## Derivation of Energy of an Electron in an Orbit

The energy of an electron in an orbit is the sum of its potential and kinetic energy

$$E_T = K.E + P.E$$

$$E_T = \frac{1}{2}mv^2 + \left(-\frac{Ze^2}{4\pi\varepsilon_o r}\right)....(7)$$

$$E_T = \frac{1}{2}mv^2 - \frac{Ze^2}{4\pi\varepsilon_0 r}$$
Prepared by: Side  $r$ 

From eq(1) 
$$mv^2 = \frac{Ze^2}{4\pi\varepsilon^{\circ}r}$$

Putting value in eq (7)
$$E_T = \frac{Ze^2}{2.4\pi\varepsilon^{\circ}r} - \frac{Ze^2}{4\pi\varepsilon^{\circ}r}$$

$$E_n = \frac{Ze^2}{8\pi\varepsilon_{\circ}r} - \frac{Ze^2}{4\pi\varepsilon_{\circ}r}$$

$$E_n = \frac{Ze^2}{4\pi\varepsilon_{\,0}r} \left(\frac{1}{2} - 1\right)$$

$$E_n = \frac{-Ze^2}{8\pi\varepsilon_{\text{powared by: Sidra, layed}}}.....(8)$$

## Now putting the value of r from eq(5) into eq(8),

$$E_n = \frac{-Ze^2}{8\pi\varepsilon_o} \times \frac{Ze^2\pi m}{\varepsilon_o n^2 h^2}$$

$$E_n = \frac{-Z^2 e^4 m}{8\varepsilon_o^2 n^2 h^2} \dots (9)$$

## For Hydrogen atom; Z=1

$$E_n = \frac{-me^4}{8\varepsilon_o^2 n^2 h^2}$$

$$E_n = -\frac{me^4}{8\varepsilon^2 h^2} \left[ \frac{1}{n^2} \right]$$

But 
$$\frac{me^4}{8\varepsilon_o^2 h^2} = -2.178 \times 10^{-18} \text{J}$$

$$E_n = -2.178 \times 10^{-18} \left(\frac{1}{n^2}\right) \text{J}.....(10)$$

$$E_n = -\frac{k}{n^2}$$

where 
$$k = 2.178 \times 10^{-18}$$

The negative sign indicated Decrease in energy of the electron. For 1 mol of electron, multiply by Avogadro's No.

$$E_n = -\left(\frac{k}{n^2}\right) \times 6.02 \times 10^{23} \text{ J/mol}$$

$$E_n = -\left(\frac{k}{n^2}\right) \times \frac{6.02 \times 10^{23}}{1000} \text{ KJ/mol}$$

$$E_n = 1313.315 \left(\frac{1}{n^2}\right) \text{KJ/mol}$$

This energy is associated with 1.008 gramatoms of hydrogen.

Prepared by: Sidra Javed

If n=1, 2, 3,.... then;  

$$E_1 = -1313.315 \left(\frac{1^2}{1^2}\right) = -1313.315 \, kJmol^{-1}$$

$$E_2 = -1313.315 \left(\frac{1^2}{2^2}\right) = -328.32 \, k \, Jmo \, l^{-1}$$

$$E_3 = -1313.315 \left(\frac{1^2}{3^2}\right) = -145.92 \text{ kJmol}^{-1}$$

$$E_4 = -1313.315 \left(\frac{1^2}{4^2}\right) = -82.08 \, k \, Jmol^{-1}$$

$$E_5 = -1313.315 \left(\frac{1^2}{5^2}\right) = -52.53 \, kJmol^{-1}$$

The first energy level when n=1 is called Ground state of H atom. All others are called Excited states.

Prepared by: Sidra Javed

## The first energy level when n=1 is called Ground state of H atom. All others are called Excited states.

