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Uity l;'elt.:ill from Formula (20) of Semon 3.2 that the angle 6 between two vectors u and v in

_ —1 Uev
= cos (uunnvu) | L

We were assured that this formula was valid because it followed from the Cauchy-
Schwarz mcqudhly (Theorem 3.2.4) that

u-v
< <
[l vl
as rcqunca for the inverse cosine 1o e detined. The Iollowmg ger.cralization of the
Cauchy-Schwarz inequality will cnable us to define the aae between 1 .0 vectorsin any
real inner product space.

ETH ECREMG.2.1] Cauchy-Schwarz Inequalitd

] . aden
If wand v are vectors in a real inner product space V, e

[{u, V}| < weu vl

©)

. r trick
. 1 here depends on @ cleve
P;‘OA,. We warn you " ance that the prool presented here dep
. Y . ( ¢ 4
1 . are both
*hat 1s not easy to motivate. . since (u, v) and flul
In the c;sz where u = 0 the two sides of (3) are cq‘t,l J:\«l aking this ¢ assumption. let
Zer0. Thus, we need only consider the cuse wherc u # .

= (wu). h= 2w v €T (v, V)
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e

 yields

and let 7 be any real number. Since the positivity axiom states that the inner product of
any vector with itself is nonnegative, it follows that

0 < (tutv,ru+v) = (uur+2(uv)t+(v,v)
=ar’+bt +c

This inequality implies that the quadratic polynomial ar® + bt + ¢ has either no real
roots or a repeated real root. Therefore, its discriminant must satisfy the inequality
b? — 4ac < 0. Expressing the coefficients a, b, and c in terms of the vectors u and v
gives 4(w, ¥)2 — 4(u, u)(v, v) < 0 or, equivalently,

(. ) < (u, u)(v, v)
Taking square roots of both sides and using the fact that (u, u) and (v, v) are nonnegative

(o W) < (w.w)' (.9 orequivalently [(u, V)| < lulliv]
which completes the prool. 8

The following two alternative forms of the Cauchy-Schwarz inequality are useful to
know:

@) < wuny @
: ()2 < JullPlvi? ' )

The first of these formulas was obtained in the proof of Theorem 6.2.1, and the second
is a variation of the first.
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roduct to extend the notions of length and distance to 27,
ic geometry thzorems remained valid (see Theorems 3.2.5
ly minor adjustments to the proofs of those theorer
in any real inner product space. For example. heie
he triangle inequalities).

In Section 3.2 we used thedotp
and we showed that various bas
3.2.6. and 3.2.7). By making on
one can show that they remain valid
is the generalization of Theorem 329t

properties of Length and
STatance i Cenerd innet

L
Product Spaces
—

THEOREM 6.2.2 Ifu, v, and w are vectors in d real inner product space V, und if F is

any scalar, then:
@ vl < ol + 0¥l
() d(u,v) <d@w)+dwY)

| Triangle inequality for vectors |

| Triangle inequality for distances|

Proof (a)
lu+ vIP=(ut+vut v)
= (uu) + 20w ¥} (WY
< (u.u) + 2/, V] + V)
"< (uu) + 2[ulllivE Y v) Byl
= full* + 2llullivl + Ivii?
= (Jull + IvID?

ots gives lu+ vl < lull + fivil-

| Property of absolute value|

Taking square ro

ntical to the proof of part (b) of Theorem LS

Proof(b) 1de
Although Example 1 is 2 useful mathematical exercise, there is only an occasion‘:\l ncui
lo compute angles in vector spaces other than R* and R®. A problem of e ‘:“c\r/"u
in general vector spaces is ascertaining whether the angle between vectors 15 a/ = 0‘ .
should be able to see from Formula (8) thatif u and v are nonzero vectors. then {hc .u.l.;,:;
between them is 8 = 7 /2 if and only it (u, ¥) = 0. Accordingly, We¢ m:akc lht“ loli::)“:‘:n
definition, which is a generalization of Definition 1 in Section 3.3 and s applicable €

if one or both of the vectors is zero.

