6.3

Orthogonal and
Orthonormal Sets

Note that Formula (1) is iden-
tical to Formula (4) of Sec-
tion 3.2, but whereas For-
mula (4) was valid only for vec-
tors in R" with the Euclidean
inner product, Formula (1) is
valid in general inner product
spaces.

Gram-Schmidt Process; QR-Decomposition

In many problems invalving vector spaces, the problem solver is free to choose any basis for
the vector space that seems appropriate. Ininner product spaces, the solution of a prohlem
can often be simplified by choosing a basis in which the vectors are orthogonal to one

another. In this section we will show how such bases can be obtained.

Recall from Section 6.2 that two vectors inan inner product space are said to be orthogonal
iftheir inner product is zero. The following definition extends the notion of orthogonality
to sets of vectors in an inner product space.

DEFINITION T A set of two or more vectors in a real inner product space is said to be
erthogenal if all pairs of distinct vectors in the set are orthogonal. An orthogonal set
in which each vector has norm 1 is said to be oerthonormal.

> EXAMPLE 1 An Orthogonal Set in R3
Let
vi=(0,1,00, v»w=(1,0,1), vy=(1,0,=-1)
and assume that R* has the Euclidean inner product. It follows that the set of vectors
S = (v}, va, va} is orthogonal since (vy, va) = (v, v1) = (va,v3) = 0.

It frequently happens that one has found a set of orthogonal vectors in an inner
product space but what is actually needed is a set of orthonormal vectors, A simple way
to convert an orthogonal set of nonzero vectors into an orthonormal set is to multiply
each vector v in the orthogonal set by the reciprocal of its length to create a vector of
norm | (called a unit vector). To sce why this works, suppose that v is a nonzero vector

in an inner product space, and let ;
u= —yv “]‘
lIvll

Then it follows from Theorem 6.1.1(5) with k = ||v|| that

1 1 1
— V[ = |=— vl = —IlIv] =1
Ivll vl livl
This process of multiplying a vector v by the reciprocal of its length is called mormalizing v.
We leave it as an exercise to show that normalizing the vectors in an orthogonal set of
nonzero vectors preserves the orthogonality of the vectors and produces an orthonormal

sel.,

P EXAMPLE 2 Constructing an Orthonormal Set
The Euclidean norms of the vectors in Example | are

il =1, [vall = V2, [Ivall = V2

Consequently, normalizing uy, uz, and uy yields

(01,0 o (
hy=—= v by v b= =
[[vell [Iv2]l

Y3 | |
h = — = —,U,‘—
SRTTAT (
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Since anorthonormalsctis or-
thogonal, and since its vectors
are nonzero (norm 1), it fol-
lows from Theorem 6.3.1 that
every orthonormal set is lin-
early independent.
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We leave it for you to verify that the set § = (uy, ua, u3} is orthonormal by showing that

(u,u) = (u,u3) = () =0 and |u |l = fluz] = [lus| =1 <

In R? any two nonzero perpendicular vectors are linearly independent because neither
is a scalar multiple of the other; and in R? any three nonzero mutually perpendicular
vectors are linearly independent because no one lies in the plane of the other two (and
hence is not expressible as a linear combination of the other two). The following theorem
generalizes these observations.

THEOREM 6.3.1 If § = (v1, V2, ..., ¥y is an orthagonal set of nonzero vectors in an
inner product space, then § is linearly independent.

Proof Assume that
k|v|+k2"1+"'+knvn =0 (2)
To demonstrate that S = {v,, v2, ..., ¥, ) is linearly independent, we must prove that
khh=ki=+.=k,=0.
For each v; in S, it follows from (2) that
(krvy + Rava 4o+ k¥, Vi) = (0,v;) =0
or, equivalently,
Ki(vi, vi) +kalva, vi) +- -+ kn (¥, vi} = 0
From the orthogonality of § it follows that {(v;, v;) = 0 when j # i, so this equation
reduces to
ki{vi,vi) =0
Since the vectors in § are assumed to be nonzero, it follows from the positivity axiom
for inner products that (v;, v;) # 0. Thus, the preceding equation implies that each &; in
Equation (2) is zero, which is what we wanted to prove. <
In an inner product space, a basis consisting of orthonormal vectors is called an
orthonormal basis, and a basis consisting of orthogonal vectors is called an erthogonal

basis, A lfamiliar example of an orthonormal basis is the standard basis for R" with the
Euclidean inner product:

