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39. Prove that the intersection of any two distinct eigenspaces of
a malrix A is {0}.

Working with Technology

T1. For the given matrix A, find the characteristic pelynomial

and the eigenvalues, and then use the method of Example 7o find
bases for the eigenspaces.

TF. In parts (a)-() determine whether the statement is true or -8 13 18

True-False Exercises

iy i 173 =30
tify y er.
n.sn.an.Jus.J}}ouran.s\\cr 0 - 0
(a) If A is a square matrix and Ax = Ax for some nonzero scalar
2., then x is an eigenvector of A. A=] 0 0 -5 =I5 1
1] 0 1 5 0
(b) Il A& is an eigenvalue ol a matrix A, then the linear system 4 —16 —-19 -—86 15

{,I — A)x = 0 has only the trvial solution. i
T2. The Cayley—-Hamilton Theorem states that every square ma-

trix satisfies its characteristic equation; that is, if Aisann xn

(c) I the characteristic polynomial ol a matrix A is 3 o, T
matrix whose characteristic equation is

p(3) = 3>+ 1, then A is invertible.
e ' 4eide, =0
(d) If X is an cigenvalue of a matrix A, then the cigenspace of A

-1y, -
corresponding to A is the set of eigenvectors of A correspond- MR A S @ A o e b O 0.

ing to i. {a) Verify the Cayley—Hamilton Theorem for the matrix
. . . 0 | 0
(¢) The eigenvalues of a matrix A are the same as the eipenvalues
of the reduced row echelon form of A. A=10 0 !
2 =5 4

() 170 s an eigenvalue of a matrix A, then the set of columns off

g _ (b) Use the result in Exercise 28 1o prove the Cayley-Hamilton
A is linearly independent.

Theorem for 2 x 2 matrices.

5.2 Diagonalization

In this section we will be concerned with the problem of finding a basis for R" that consists
of eigenvectors ol an n ¥ nmatrix A. Such bases can be used to study geometric properties
of 4 and 1o simplify various numerical computations These bases are also of physical
significance 1o a wide vanety of applications, some of which will be considered Liater in this
text.

Products of the form P~'AP in which A and P are n x n matrices and P is invertible
will be our main topic of study in this section. There are various ways to think aboul
such products, one of which is to view them as transformations

The Matrix Diagonalization
Problem

A— P IAP

in which the matrix A is mapped into the matrix P~'AP. These are called similarity
transformations. Such transformations are important because they preserve many prop-
erties of the matrix A. For example, if we let B = P7'AP. then A and B have the same
determinant since

det(B) = det(P~'AP) = det(P~") det(A) del(P)

det(A) det(P) = det(A
det(P) et(A) det(P) = det(A)
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5.2 Diagonalization 303

In general, any property that is preserved by a similarity transformation is called a
similarity invariant and is said to be invariant under similarity. Table 1 lists the most
important similarity invariants. The proofs of some of these are given as exercises.

Table 1 Similarity Invariants

Property

Description

Determinant

A and P~'AP have the same determinant.

Invertibility A isinvertible if and only if P~'AP is invertible.
Rank A and P~'AP have the same rank.

MNullity A and P~'AP have the same nullity.

Trace A and P~'AP have the sume trace.

Characteristic polynomial

A and P~ 'AP have the same characteristic polynomial.

Eigenvalues

A and P'AP have the same eigenvalues

Eigenspace dimension

If & is an eigenvalue of A (and hence of P~'AP) then the cigenspace

of A corresponding to A and the eigenspace of P~'AP
corresponding to A have the same dimension.

We will find the following terminology useful in our study of similarity transforma-
tions.

DEFINITION 1 If A and B are square matrices, then we say that B is similar to A if
there is an invertible matrix P such that B = P~'AP,

Note that if B is similar to A, then it is also true that A is similar to B since we can
express A as A = @' BQ by taking ¢ = P~'. This beir v say
that A and B are similar matrices il either is similar to

Because dingonal matrices have such a simple forn 3 1 7/802 er
a given n x o matrix A is similar to a matrix of this ty s+ be
the case, and should we be able to actually find a diagonis e o e o coantlar to
A, then we would be able to ascertain many ol the similanty invarianl propertics of A
dircetly from the diagonal entries of 1. For example, the diagonal entries of D will
be the eigenvalues of A (Theorem 5.1.2), and the product of the diagonal entries of D
will be the determinant of A (Theorem 2.1.2). This leads us to introduce the following
terminology.

DEFINITION 2 A square matrix A is said to be diggonalizable if it is similar to some
diagonal matrix; that is, if there exists an invertible matrix P such that P~'AP is
diagonal. In this case the matrix P is said to diagonalize A.