Orthogonality

e T e mV called orthogonal if

| DEFINITION 1 Two vectors u and vin
(uo V) - 0. _"‘ )
A T o o e S

an inner product sp

O‘“‘\ngq

—————— s i Sl S S | A S
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358  Chapter b Inner Product Spaces

As the following example shows, orthogonality depends on the inner product in (,
sense that for different inner products two vectors can be orthogonal with respect to o, |

but not the other. |

» LXAMPLE 2 Orthogonality Depends on the Inner Product
are orthogonal with respect to the Euclide,,

1"hrc vectors u = (1, 1) and v = (J, = 1)
inner product on R? since

uev= M+ M=) =0
However, they are not orthogonal with respect to the weighted Euclidean inner prodyg
(u, ¥) = Juyvy + 2uyvs since

% (wv) =3 +2()(=1) =1#0

» EXAMPLF 3 Orthogonal Vectors in M22
IT Ma» has the inner product of Example 6 in the preceding section, then the matrices

10 [0 2
U:[1 1] and V——[O 0]

(U, V) =1(0)+02)+ 1(0) + 1(0) =0

are orthogonal since

Atcit UG RCQUIRED P> EXAMPLE 4 OrthogonalVectors in P;

—

et P have e inmer product

|
(P, q) =/ P(x)g(x)dx
-1

and let p = ¥ and q = ¢2, Then

| 1/2 | 1/2
ol = (o) = | / .rxd.v.] :[ / x:dx] =\/§
l -1 3
! lid | 1/2
= -1

I 1
{(p. q) =/ xx-dx :/ xtdx =0
- _I

Because (p.q) = 0, the vectors p = ¢ and q = v~ ure orthogonal relative to the given
inner product. <

In Theorem 3.3.3 we proved the Theorem ol Pythagoras for vectors in Euelidean
n-space, The following theorem extends this resull to vectors in any real inner product
space.

IHEOREM 6.2 3 Generalized Theorem of Pythagoras

w2 If wand v are orthogonul vectors in a real inner product space, then
iem P
x 2 N2
oz y flu+vji? = flull* + vl

ViU, vauy o LV ,V+u>+<u,v+u>
— L NHW> F VUS> 2, vt Lu,uy

aan ab S _a Z WU, lls E
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6.2
Angle andg Onhogonal

| Yyintnner p
roof T near Prodge Spacss A
P, y f Y -3 Lt (n, o
”“ ‘ ”J \ \') () )
+ v = (II + v, u - v) m [lufl? + 20,y
" - o / ¥ ’
llL‘,“‘Us RI’QU'HID > I'-A'A|ﬂ;)l‘

. E 5 Theorem of Pythagoras in p,
n Example 4 we showed that p = y 2
e P=xundq = x?are orthogona) with resrect 1

1
rq) = / PAX)g(x) dx
. -1
on . It tollows from Theorem 6.2.3 that

_ e+ all® = Ipli* + flq)’?
Thus, from the computations in Example 4, we have

s (BN o2 2 U5
lp + qll —( 3) +(‘£) —§+-5__E

We can check this result by direct integration:

I
lp+ql’=(p+q.p+9q) = f (x +x)(x + 5 dx

-1
v | . ;‘ 1.3 9 -
= ATdx 2 Xod. B == 0+::
/_lxdx+ f_lrc/r+/:lzclx 3+ 3 I

it e o In Section 4.8 we delined the notion of an orthogonal complement for subspaces of R™.
and we used that definition to establish a geometric link between the fundamental spaces
 of u matrix. The tollowing definition extends that idea to general inner product spzces

O{“\aﬂoﬁmﬂ_ﬁwﬁi I W is u subspace of a real inner product space V. then the set of

all®vectors in V' that are orthogonal to every veetor in W is called the orthogonal
complement of W and is denoted by the symbol W=.

|

«

W

In Theorem 4.8.0 we stated three propertics of orthogonal complements in R".. The
following theorem generalizes parts () and (b) of that theorem to general real inner
product spaces. i

