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Electric fields
Gauss’ law
Carl Friedrich Gauss
1777-1855
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Electric field lines and forces

We want to calculate electric fields because we want to predict how
charges would move in space: we want to know forces.

The drawings below represent electric field lines. Draw vectors representing the electric
force on an electron and on a proton at the positions shown, disregarding forces between the
electron and the proton.
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Imagine the electron-proton pair is held at a distance by a rigid bar
(this is a model for a water molecule). Can you predict how the
dipole will move? & o 2

Electric charges and fields
We work with two different kinds of problems, easily confused:

* Given certain electric charges, we calculate the electric ﬁeld
produced by those charges.

Example: we calculated the electric field produced
by the two charges in a dipole :

* Given an electric field, we calculate the forces applied by this
electric field on charges that come into the field. — -~
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Example: forces on a single charge
when immersed in the field of a dipole:
(another example: force on a dipole when immersed in a uniform

field)




Electric Dipole in a Uniform Field

* Net force on dipole = 0; center of mass

stays where it is. Distance between charges = a
* Net TORQUE <: INTO page. Dipole +Q
rotates to line up in direction of E. .
Uniform
* |T| =2(QE)(a/2)(sin 6) /’ .
= (Qa)(E)sin8 7 Field
=|p| E sin6 = |p x E| ‘ E
» The dipole tends to “align” itself with
the field lines. -Q QE
D A 0
T=p X E (torque on a dipole) p —
Potential energy of a dipole = / E

Work done Py the ﬁgld on the dipole:  QE
U= —W= _/ rd!]:/b pEsinfdf. U= —pEcosh.
90° 20°

U= —p-+E (potential energy of a dipole).

When is the potential energy largest?

Electric Flux: Planar Surface

* Given: / E
— planar surface, area A /
— uniform field E /
— E makes angle 8 with NORMAL to plane
* Electric Flux:®=E A cos 0 0
« Units: Nm?/C
* Visualize: “flow of water” through surface
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Electric Flux

Gaussian —
surface

®=[EedA

+ Electric Flux
A surface integral!

* CLOSED surfaces:
— define the vector dA as pointing N
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— Inward E gives negative ® 4 | \f_{,
— Outward E gives positive ® A s
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*=/#" Electric Flux: Example

¢ Closed cylinder of length L, radius R
* Uniform E parallel to cylinder axis

* What is the total electric flux through
surface of cylinder?

* Note that E is NORMAL to both
bottom and top cap

» Eis PARALLEL to curved surface
everywhere

* So: =P+ D, + D,
=nR?’E+0-nR?E  =0!
 Physical interpretation: total “inflow”
= total “outflow”!
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Electric Flux: Example

* Spherical surface of radius R=1m; E is RADIALLY
INWARDS and has EQUAL magnitude of 10 N/C
everywhere on surface

*  What is the flux through the spherical surface?
() =(4/3)xR? E = —13.33t Nm?/C
(b) 4nR? E = +40t Nm?/C

(c) 4nR? E= -407 Nm?/C
What could produce such a field?
Electric /7

What is the flux if the sphere is not centered sicid ines”
on the charge?

* Consider any ARBITRARY
CLOSED surface S -- NOTE: S

this does NOT have to be a
“real” physical object!

* The TOTAL ELECTRIC FLUX

through S is proportional to the

TOTAL CHARGE . - g
ENCLOSED! D= f E-d4d=-"L

* The results of a complicated Surface
integral is a very simple

formula: it avoids long
calculations! (One of Maxwell’s 4 equations)




Gauss’ Law: Example

Infinite plane with uniform

¥
charge density o A
¥ ¥
E is NORMAL to plane sifie i
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Applying Gauss' law q._ ®, we have, A9 _24E

€ €

Solving for theelectric field, we get| E = 2i
€y

Two infinite planes
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Gauss’ Law: Example
Cylindrical symmetry

* Charge of 10 C is uniformly spread
over a line of length L =1 m.

» Use Gauss’ Law to compute
magnitude of E at a perpendicular

distance of 1 mm from the center of
the line.

» Approximate as infinitely long
line -- E radiates outwards.

* Choose cylindrical surface of

radius R, length L co-axial with
line of charge.

Gauss’ Law: cylindrical
symmetry (cont)

* Approximate as infinitely long E=? T R=1mm
line -- E radiates outwards. ?