The following theorem and the ideas used in its proof will provide us with a roadmap
for devising a technique for determining whether a matrix is diagonalizable and, if so,
for finding a matrix P that will perform the diagonalization.
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5.2 Diagonalization 305

‘e for Theorem 5.2.1 guarantees that an n x n matrix A with n linearly independent eigen-
latrix  vectors is diagonalizable, and the proof of that theorem together with Theorem 5.2.2
suggests the following procedure for diagonalizing A.

A Procedure for Diagonalizing an n x n Matrix

Step 1. Determine first whether the matrix is actually diagonalizable by searching for
n linearly independent eigenvectors. One way to do this is to find a basis for
each eigenspace and count the total number of vectors obtained. If there is
a total of n vectors, then the matrix is diagonalizable, and if the total is less
than n, then it is not.

Step 2. If you ascertained that the matrix is diagonalizable, then form the matrix
P=[p, p, '+ p,]whosecolumn vectors are the n basis vectors you ob-
tained in Step 1.

Step 3. P~'AP will be a diagonal matrix whose successive diagonal entries are the
eigenvalues Ay, A1, ..., A, that correspond to the successive columns of P.

P EXAMPLE 1 Finding a Matrix P That Diagonalizes a Matrix A

Find a matrix P that diagonalizes

0 0 -2
A=11 2 I
| 0 3
Solution In Example 7 of the preceding section we found the characteristic equation of
A to be R
A-1)ArA—-2)=0
and we found the following bases for the cigenspaces: 31 9/802
=] 0 -
A=2 p= 0, pp=1|1]1; A=1 py= IJ
1 0 1

ot | 0 -2
P= 0 I 1
1 0 1

diagonalizes A. As a check, you should verify that

l 0 210 0 =-2](-1 0 -2 2 W'Y
P~'AP = l l 1 1 2 1 0 1 1|=]|0 2 o| «
-1 0 -1 1 0 3 1 0 1 0 0 1

In general, there is no preferred order for the columns of P. Since the ith diagonal
entry of P~'AP is an eigenvalue for the ith column vector of P, changing the order of
the columns of P just changes the order of the eigenvalues on the diagonal of P~'AP.
Thus, had we written

-1 =2 0
P= 0 1 1
1 1 0
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genvalues and Eigenvectors

in the preceding example, we would have obtained

2 00
P'AP =0 1 0
0 0 2

P EXAMPLE 2 A MatrixThat Is Not Diagonalizable

Show that the following matrix is not diagonalizable:

1
A= 1
—3

LV T B T e |
e o o

Solution The characteristic polynomial of A is

A—1 0 0
detxJ—A)=| =1 2-2 0 |[=@-1D@-—2)?
3 -5 i-2
so the characteristic equation is
A—1D(A—22=0

and the distinct eigenvalues of A are A = 1 and L = 2. We leave it [or you to show that
bases for the eigenspaces are

0
i A=2: p,=|0
|

Since A is a 3 x 3 matrix and there are only two basis vectors in total, A is not diago-
nalizable.

Alternative Solution If you are concerned only in determining whether a matrix is di-
agonalizable and not with actually finding a diagonalizing matrix P, then it is not nec-
essary to compute bases for the eigenspaces—it suffices to find the dimensions of the
eigenspaces. For this example, the eigenspace corresponding to A = 1 is the solution
space of the system

0 0 0][x 0
-1 -1 0 X2 | = 0
3 5 —1]|x 0

Since the coefficient matrix has rank 2 (verify), the nullity of this matrix is 1 by Theo-
rem 4.8.2, and hence the eigenspace corresponding to A = 1 is one-dimensional.
The eigenspace corresponding to A = 2 is the solution space of the system

1 0 0] 1]x 0
-1 0 Ollx2]1=1]0
3 =5 01 xs 0

This coefficient matrix also has rank 2 and nullity 1 (verify), so the cigenspace corre-
sponding to A = 2 is also one-dimensional. Since the eigenspaces produce a total of two
basis vectors, and since three are needed, the matrix A is not diagonalizable.
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5.2 Diagonalization 307

P EXAMPLE 3 Recognizing Diagonalizability
We saw in Example 3 of the preceding section that

0o 1 0
A=]0 0 1
4 —17 8

has three distinct eigenvalues: A =4, A =2+ V3, and A =2 — /3. Therefore, A is
diagonalizable and

4 0 0
PUAP =0 2+./3 0
0 0 I

for some invertible matrix P. If needed, the matrix P can be found using the method
shown in Example | of this section.

