) tells us that

f ′(z0) = lim

x→0

u(x0 + 
x, y0) − u(x0 y0)


x
+ i lim


x→0

v(x0 + 
x, y0) − v(x0 y0)


x
.

That is,

f ′(z0) = ux(x0, y0) + ivx(x0, y0).(3)

Vertical approach

We might have set 
x = 0 in equation (2) and taken a vertical approach. In that case,
we find from Theorem 1 in Sec. 16 and equation (2) that

f ′(z0) = lim

y→0

u(x0, y0 + 
y) − u(x0 y0)

i
y
+ i lim


y→0

v(x0, y0 + 
y) − v(x0 y0)

i
y
,

or, because 1/ i = − i,

f ′(z0) = lim

y→0

v(x0, y0 + 
y) − v(x0 y0)


y
− i lim


y→0

u(x0, y0 + 
y) − u(x0 y0)


y
.

It now follows that

f ′(z0) = vy(x0, y0) − i uy(x0, y0),(4)

where the partial derivatives of u and v are, this time, with respect to y. Note that
equation (4) can also be written in the form

f ′(z0) = − i[uy(x0, y0) + ivy(x0, y0)].(5)

Expressions (3) and (4) not only give f ′(z0) in terms of partial derivatives of the
component functions u and v but, in view of the uniqueness of limits (Sec. 15), they
also provide necessary conditions for the existence of f ′(z0). To obtain those condi-
tions, we need only equate the real parts and then the imaginary parts in expressions
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(3) and (4) to see that the existence of f ′(z0) requires that

ux(x0, y0) = vy(x0, y0) and uy(x0, y0) = − vx(x0, y0).(6)

Equations (6) are the Cauchy–Riemann equations, so named in honor of the French
mathematician A. L. Cauchy (1789–1857), who discovered and used them, and in
honor of the German mathematician G. F. B. Riemann (1826–1866), who made them
fundamental in his development of the theory of functions of a complex variable.

We summarize the above results as follows.

Theorem. Suppose that

f (z) = u(x, y) + iv(x, y)

and that f ′(z) exists at a point z0 = x0 + iy0. Then the first-order partial derivatives
of u and v must exist at (x0, y0), and they must satisfy the Cauchy–Riemann equations

ux = vy, uy = −vx(7)

there. Also, f ′(z0) can be written

f ′(z0) = ux + ivx ,(8)

where these partial derivatives are to be evaluated at (x0, y0).

22. EXAMPLES

Before we continue our discussion of the Cauchy–Riemann equations, we pause here
to illustrate their use and to motivate further discussion of them.

EXAMPLE 1. In Exercise 1, Sec. 20, we showed that the function

f (z) = z2 = x2 − y2 + i2xy

is differentiable everywhere and that f ′(z) = 2z. To verify that the Cauchy–Riemann
equations are satisfied everywhere, write

u(x, y) = x2 − y2 and v(x, y) = 2xy.

Thus

ux = 2x = vy, uy = −2y = −vx .

Moreover, according to equation (8) in Sec. 21,

f ′(z) = 2x + i2y = 2(x + iy) = 2z.

Since the Cauchy–Riemann equations are necessary conditions for the existence
of the derivative of a function f at a point z0, they can often be used to locate points
at which f does not have a derivative.
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EXAMPLE 2. When f (z) = |z|2, we have

u(x, y) = x2 + y2 and v(x, y) = 0.

If the Cauchy–Riemann equations are to hold at a point (x, y), it follows that 2x = 0
and 2y = 0, or that x = y = 0. Consequently, f ′(z) does not exist at any nonzero
point, as we already know from Example 3 in Sec. 19. Note that the theorem just
proved does not ensure the existence of f ′(0). The theorem in the next section will,
however, do this.

In Example 2, we considered a function f (z) whose component functions u(x, y)

and v(x, y) satisfy the Cauchy–Riemann equations at the origin and whose derivative
f ′(0) exists there. It is possible, however, to have a function f (z) whose component
functions satisfy the Cauchy–Riemann equations at the origin but whose derivative
f ′(0) does not exist. This is illustrated in our next example.

EXAMPLE 3. If the function f (z) = u(x, y) + iv(x, y) is defined by means
of the equations

f (z) =
{

z̄2/z when z �= 0,

0 when z = 0,

its real and imaginary components are [see Exercise 2(b), Sec. 14]

u(x, y) = x3 − 3xy2

x2 + y2
and v(x, y) = y3 − 3x2 y

x2 + y2

when (x, y) �= (0, 0). Also, u(0, 0) = 0 and v(0, 0) = 0.

Because

ux(0, 0) = lim

x→0

u(0 + 
x, 0) − u(0, 0)


x
= lim


x→0


x


x
= 1

and

vy(0, 0) = lim

y→0

v(0, 0 + 
y) − v(0, 0)


y
= lim


y→0


y


y
= 1,

we find that the first Cauchy–Riemann equation ux = vy is satisfied at z = 0. Likewise,
it is easy to show that uy = 0 = −vx when z = 0. But, as was shown in Exercise 9,
Sec. 20, f ′(0) fails to exist.

23. SUFFICIENT CONDITIONS FOR
DIFFERENTIABILITY

As pointed out in Example 3, Sec. 22, satisfaction of the Cauchy–Riemann equations
at a point z0 = (x0, y0) is not sufficient to ensure the existence of the derivative of
a function f (z) at that point. But, with certain continuity conditions, we have the
following useful theorem.
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Theorem. Let the function

f (z) = u(x, y) + iv(x, y)

be defined throughout some ε neighborhood of a point z0 = x0 + iy0, and suppose
that

(a) the first-order partial derivatives of the functions u and v with respect to x and y
exist everywhere in the neighborhood;

(b) those partial derivatives are continuous at (x0, y0) and satisfy the Cauchy–
Riemann equations

ux = vy, uy = −vx

at (x0, y0),

Then f ′(z0) exists, its value being

f ′(z0) = ux + ivx

where the right-hand side is to be evaluated at (x0, y0).