—[V}(o(e m (IJEOZEM "'2-: If W is a subspuce of a real inner product spact V. then:
) @ W2 isasubspaceof V. _
by Wnwt=(0)

froatiai The set W contains at least the zero vector. since (Q- w = 3'“:‘5;:;;?;;
win W Thus. it remains to show that W+ is closcd_und’clr ;l‘ddllll::lnr:::]c; n i
cation. lodo this. suppose thatu and are vectors m W '..\:;dni\")' «nd {Iomogcn:x!)
W we have (u,ow) =0 and (v.w) = 0. I foll s (rom the 4

axioms of inner products that
(u+v, W) = (u.w) + (V. w)=0+0= 0
(Aw, w) = k(u. w) = k() =0

. t
which proves that u + v and ku arein W
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Proof (b 1f v is any vector in both W and W I then v is orthogonal to itself; tha i
(v.v) = 0. [t follows from the positivity axiom for inner products that v = 0.

The next theorem, which we state without proof, generalizes part (c) of Theg.
rem 4.8.6. Note, however, that this theorem applies only to finite-dimensional inpe,
product spaces, whereas Theorem 4.8.6 does not have this restriction.

Theorem 6.2.5 implies that

in a fnne-dimensional in-

ner product space orthogonal WL—O’W If W is a subspace of a real finite-dimensional inner product space v,
jemeats OCCUT i pairs, then the orthogonal complement of wt s W; that is,

coll
cach being \‘i'il\\\‘:j\‘:'.:l,: w the 1L
other (Figure 6 2.2) (wo)-=Ww
" In our study of the fundamental spaces of a matrix in Section 4.8 we showed that the
| row space and null space of a matrix are orthogonal complements with respect to the
; Euclidean inner product on R" (Theorem 4.8.7). The following example takes advantage
l W of that fact.
- |8 o
\1/
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I 364  Chapiech Inner Product Spaces

6.3 Gram-Schmidt Process; QR-Decomposition

hle fver 18 lree e choose gy
Doy problents maoly g seeton spaes, INE e solve o 0y b
| nne f sl Cs, the Selutiosn o o
e v outop sypace that secins approprie i inner product sy ] Ry v
T hi v 5 AaIrc Voponal te
cantetten be sampliiad by choosueta basis in which the vectors il I '
( 0§ can be obrained,

dctier I this seciion we will show fuw such ba
rproduct space aresaid to be 0rthogup,
e e : : ol ion extends the notion of orthogyn.r,

‘1l Sevs iftheirinner productiszero. The fol iy
10 sets of vectors in an inner product sgnce.

Recull (rom Section 6.2 that two vectors i an inne
lowing definit

e i e e
o ———
SRR

B “\‘13@"\0& md | DEF]NITION 1- A s—e; ol; t-w.w}; or more vectors in & real inner product space is said 1o be
the set arc orthogonal. An orthogony] s,

Or“‘\dﬂd mal SQ{-S orthogonal if all pairs of distinct vectors n romornial
—— i which each vector has norm 1 is said t0 be orthonormal.

e o e e

e — T e S e —

. 3
» EXAMPLE 1 An Orthogonal Setin R
padebiotids M

Let

v =(1,0,-1)

follows that the set of vectorg
y=0. <

vi=(010), vn= (1,0, 1),

and assume that R* has the Euclidean inner product. It
S = {v1, v2, v3} is orthogonal since (vy, v2) = (v, v3) = (v, V3

that one has found a set of orthogonal vectors in an inner

N "& \/ It (requently happens . )
__2_.__—- product space but what is actually needed is a set.of orthonormal vectors. A simplc way
s to convert an orthogonal set of nonzero vectors into an orthonormal set is to multiply

cach vector v in the orthogonal set by the reciprocal of its length to create a vector of

norm 1 (called a unit vector). To see why this works, suppose that v is a nonzero vector
e in an inner product space, and let
Note that Formula (1) 1s iden- e .__l_v 0
vodd o Formula (4) of Sec- lIv]l
in 32, but whercas For-  Then it follows from Theorem 6.1.1(5) with k = |Jv|| that
Il = — vl = 1

.-:.;'_-.u (4)wusvalid only for vec- 1 |
_V/ _ I_
lIvl vl (¥

tors i K with the Euclidean lul| =

neer product, Formula (1) is

pden general inner product his brocess of multiplying a vector v by the reciprocal of its lengthis called normalizing v.