¢ =(1,0,0,..., ), &= 50..., B0 .o ey =000 . )

P> EXAMPLE 3 An Orthonormal Basis for P,
Recall from Example 7 of Section 6.1 that the standard inner product of the polynomials
p=ay+ax+:-+ax" and q=by+bx+ -+ byx"
is
(p.q) = aoho + ar1by + - - -+ a,b,

and the norm of p relative to this inner product is

Il = VPP = @i +al + -+ a2

You should be able to see from these formulas that the standard basis

5= [1,_1'..1:2,...,.11"]

is orthonormal with respect to this inner product.
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Coordinates Relative to
Orthonormal Bases

P EXAMPLE 4 An Orthonormal Basis

1 v 1y ' r n Uy " ¢ [ B

forman orthonormal set with respect to the Euclidean inner product on R*. By Theorem
6.3.1, these vectors form a linearly independent set, and since R? is three-dimensional,

it follows from Theorem 4.5.4 that § = {uy, us, u3)} is an orthonormal basis for R?, <

One way 1o express a vector u as a linear combination of basis vectors
S={vi, ¥, ..., Vs}
is to convert the vector equation
U=CIvVi +C2¥2+ -+ CnVn

to a linear system and solve for the coefficients ¢, ¢1. ..., ¢,. However, il the basis
happens to be orthogonal or orthonormal, then the following theorem shows that the
coefficients can be obtained more simply by computing appropriate inner products,

THEOREM 6.3.2

(a) If§ = v, va,...,V,) isan orthogonal basis for an inner product space V, and if
u is any vector in 'V, then

wv)  (uv) (u, v,)
=——v =V + oo ——,
vl ' el TAE

(b) If S = [vi, Va2, ..., V] is an orthonormal basis for an inner product space V, and
ifuis any vector in 'V, then

()

u= (u,vi)v; + (U, va)va + -« 4 (u, v}V, 4)

Proof(a) Since S = (vy, V2, ..., V,)isa basis for V, everv ressed

in the form 380/802

u=ci¥y + 2+ -+,
We will complete the proof by showing that

. (u, v;)
T E

fori=1,2,..., n. To do this, observe first that

(5)

{u, vi) = (c1vi +c2¥2 + + -+ + Ca Vi Vi)
=c{v1, Vi) + (v, vi) + - -+ calvn, ¥i)
Since § is an orthogonal set, all of the inner products in the last equality are zero excepl
the ith, so we have
(u, %) = ci{vin vi) = i [IviI°

Solving this equation lor ¢; yields (5), which completes the proof.

Proof (b) In this case, [[vi|| = [[v2]| = -+ = |lvs|| = 1, so Formula (3) simplifies to For-
mula (4), <
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Chapter 6 Inner Product Spaces

Solution (b) I follows lrom Formula (4) that
u={u, v)v; + (u, v2)vs + {u, va)v;
We leave it for you to conflirm that

(u,m) =(1,2,4)+(0,1,0) =2

{(uw,v2) = (1,2,

2
(u,v3) = (1,2.4) - (——';n-%) - %

1o
=9
—
ml—
=

|“
I
\-—"

Il

|u1

and hence that

5 1 1 3 1 1
{112|4)=7(0¥]n0)+_(_001 _)+_(h_lni_) *
v2\V2
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368 Chapter 6 Inner Product Spaces

Solution (b) It follows from Formula (4) that
u=(u, vi)vi + (u, v2)v2 + (u, v3)v;
We leave it for you to confirm that

(u,v)) =1(1,2,4)-(0,1,0) =2

1 1 5
V) =(01,24-—=,0,—=)=—
MRt ](Ji 2) 2

| | 3
u v =(1.z.41.(-_.o,_)=
L V2 2

and hence that

om0 (o) A0 d) <

Orthogonal Projections  Many applied problems are best solved by working with orthogonal or orthonormal
basis vectors. Such bases are typically found by starting with some simple basis (say a
standard basis) and then converting that basis into an orthogonal or orthonormal basis.
To explain exactly how that is done will require some preliminary ideas about orthogonal
projections.