To prove the theorem, we assume that conditions (a) and (b) in its hypothesis are
satisfied and write 
z = 
x + i
y, where 0 < |
z| < ε, as well as


w = f (z0 + 
z) − f (z0).

Thus


w = 
u + i
v,(1)

where


u = u(x0 + 
x, y0 + 
y) − u(x0, y0)

and


v = v(x0 + 
x, y0 + 
y) − v(x0, y0).

The assumption that the first-order partial derivatives of u and v are continuous at the
point (x0, y0) enables us to write∗


u = ux(x0, y0)
x + uy(x0, y0)
y + ε1
x + ε2
y(2)

and


v = vx(x0, y0)
x + vy(x0, y0)
y + ε3
x + ε4
y,(3)

∗See, for instance, W. Kaplan, “Advanced Calculus,” 5th ed., pp. 86ff, 2003.
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where ε1, ε2, ε3, and ε4 tend to zero as (
x, 
y) approaches (0, 0) in the 
z plane.
Substitution of expressions (2) and (3) into equation (1) now tells us that


w = ux(x0, y0)
x + uy(x0, y0)
y + ε1
x + ε2
y(4)

+ i[vx(x0, y0)
x + vy(x0, y0)
y + ε3
x + ε4
y].

Because the Cauchy–Riemann equations are assumed to be satisfied at (x0, y0),

one can replace uy(x0, y0) by −vx(x0, y0) and vy(x0, y0) by ux(x0, y0) in equation (4)
and then divide through by the quantity 
z = 
x + i
y to get


w


z
= ux(x0, y0) + ivx(x0, y0) + (ε1 + iε3)


x


z
+ (ε2 + iε4)


y


z
.(5)

But |
x | ≤ |
z| and |
y| ≤ |
z|, according to inequalities (3) in Sec. 4, and so∣∣∣∣
x


z

∣∣∣∣ ≤ 1 and

∣∣∣∣
y


z

∣∣∣∣ ≤ 1.

Consequently, ∣∣∣∣(ε1 + iε3)

x


z

∣∣∣∣ ≤ |ε1 + iε3| ≤ |ε1| + |ε3|

and ∣∣∣∣(ε2 + iε4)

y


z

∣∣∣∣ ≤ |ε2 + iε4| ≤ |ε2| + |ε4|;

and this means that the last two terms on the right in equation (5) tend to zero as the
variable 
z = 
x + i
y approaches zero. The expression for f ′(z0) in the statement
of the theorem is now established.

EXAMPLE 1. Consider the function

f (z) = ex eiy = ex cos y + iex sin y,

where z = x + iy and y is to be taken in radians when cos y and sin y are evaluated.
Here

u(x, y) = ex cos y and v(x, y) = ex sin y.

Since ux = vy and uy = −vx everywhere and since these derivatives are everywhere
continuous, the conditions in the above theorem are satisfied at all points in the complex
plane. Thus f ′(z) exists everywhere, and

f ′(z) = ux + ivx = ex cos y + iex sin y.

Note that f ′(z) = f (z) for all z.

EXAMPLE 2. It also follows from our theorem that the function f (z) = |z|2,
whose components are

u(x, y) = x2 + y2 and v(x, y) = 0,



Brown/Churchill-3930327 book July 19, 2013 11:27

68 ANALYTIC FUNCTIONS CHAP. 2

has a derivative at z = 0. In fact, f ′(0) = 0 + i0 = 0. We saw in Example 2,
Sec. 22, that this function cannot have a derivative at any nonzero point since the
Cauchy–Riemann equations are not satisfied at such points. (See also Example 3,
Sec. 19.)

EXAMPLE 3. When using the theorem in this section to find a derivative at a
point z0, one must be careful not to use the expression for f ′(z) in the statement of the
theorem before the existence of f ′(z) at z0 is established.

Consider, for instance, the function

f (z) = x3 + i(1 − y)3.

Here

u(x, y) = x3 and v(x, y) = (1 − y)3,

and it would be a mistake to say that f ′(z) exists everywhere and that

f ′(z) = ux + ivx = 3x2.(6)

To see this, we observe that the first Cauchy–Riemann equation ux = vy can hold
only if

x2 + (1 − y)2 = 0(7)

and that the second equation uy = −vx is always satisfied. Condition (7) thus tells us
that f ′(z) can exist only when x = 0 and y = 1. In view of equation (6), then, our
theorem tells us that f ′(z) exists only when z = i, in which case f ′(i) = 0.

24. POLAR COORDINATES

Assuming that z0 �= 0, we shall in this section use the coordinate transformation

x = r cos θ, y = r sin θ(1)

to restate the theorem in Sec. 23 in polar coordinates.
Depending on whether we write

z = x + iy or z = reiθ (z �= 0)

when w = f (z), the real and imaginary components of w = u + iv are expressed in
terms of either the variables x and y or r and θ . Suppose that the first-order partial
derivatives of u and v with respect to x and y exist everywhere in some neighborhood
of a given nonzero point z0 and are continuous at z0. The first-order partial derivatives
of u and v with respect to r and θ also have those properties, and the chain rule for
differentiating real-valued functions of two real variables can be used to write them in
terms of the ones with respect to x and y. More precisely, since

∂u

∂r
= ∂u

∂x

∂x

∂r
+ ∂u

∂y

∂y

∂r
,

∂u

∂θ
= ∂u

∂x

∂x

∂θ
+ ∂u

∂y

∂y

∂θ
,