* Choose cylindrical surface of «
radius R, length L co-axial with
line of charge.
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Compare with last class!

L/2 dx L/2
E =kia [ —2  _fpa X
Y —Z’;2 (a2 +x2)? a[a?‘\/xz +a’ ]—L/Z
2kAL

) aNda® + I?

if the line is infinitely long (L >> a)...

g, - 2L _2KA Y]]

_a\/?=a

Gauss’ Law: Example

Spherical symmetry

Consider a POINT charge q & pretend P = f EF-dd=4

that you don’t know Coulomb’s Law Sutace £,

Use Gauss’ Law to compute the electric
field at a distance r from the charge

Use symmetry:
— draw a spherical surface of radius R E
centered around the charge q

— E has same magnitude anywhere on
surface ,
— E normal to surface P =|E |A =‘E |4.7171”

E A dnr’ Amert 7




Gauss’ Law: Example

* A spherical conducting shell
has an excess charge of +10 C.

* A point charge of =15 C is
located at center of the sphere.

» Use Gauss’ Law to calculate the
charge on inner and outer
surface of sphere

(a) Inner: +15 C; outer: 0
(b) Inner: 0; outer: +10 C
(¢) Inner: +15 C; outer: -5 C

R,

&

Gauss’ Law: Example

 Inside a conductor, E = 0 under
static equilibrium! Otherwise
electrons would keep moving!

* Construct a Gaussian surface

inside the metal as shown. (Does

not have to be spherical!)

Since E = 0 inside the metal, flux

through this surface = 0

Gauss’ Law says total charge

enclosed =0

* Charge on inner surface = +15 C

Since TOTAL charge on shell is +10 C,

-5C

\

Charge on outer surface=+10C-15C=-5C!




Summary:

* Gauss’ law: @ =fE«dA provides a very direct
way to compute the electric flux if we know
the electric field.

* In situations with symmetry, knowing the
flux allows us to compute the fields
reasonably easily.

Electric field of a ring

Let’s calculate the field produced by a ring of radius R with total charge
+Q, on a point on the axis, at a distance z from the center.

A differential ring element will have charge dq, and will produce a field
dE with direction as shown in the figure. The magnitude of the field  dtcos@
is dE=kdg/r2. d

Notice that the distance r is the same for all elements!

rey
By symmetry, we know the field will point up, so we will only need to
integrate the component dEy=dEcos6= (k dq/r?)(z/r)=k(z/r*)dq.

Notice that the angle 6 is the same for all elements, it is not an integration variable!

6

We integrate over the ring to get the magnitude of the total field:
E = [dEy = [k(z/r3)dq= k(z/%) Jdq = kQz/r3 = kQz/(R2+22)*?
No integral table needed!

What’s the field very far from the ring?
If z>>R, E~kQz/z’=kQ/z? : of course, the field of a point charge Q.

dE

10



Electric field of a disk

Let’s calculate the field of a disk of radius R with charge Q, at a
distance z on the axis above the disk.

First, we divide it in infinitesimal “rings”, since we know the field
produced by each ring.

Each ring has radius r and width dr: we will integrate on r, from 0 to R.

The charge per unit surface for the disk is 0=Q/(R?), and the area of
the ring is dA=2mrdr, so the charge of the ring is
dg=0dA=27C rdr.

The field of each ring points up, and has magnitude

dE =k dq z/(r*+22)**=(1/4me,)(2no rdr) z/(r?+2%)3?2
= (0z/4¢,)(rdr) /(17+22)3?

The total field is then

E = (0z/4e,) (2rdr) /(1+22)32 = (0z/de,) (-2/(1+22)112 ) R

=211 :
2¢€0 VR2 + 22

P

Electric field of a disk

E=—(1-—

AN VR? + 22

If we are very far from the disk, z>>R, E~0: of course, it
gets vanishing small with distance. If we use

Z 1
VRZ+ 22 1+ (R/z

We get E ~ (0/4¢,)(R¥z?) = (Q/nR?)/(4¢,)(R?*/z%) =kQ/z2.
(Of course!)

1 2
5~ 1= 5(R/2)

If the disk is very large (or we are very close), R>>z, and .
E~0/2¢, TH—
The field produced by any large charged surface is a —
uniform field, with magnitude o/2¢,. T
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