In Section 3.3 we proved a resull called the Projection Theorent (see Theorem 3.3.2)
that dealt with the problem of decomposing a vector u in R” into a sum of two terms,
wy and wa, in which w; is the orthogonal projection of u on some nonzero vector a and
w is arthogonal to wy (Figure 3.3.2). That result is a special case of the following more
general theorem, which we will state without proof.

THEOREM 6.3.3 ProjectionTheorem

If W is a finite-dimensional subspace of an inner product space V, then every vector u
in V can be expressed in exactly one way as

u=w +w (8)

382/802

The vectors w; and w» in Formula (8) are commonly denoted by

where wy is in W and wa is in W+,

wp=projyu and wr = projpu (9)

These are called the erthogonal projection of u on W and the erthogonal projection of u
on W+, respectively. The vector wa is also called the component of u orthogonal to W .

/L" : Using the notation in (9), Formula (8) can be expressed as
" U = Projy U =+ projy. u (10)
Projyu
(Figure 6.3.1). Moreover, since projy.u = u — projy u, we can also express Formula
0 projgu w (10)as

u = projy, u <+ (u = projy u) (11)
A Figure 6.3.1
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Although Formulas (12) and
(13) are expressed in terms of
orthogonal and orthonormal
basis vectors, the resulting vec-
tor projy udoes not depend on
the basis vectors that arc used.

A Geometric Interpretation
of Orthogonal Projections

6.3 Gram-Schmidt Process; QR-Decomposition 369

The following theorem provides formulas for calculating orthogonal projections.

THEOREM 6.3.4 Let W be a finite-dimensional subspace of an inner product space V.
(@) If{vi,va,...,v,}) is an orthogonal basis for W, and w is any vector in V, then
u,v u,v u,v

@w) ) )
fivall* lIv2[l* lIve ll*

(b) If [vi, v, ..., V,) is an orthonormal basis for W, and u is any vector in V, then

Vr (12)

Projiy u =

projy u = (u, v{)vy -+ (0, va)va 4+« - 4 (u, v, )v, (13)

Proof (a) Tt follows from Theorem 6.3.3 that the vector u can be expressed in the form
u = w; + w2, where w; = projy uisin W and wz is in W; and it follows from Theo-
rem 6.3.2 that the component proj,, u = w; can be expressed in terms of the basis vectors
for W as

(wi.v1) (Wi, v2) (wi, v,)
s ) A + =—¥2 + SRR o -
fIvi 1= [Iv2]l- fIv,1]*

Since w» is orthogonal to W, it follows that

\f (14)

Projy, i = wy

(W2, V|) = (W2, V2) =+ - = (W2, v,}) =0

so we can rewrite (14) as

g oo {wy +“’3-"1)v (w) -i'Wz-"z}1llr (w) + wa, v,)
r i . = 2 | 3 2 el =~ 1. 0?2
i TG val? A
or, equivalently, as
. {u, vy) {u, v2) (v, v,)
rojy =W, = TV Vit oo —V,

Prolw =W = i T el TAE

Proof (b) In this case, [Ivi]| = [va]l = +-- = |Iv,ll = 1, so Formula (14) simplifies to

Formula (13). <

P> EXAMPLE 7 Calculating Projections

Let R? have the Euclidean inner product, and let W be the subspace spanned by the
orthonormal vectors v; = (0, 1.0) and v, = {—'; 0, %) From Formula (13) the or-
thogonal projection ofu = (1, 1, 1) on W is
projy u = {u, ¥i)vy + (0, v2)v2

= ()0, 1,0+ (=) (-£.0.3)

= (% 1.-%)
The component of u orthogonal to W is

projy: u =u— projyyu = (L. 1.1) - (343 I _:'35') o~ (% 0, %)

Observe that proj,,: u is orthogonal to both v, and v,, so this vector is orthogonal to
each vector in the space W spanned by vy and va, as it should be. <

If W is a one-dimensional subspace of an inner product space V, say span{a}, then
Formula (12) has only the one term
4 i {u, a)
PTO‘]“- u= Wa
In the special case where V is R? with the Euclidean inner product, this is exactly For-
mula (10) of Section 3.3 for the orthogonal projection of u along a. This suggests that
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370 Chapter 6 Inner Product Spaces

The Gram-Schmidt Process

vy =1, |:|11:pj“.]||1

.
W,

1 prajy

A Figure 6.3.3

proj y

A Figure 6.3.4

we can think of (12) as the sum of orthogonal projections on “axes” determined by the
basis vectors for the subspace W (Figure 6.3.2).

