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Electric field lines and forces 
We want to calculate electric fields because we want to predict how 
charges would move in space: we want to know forces. 

The drawings below represent electric field lines.  Draw vectors representing the electric 
force on an electron and on a proton at the positions shown, disregarding forces between the 
electron and the proton.  

e- p+ p+ p+ e- e- p+ e- 

(d) 

Imagine the electron-proton pair is held at a distance by a rigid bar 
(this is a model for a water molecule). Can you predict how the 
dipole will move?  

We work with two different kinds of problems, easily confused: 

•  Given certain electric charges, we calculate the electric field 
produced by those charges. 

 Example: we calculated the electric field produced  
  by the two charges in a dipole :  

•  Given an electric field, we calculate the forces applied by this 
electric field on charges that come into the field.  

 Example: forces on a single charge  
 when immersed in the field of a dipole:  
(another example: force on a dipole when immersed in a uniform 
field) 
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•  Net force on dipole = 0; center of mass 
stays where it is. 

•  Net TORQUE τ: INTO page. Dipole 
rotates to line up in direction of E. 

•  | τ |  = 2(QE)(a/2)(sin θ)        	

 
         = (Qa)(E)sinθ           	

	



            = |p| E sinθ  = |p x E|  
•  The dipole tends to “align” itself with 

the field lines.  
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Work done by the field on the dipole: 

When is the potential energy largest? 

•  Given:  
–  planar surface, area A 
–  uniform field E 
–  E makes angle θ with NORMAL to plane 

•  Electric Flux:Φ = E A cos θ	


•  Units: Nm2/C 
•  Visualize: “flow of water” through surface 

θ	
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•  Electric Flux   
A surface integral! 

•  CLOSED surfaces:  
–  define the vector dA as pointing 

OUTWARDS 
–  Inward E gives negative Φ 
–  Outward E gives positive Φ	
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•  Note that E is NORMAL to both 
bottom and top cap 

•   E is PARALLEL to curved surface 
everywhere  

•   So: Φ = Φ1+ Φ2 + Φ3         	



              = πR2E + 0 - πR2E  = 0! 
•  Physical interpretation: total “inflow” 

= total “outflow”! 
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•  Closed cylinder of length L, radius R 
•  Uniform E parallel to cylinder axis 
•  What is the total electric flux through 
surface of cylinder? 
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•  Spherical surface of radius R=1m; E is RADIALLY 
INWARDS and has EQUAL magnitude of 10 N/C 
everywhere on surface 

•  What is the flux through the spherical surface? 

(α) -(4/3)πR2 E = -13.33π Nm2/C  

(b) 4πR2 E = +40π Nm2/C  

(c) 4πR2 E= -40π Nm2/C  
What could produce such a  field? 

What is the flux if the sphere is not centered 
on the charge? 

•  Consider any ARBITRARY 
CLOSED surface S -- NOTE: 
this does NOT have to be a 
“real” physical object! 

•  The TOTAL ELECTRIC FLUX 
through S is proportional to the 
TOTAL CHARGE 
ENCLOSED! 

•  The results of a complicated 
integral is a very simple 
formula: it avoids long 
calculations! 

S 

(One of Maxwell’s 4 equations) 
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•  Infinite plane with uniform 
charge density σ	



•  E is NORMAL to plane 
•  Construct Gaussian box as 

shown 
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•  Charge of 10 C is uniformly spread 
over a line of length L = 1 m. 

•  Use Gauss’ Law to compute 
magnitude of E at a perpendicular 
distance of 1 mm from the center of 
the line. 

• Approximate as infinitely long 
line -- E radiates outwards. 

• Choose cylindrical surface of 
radius R, length L co-axial with 
line of charge. 

R = 1 mm E = ? 

1 m 

• Approximate as infinitely long 
line -- E radiates outwards. 

• Choose cylindrical surface of 
radius R, length L co-axial with 
line of charge. 