P EXAMPLE 4 Diagonalizability of Triangular Matrices

From Theorem 5.1.2, the eigenvalues of a triangular matrix are the entries on its main
diagonal. Thus, a triangular matrix with distinct entries on the main diagonal is diago-
nalizable. For example,

-1 2 4 0

e 0 3 | 7
o o 5 8 321/802

0 0 0 -2

-

is a diagonalizable matrix with eigenvalues A = —1, 2, =3, A3 =5,y = -2, 4
vers of a  Since there are many applications in which it is necessary to compute high powers of a
Matrix  square matrix A, we will now turn our attention to that important problem. As we will
see, the most efficient way to compute AX, particularly for large values of &, is to first
diagonalize A. But because diagonalizing a matrix A involves finding its eigenvalues and
eigenvectors, we will need to know how these quantities are related to those of A*. Asan
illustration, suppose that A is an eigenvalue of A and x is a corresponding cigenvector.
Then
A*x = A(Ax) = A(Ax) = A(AX) = A(Ax) = A°x
which shows not only that A? is a eigenvalue of A2 but that x is a corresponding eigen-
vector. In general, we have the following result.

ability is THEOREM 5.2.3 Ifk is a positive integer, A is an eigenvalue of a matrix A, and x is
n Theo- a corresponding eigenvector, then )* is an eigenvalue of A* and x is a corresponding
eigenvector.

P EXAMPLE 5 Eigenvalues and Eigenvectors of Matrix Powers

In Example 2 we found the eigenvalues and corresponding eigenvectors of the matrix

I s
A= 12'0
-3 5 2

Do the same for A”.
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Solution  We know from Example 2 that the cigenvalues of A are A = 1 and A = 2, so
the eigenvalues of A7 are A =17 =1 and A =27 = 128. The eigenvectors p, and p,
obtained in Example | corresponding to the eigenvalues A = 1 and A = 2 of A are also
the eigenvectors corresponding to the eigenvalues A = l and A = 128 of A7.

The problem of computing powers of a matrix is greatly simplified when the matrix is
diagonalizable. To see why this is so, suppose that A is a diagonalizable n X n matrix,
that P diagonalizes A, and that

M 0 --- 0
2 0 X --- 0
PTAP=| . . . | =D
0 0 --- A,
Squaring both sides of this equation yields
)L% 0 --- 0
2 ...
(P~'AP)? = s .| =p?
0o 0 --- JL:‘,

We can rewrite the left side of this equation as
(PTARPY =P APP7AP = PT'AIAP =P AP

from which we obtain the relationship P~'A’P = D?. More generally. if & is a positive
integer, then a similar computation will show that

% o .. o7 322/802

b
o A ... 0 :
platp=pt=|. "2 ) P
0 0 --- af
which we can rewrite as
A0 ...
8 i ... 0
Ak=ppp-t=p| . 2 e 3)
0 0 i
P EXAMPLE 6 Powers of a Matrix
Use (3) to find A"®, where
0 0o -2
A=11 2 |
1 0 3

Solution We showed in Example 1 that the matrix A is diagonalized by

-1 0 =2
P=| 0 1 1
1 0 1
and that
2 00
D=P AP=|0 2 0
0 0 1
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5.2 Diagonalization 309

Thus, it follows from (3) that

-1 0 =2][2® 0o o i B 2
AB=pDBpP'=| 0 1 1|]l0o 2% o R ()
10 1]jo o 1®|[-1 0 -1
8190 0 —16382
=| 8191 8192 8191 | «
| 8191 0 16383

Remark With the method in the preceding example, most of the work is in diagonalizing A.
Once that work is done, it can be used to compute any power of A. Thus, to compute A" we
need only change the exponents from 13 to 1000 in (4).

Theorem 5.2.2(h) does not completely settle the diagonalizability question since it only
guarantees that a square matrix with n distinct eigenvalues is diagonalizable; it does not
preclude the possibility that there may exist diagonalizable matrices with fewer than n
distinct eigenvalues. The following example shows that this is indeed the case.

P> EXAMPLE 7 The Converse of Theorem 5.2.2(b) Is False
Consider the matrices

0 1 1 0
Ol and J =0 1 1
1 0 0 1

Ty
I
c o —
)

It follows from Theorem 5.1.2 that both of these matrices have onlh’ ana dictinct eigen-
value, namely A = |, and hence only one eigenspace. We leave you
to solve the characteristic equations 323/802

M —=I)x=0 and A —J)x=0

with A = 1 and show that for / the eigenspace is three-dimensional (all of R*) and for J
it is one-dimensional, consisting of all scalar multiples of

|
x=10
0

This shows that the converse of Theorem 5.2.2(b) is false, since we have produced two
3 x 3 matrices with fewer than three distinct eigenvalues, one of which is diagonalizable
and the other of which is not. <

A full excursion into the study of diagonalizability is left for more advanced courses,
but we will touch on one theorem that is important for a fuller understanding of diago-
nalizability. It can be proved that if Ay is an cigenvalue of A, then the dimension of the
eigenspace corresponding to A cannot exceed the number of times that A — A, appears
as a factor of the characteristic polynomial of A. For example, in Examples | and 2 the
characteristic polynomial is

=D -2

Thus, the eigenspace corresponding to A = 1 is at most (hence exactly) one-dimensional,
and the eigenspace corresponding to A = 2 is at most two-dimensional. In Example 1
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