W

P Figure 6.3.2

We have seen that orthonormal bases exhibit a variety of useful properties. Our next the-
orem, which is the main result in this section, shows that every nonzero finite-dimensional
vector space has an orthonormal basis. The proof of this result is extremely important
since it provides an algorithm, or method, for converting an arbitrary basis into an
orthonormal basis.

THEOREM 6.3.5 Every nonzero finite-dimensional inner product space has an ortho-
normal basis.

Proof Let W be any nonzero finite-dimensional subspace of an inner product space, and
suppose that {u;, uy, ..., u, } is any basis for W. It suffices to show that W has an orthog-
onal basis since the vectors in that basis can be normalized to obtain an orthonormal
basis. The following sequence of steps will produce an orthogonal basis {v), ¥2, ..., ¥}
for W:

Step 1. Letv; = n,.

Step 2. As illustrated in Figure 6.3.3, we can obtain a vector v; that is orthogonal to v;

by computing the component of u, that is orthog~ nannecd
by v,. Using Formula (12) to perform this comp 384/8 0 2
lvin

V2 = lh — pProjy, h = —
Of course, if v2 = 0, then va is not a basis vector. But this cannot happen, since

it would then follow from the preceding formula for v that

(U3, v1) (U2, v1)
u: = i = 5 U

lIvi 112 fluy [}
which implies that us is a multiple of u, contradicting the linear independence
of the basis {u;, m, ..., u.}.

Step 3. To construct a vector v; that is orthogonal to both v, and va, we compute the
component of u; orthogonal to the space W» spanned by v, and v, (Figure 6.3.4).
Using Formula (12) to perform this computation, we obtain

{us, vi)
v )1

Asin Step 2, the linear independence of {u, u, ..
leave the details for you.

_ (u3, v2) <
Ivall* ~

., .} ensures that v; £ 0. We

¥3 =13 — projy, U3 = U3 — Y1
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6.3 Gram-Schmidt Process; QR-Decompaosition 371

Step 4. To determine a vector vy that is orthogonal to vy, va, and vi, we compute the

component of uy orthogonal to the space Wj spanned by vy, v2, and v3. From(12),

(uy. vq) . (uy, v2) o (ﬂ-t-\’s)v
vl valE T T wE

Y4 = Uy — pProjy, g = uy —

Continuing in this way we will produce after r steps an orthogonal set of nonzero
vectors vy, ¥2, ..., ¥, ). Since such sets are linearly independent, we will have produced
an orthogonal basis for the r-dimensional space W. By normalizing these basis vectors
we can obtain an orthonormal basis.

The step-by-step construction of an orthogonal (or orthonormal) basis given in
the foregoing proof is called the Gram-Schmidt process. For reference, we provide the
following summary of the sleps.

The Gram-Schmidt Process

To convert a basis [uj, ua, ..., u, ] into an orthogonal basis (v, v2, ..., ¥/}, perform
the following computations:
Step 1. v = u
u», v
Step 2. vo =uy — fu :}1'1
fIlvil12
| u, v uj, v
Step3. vi=u; — {us :)vl — (uy f) '3
fIv: NI lI¥2(1*
uy, Y 1 ¥ ¥
Stepd, v) s — (uy :>"1 Ny f)\'z (g ?‘“
Ivi 1l lIv21* lIvall*

) VN
| - 385/802 -

(continue for r steps)

Optional Step. To convert the orthogonal basis into an orthonormal basis
(91,93, - ...q,), normalize the orthogonal basis vectors.

I ———— Hictnriaal Mata Erhardt CrbhmidAdd TATE_10R0G) wrme a Marrman mathamatisaian
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372 Chapter 6 Inner Product Spaces

P EXAMPLE 8 Using the Gram-Schmidt Process

Assume that the vector space R* has the Euclidean inner product. Apply the Gram-
Schmidt process to transform the basis vectors

=10 wa=01L1), wm=(001)

into an orthogonal basis (v, v2, ¥3), and then normalize the orthogonal basis vectors to
obtain an orthonormal basis {q,. q,. q;}.