R = 1 mm E = ? 

1 m 
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if the line is infinitely long (L >> a)… 

•  Consider a POINT charge q & pretend 
that you don’t know Coulomb’s Law 

•  Use Gauss’ Law to compute the electric 
field at a distance r from the charge 

•  Use symmetry:  
–  draw a spherical surface of radius R 

centered around the charge q 
–  E has same magnitude anywhere on 

surface 
–  E normal to surface 

r 
q E 
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•   A spherical conducting shell 
has an excess charge of +10 C.  

•   A point charge of -15 C is 
located at center of the sphere. 

•  Use Gauss’ Law to calculate the 
charge on inner and outer 
surface of sphere 

(a) Inner: +15 C; outer: 0 
(b) Inner: 0; outer: +10 C 
(c) Inner: +15 C; outer: -5 C 

-15 C 

R2 
R1 

•   Inside a conductor, E = 0 under 
static equilibrium! Otherwise 
electrons would keep moving! 

•   Construct a Gaussian surface 
inside the metal as shown. (Does 
not have to be spherical!) -15C •  Since E = 0 inside the metal, flux 
through this surface = 0 

•   Gauss’ Law says total charge 
enclosed = 0  

•   Charge on inner surface = +15 C 

Since TOTAL charge on shell is +10 C, 
Charge on outer surface = +10 C - 15 C = -5 C! 

-5 C 

+15C 
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•  Gauss’ law: Φ = ∫E•dA  provides a very direct 
way to compute the electric flux if we know 
the electric field.  

•  In situations with symmetry, knowing the 
flux allows us to compute the fields 
reasonably easily. 

Electric field of a ring 
Let’s calculate the field produced by a ring of radius R with total charge 

+Q, on a point on the axis, at a distance z from the center.  
A differential ring element will have charge dq, and will produce a field 

dE with direction as shown in the figure. The magnitude of the field 
 is dE=kdq/r2.  

Notice that the distance r is the same for all elements!  

By symmetry, we know the field will point up, so we will only need to 
integrate the component dEy=dEcosθ= (k dq/r2)(z/r)=k(z/r3)dq.  

Notice that the angle θ is the same for all elements, it is not an integration variable! 

We integrate over the ring to get the magnitude of the total field: 
E = ∫dEy = ∫k(z/r3)dq= k(z/r3) ∫dq = kQz/r3 = kQz/(R2+z2)3/2 

No integral table needed! 

What’s the field very far from the ring?  
If z>>R, E~kQz/z3=kQ/z2 : of course, the field of a point charge Q.  
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Electric field of a disk 
Let’s calculate the field of a disk of radius R with charge Q, at a 

distance z on the axis above the disk.  
First, we divide it in infinitesimal “rings”, since we know the field 

produced by each ring.   
Each ring has radius r and width dr: we will integrate on r, from 0 to R.  
The charge per unit surface for the disk is σ=Q/(πR2), and the area of 

the ring is dA=2πrdr, so the charge of the ring is  
dq=σdA=2πσ rdr. 

The field of each ring points up, and has magnitude  
dE = k dq z/(r2+z2)3/2=(1/4πε0)(2πσ rdr) z/(r2+z2)3/2 

= (σz/4ε0)(rdr) /(r2+z2)3/2 
The total field is then  
E = (σz/4ε0) ∫(2rdr) /(r2+z2)3/2 = (σz/4ε0) (-2/(r2+z2)1/2 )0

R  

Electric field of a disk 

If we are very far from the disk, z>>R, E~0: of course, it 
gets vanishing small with distance. If we use 

We get E ~ (σ/4ε0)(R2/z2) = (Q/πR2)/(4ε0)(R2/z2) =kQ/z2.  
(Of course!) 

If the disk is very large (or we are very close), R>>z, and 
E~σ/2ε0 

The field produced by any large charged surface is a 
uniform field, with magnitude σ/2ε0.  