R We leave it as an exercise to show that normalizing the vectors in an orthogonal set of
nonzero vectors preserves the orthogonality of the vectors and produces an orthonormal
set.

» EXAMPLE : Constructing an Orthonormal Set
The Euclidean norms of the vectors in Example | are

il =1 vl =v2, il =2

Consequently, normalizing uy, us, and uy yields

o vl el ~\V2' V2
_m (L
"”mn“( 2"’"—3)
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6.3 Gram-Schmidy Procoss; OQR-Decomposition 365

We leave it for You to verify that the g

et = {uy, uy, u3) is orthonormal by showing that

("""2) = (g, uy) = (uy, u) == 0 and Mgl = |

luzll = fluyl| =1 -

. In R anytwo honzero perpendicular vectors

* 1s a scalar multiple of the other; and in R}
vectors are linearly independent because no
henceisnot expressible as a line
generalizes these observatjons,

arclincﬂrlyindcpcndcnlbccauy:ncit’ncr
any three nonzero mutually perpendicular
one lies in the plane of the other two (and
ar combination of the otlier two). The following theorem

THEOREM 6.3.1 Jf'§ = (viovaeoooyv ) is an orthogonal set of nonzero vectors in an
Inner prodict space, then 8 iy linear|y independent,

Proof Assume that

k|V|+k_w_V3+-'-+k,,V,,=0 (2)
To demonstrate that § = {(vi, v,
k =k =... =k, =0.

Foreachv; in $, it follows from (2) that

-+« ¥y} is linearly independent, we must prove that

(kivi 4+ kava o 4 kyva, vi) = (0, v;) = 0
or, equivalently,

kidviovi) + ka(va, vi) + -« + kp (v, vi) = 0
From the orthogonality of S it follows that (vj,vi) = 0 when j # i, so this equation
reduces to ’

kivi.vi) =0

Since the vectors in § are assumed to be nonzero, it follows from the positivity axiom
for inner products that (v;, v;) # 0. Thus, the preceding equation implies that each &; in
Ecilxztion (2) is zero, which is what we wanted to prove. @

N._-Q—-!n an inner product space, a basis consisting of orthonormal vectors is called an

“orthonvimal basis, and a basis consisting of orthogonal vectors is called an orfhogonal

basis. A familiar example of an orthonormal basis is the standard basis for R” with the
Euclidean inmrer product:

Sincean orthonormal set is or-
thogonal, and since its vectors
" are nonzero (norm 1), it fol-
lows from Theorem 6.3.] that

v orthonrmal set is lin- ¢, =(1,0,0,....00. ¢=(0.1,0,....0),.... e, =(0,0.0..... 1)
carly adependent,

» EXAMFLE3 An Orthonormal Basis for P, |
m Example 7 of Section 6.1 that the standard inner product of the polynomials

p=tao+ax+---+a," and q=bo+ b+ +bax"

s
(p, q) = aobo + ayby + - + a,bn
and the norm of p relative to this inner product is

Ip) = Voo = Jai +ai +--+a;
You should be able to see from these formulas that the standard basis

s={l.x..t2.....-""]

is orthonormal with respect to this inner product.
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r 4
.\/w/‘ EXAMPLE 4 An Orthonormal Basis

rdinefes qi“.n-\'t’? to
Orrnononnal Bases

In Example 2 we showed that the vectors

1 | | 1
u =(0.l.0), u::(—.o.—'). and =(——-—~,(,....___
| \/i ‘\/i d uj ﬁ ) J_

forman orthonormal set with respect to the Euclidean inner product on 7. By Theorer
6.3.1, these vectors form a linearly independent set, and since R? is three-dimensi ional.
it follows from Theorem 4.5.4 that S = (u;, vy, u3) is an orthonormal basis for g} -

One way to express a vector u as a linear combination of basis vectors

S={vi,vo, ..., v}

1s to convert the vector equation

Uu=c\vi+cwva+ -+ cp¥u

to a linear system and solve for the coefficients ¢y, ca. ..., c,. However, if the basis
happens to be orthogonal or orthonormal, then the following theorem shows that the
coefficients can be obtained more simply by computing appropriate inner products.