Solution
Stepl.vi=u = (1,1,1)

Step 2. v3 = uy — projy, uz = uz — fua, v:) V|
lIvall®
2 211
=01, D)-=(lLLD)=(-2= =
( ) 3( ) ( 33 3)
. (u]l“rl} ) (“3."2)

Step 3. v3 = u; — projy, 3y = u3 I
; v 112 lIval

B l 13/ 21 1
_({],ﬂ.ll—i(l.l.l)——(—i. . )

2/3
1 1
= (ﬂ, —-2—, 5)

vi=(,1,1), \'3=( - 1). v3=(! 386/802

Thus,
3°3°3
form an orthogonal basis for R*. The norms of these vectorsare —————————

il =3 vl = 22

T. Ivall =

Sl =

so an orthonormal basis for R? is

q_'_l_(LLL) . _(_LLL)
Tl T\ V3VE) R Il AN

¥3 | |
= —=|0,——, — > |
=l ( ;) Ji)

Remark  In the last example we normalized it the end to convert the orthogonal basis into an
orthonormal basis. Alternatively, we could have normalized each orthogonal basis vector as soon
as it was obtained, thereby producing an arthonormal basis step by step. However, that procedure
generally has the disadvantage in hand ealeulation of producing more square roots to manipulate,
A more useful variation is to *scale” the orthogonal basis vectors ot cach step to eliminate some of
the fractions. For example, after Step 2 above, we could have multiplied by 3 to produce (-2, 1, 1)
as the second orthogonal basis vector, thereby simplifying the calculations in Step 3.

CALCULUS REQUIRED P EXAMPLE 9 Legendre Polynomials

Let the vector space P> have the inner product

I
pq) = fl pxX)g(x)dx

Apply the Gram-Schmidt process to transform the standard basis {1, x, x?} for P; into
an orthogonal basis [¢ (x), ¢a(x), ¢s(x)}.
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Extending Orthonormal

Sets to Orthonormal Bases
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Solution Takeu, = 1,u; = x, and uy = x?,
Stepl.vi=u =1
Step 2. We have

(Ilg.\'|> =fl xdx =0

S0
(uy, vy)
Yi=1m — —Y =m=X
[Ivi I
Step 3. We have
-1
' 2 ..t“] 2
nmy)= | xdx=— =Z
(u3, v1) f_: o W
y .r"hl
(u3, va) =f Xdx == =0
1 4 o
| 1
IvilI* = (vi, %) :f I dx :.r] =2
-1
-1
50
o i — ‘:Us-ﬂ)“ iy (Ua.?z)vz _ iz i
lIvilI* lIv2112 ) 3

Thus, we have obtained the orthogonal basis (¢ (x), ¢2(x), ¢3(_1i]] in which
dix)=1, dx)=x, ¢ix)= .!:2 — 5 «

Remark  The orthogonal basis vectors in the last example are often scaled so all three functions
have a value of | at x = 1. The resulting polynomials
J
I, x, E{B.r -1)

which are known as the first three Legendre polynomials, play an important role in a varicty of
applications. The scaling does not affect the orthogonality.

Recall from part (h) of Theorem4.5.5 thata linearly independent setin a finite-dimensional
vector space can be enlarged to a basis by adding appropriate vectors. The following the-
oremis an analog of that result for orthogonaland orthonormal sets in finite-dimensional
inner product spaces.

THEOREM 6.3.6 If W ix a finite-dimensional inner product space, then:

(a) Every orthogonal set of nonzero vectors in W can be enlarged to an orthogonal
basis for W,

(b) Every orthonormal set in W can be enlarged to an orthonormal basis for W,

We will prove part () and leave part () as an exercise,
Proof (b) Suppose that § = {v,, Va2, ..., ¥, is an orthonormal set of vectors in W,
Part (h) of Theorem 4.5.5 tells us that we can enlarge § to some hasis

S' = {\"|. Yo, oona ¥oa Yo ....\’;;]‘
for W, If we now apply the Gram-Schmidt process to the set §', then the vectors
Vi, ¥2, ..., ¥y, Will not be affected since they are already orthonormal, and the resulting
set
Ty

" ?
S :l\'h v!l'lllv_‘!'i‘_‘-+1Il

will be an orthonormal basis for IV, <«
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