E

THEOREM 6.3.2

(@ IfS = (vi,v2, ..., Va}is un orthogonal basis for an inner product space V, and if
u is any vector in V, then :

(“ Vi) {u, v2) (u v,,) 6)
vi+ Vot oot ——Vn
TR lIv2I? [Ivall?
(b) If S =1{vy,va, ..., Va} is an orthonormal basis for an inner product space V, and
ifu is any vector in V, then
i | 2l @
u= (ll, V])Vl + (u: VI)VZ +.' o (“' V,,)\,,

Scanned by CamScanner



> &X-AMPLEAn Orthonormal Basis from an Orthogonal Basis

(a) Show that the vectors’
w; =(0,2,0), wi=(3.03), wy=(-404)

form an orthogonal basis for R* with the Euclidean inner product, and use that
basis to find an orthonormal basis by normalizing each vector.
(b) Express the vector u = (1, 2, 4) as a linear combination of the orthonorn. ° hasis

vectors obtained in part (a).
Soiution (80 The given vectors form an orthogonal set since
(wiowz) =0, (wi,w3) =0, (w2,w3)=0

tfollows from Theorem 6.3.1 that these vectors are linearly independent and hence form
f! Zasxs for R by Theorem 4.5.4. We leave it for you to calculate the norms of wi, w2,
4nd wy und then obtain the orthonormal basis

Vol (0,1,0), ¥ o' -—=(l 0—1—)
. — v 4y ’ A= =W g
llwy |l Iwall Ja 2

W3

l l )
V T —— —-———.()‘ ——
T iwal =( iz
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}J68 Chapter 6 Inner Product Spaces

Onthogonel! Projections

Solution (B) It follows from Formula (4) that

U= (0vi)vy 4 (u, vy, 4 (U, vy)v,
We leave it for you to confirm that

(u.vy) =(1,2,4) . 0,1,0) =2

. 1 l S
(“-"2) -~ (1| 2v4) * (_.0, ——) R -
V2 2 V2

(wovs) = (1.2, 4) (—L 0 L) _3

and hence that

5 1 1
(l.2.4)=2(0.1.0)+?(—_ 0 —_)+—3—(— ‘

-

Many applied problems are best solved by working with ortho
basis vectors. Such bascs are typically found by starting with some simple basis (say a
standard basis) and then converting that basis into

an orthogonal or orthonormal basis.
To explain exactly how that is done will require some preliminary ideas about orthogonal
projections.

In Section 3.3 we proved a result called the Projection Theorem (see Theorem 332)
that dealt with the problem of decomposing a vector uin R” into a sum of two terms,
w; and ws, in which w, is the ortho

gonal projection of u on some nonzero vector a and
w2 is orthogonal to w; (Figure 3.3.2). That resultis a special case of the following more
general theorem, which we will state without proof.

gonal or orthonormy)

THEOREM 6.3.3 ProjectionTheorem

If W is a finite-dimensional subspace of an inner product space V, then every vector u
in 'V can be expressed in exactl ly one way as
' (8
u=w;+w
where wy isin W and Wy isin WL

The vectors w) and w, in Formula (8) are commonly denoted by

9
W) = projyu and W2 = projw- u

. : 1]
! prujtf!ﬂ”’ of
" . d the orthogona V.
These are called the orthogonal projection of u ": ::‘/cﬂ::mlponcnt of u orthogonal 10 '
Wi on W4, respectively, The vector w is also calle

' essed as
} Using the notation in (9), Formula (8) can be expresse

(10)
u = projy u -+ projws ¥
Projy-u

la
ress Formu
(Figure 6.3.1). Moreover, since projsu = 4~ Prow "

an
(10) as
w

u=projyu+ -~ projw )
. ¢
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