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9  The Future Prospects for 
 Fungicides and Fungal 
 Disease Control

Key Points

 ● The incessant rise in food demand means that all reliable methods of crop protection 
must be deployed at full efficiency.

 ● Global warming and biosecurity failures are likely to further impact crop 
protection.

 ● Many existing fungicides are likely to be phased out due to regulatory challenges.
 ● Fungicide resistance demands that resistance management strategies are used – 

this increases the need for new actives with new MOAs.
 ● The pipeline for new actives is working but at ever-increasing cost. Genomics and 

molecular modelling are likely to have an increasing impact.
 ● IDM will become standard practice. Better methods to select genetically resistant 

crops will bear fruit.
 ● Transgenic (GM) methods to deliver disease resistance have not developed due to 

public reluctance to accept transgenic crops.
 ● Developing genetically modified (GM) traits to replace or more likely supplement 

fungicides will require a major research effort.

Food Demand and Disease Threats

The world’s population is growing at a faster pace than ever before and looks set to 
increase until at least 2050. The population needs to be fed and needs somewhere to 
live. Hence more food needs to be grown on less land with less water. To reduce the 
levels of food insecurity that already exist in parts of the world and to prevent food 
deficits occurring in more productive regions, efficient and effective methods of crop 
production must be introduced and maintained.

There are many reasons to believe that the disease pressure on the crops will 
increase. Global warming will have varied and rather unpredictable effects on crop 
diseases (Carlton et al., 2012; West et al., 2012) but generally will decrease food 
security. Global warming and ever-increasing international travel and trade will 
reduce or even eliminate the power of national quarantine agencies to keep exotic 
pathogens out of their countries. History teaches that plant pathogenic fungi will 
always challenge our ability to produce food in quantity and of an acceptable quality. 
In adopting the highly efficient practice of crop monoculture, the risk of crop failure 
from plant diseases has increased from something of occasional and marginal import-
ance that could be sustained in an unsophisticated society, to a serious and continual 
problem often resulting in devastating yield losses and widespread social disruption.
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Although the introduction of monocultures provided crop pathogens with an 
ideal environment in which to multiply, the situation in some crops was exacerbated 
by techniques that were subsequently adopted to manage other problems. In cereals, 
the drive to increase yield through the use of improved varieties and higher fertilizer 
inputs highlighted the value of good weed control. The ensuing spiral towards higher 
yields through the increasing use of fertilizers and herbicides eventually hit the yield-
limiting factor of plant disease. Fungicides allowed yet more fertilizer to be used, to 
achieve even greater yields.

The effects of crop disease cannot be trivialized because they are never far away. 
Current estimates suggest that without fungicides we would lose up to one-third of 
yield, depending on the crop. In some circumstances, total loss is possible. Even in 
Europe, famine and food shortage were only a few harvests ago and the threat of 
their return has not disappeared. This reality necessitates the use of crop protection 
management systems that contain fungicides as an integral component.

The development and use of fungicides in crop protection is a success story. It is 
a story that has developed from their earliest and crude application in agriculture and 
horticulture, through a series of technological evolutionary steps, to a point where 
products are able to exert safe, broad-spectrum control for extended periods, or to 
work precisely to protect against attack by specific pathogens, or even to influence 
the host itself to combat infection. However, the process of improvement in crop dis-
ease management continues and the next 20 years are likely to witness even greater 
changes in fungicide technology and use.

Loss of Existing Fungicides

We have already seen (Chapter 8) that regulations initiated in Europe have led to the 
withdrawal of many active compounds. The ever-tightening regulatory demands, at 
least in Europe, will increase the pressure on the remaining compounds. The DMI 
group is already under serious threat and its loss could have a massive impact on the 
quantity and quality of food production worldwide.

Fungicide resistance preceded the withdrawal of the MBC class of fungicides by 
some years. Other fungicides afflicted significantly by resistance (see Chapter 6), 
including the DMI, QoI, PA, CAA and SDHI groups, remain in use. Indeed, predic-
tions that QoIs would become useless through resistance have proved very wide of the 
mark. Instead fungicide resistance management strategies have ensured their continued 
use. The strategies involved mixtures and alternations of fungicides. Hence there is a 
strong demand for new fungicides to fulfil roles in resistance management.

The Discovery Process

The pace of fungicide discovery shows no sign of slowing up (Chapter 4). Instead, 
new actives and new MOAs are being as released as fast as ever. This may be because 
the consolidation of fungicide discoveries into ever fewer but larger companies 
(Syngenta, BASF and Bayer) has increased the efficiency of the discovery processes.

Nonetheless, the low-hanging fruit have been picked. The unique biomolecules 
in fungi, particularly the ergosterol biosynthesis pathway, have been thoroughly 
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examined for fungicide targets. It seems inevitable that newer fungicides will require 
a more expensive discovery pathway than existing ones.

Genomics has not yet had a profound impact on the processes of fungicide dis-
covery. However we now have the situation in which the genome sequences of all 
relevant organisms, both the target fungi and the non-targets, are obtained or could 
be with only trivial effort. It is therefore possible to imagine a genomics-led discovery 
process in which molecules will be designed only to bind and inhibit key enzymes in 
the fungi and have no effect on non-target organisms. This is theoretically more 
straightforward than designing a pharmaceutical for a non-infectious human disease. 
Such a development would require a major effort in genomics and automated protein 
structure prediction.

Genetic Disease Control

Crop diseases are exceptional events, as all plants have natural defence systems to 
repel most fungal challenges. Molecular plant breeding allows breeders to combine in 
one cultivar all the best alleles of disease resistance genes as well as other desirable 
traits, as long as markers for the genes of interest have been discovered. Despite the 
fact that genome sequences for many major crops are now available, this process has 
not progressed as fast as was predicted and, to date, only major resistance gene mark-
ers are in general use. The quantitative and minor genes typical of so many resistance 
phenotypes have been harder to pin down. Developing the understanding of patho-
genicity mechanisms in more fungi and better genomic resources for more crops will 
accelerate this process.

Transgenic (GM) Disease Control

Mechanisms that permit the transfer of alien genes into plants have been available for 
over 25 years (Binns, 2002). Several characteristics have been researched in breeding 
programmes, such as nitrogen fixation, drought tolerance and the modification of 
protein components and their storage. The GM technologies were new and deemed 
to be commercially risky, so the chemical companies pursued only the biggest markets 
with the greatest profit potential. Hence the great majority of GM crops released to 
date involve genes for herbicide resistance and for insect tolerance. Resistance to vir-
uses has also been successfully deployed.

As long ago as 1991, it was shown that the expression of alien genes controlling 
hydrolytic enzyme activity in transgenic tobacco and oilseed rape resulted in increased 
resistance to infection by R. solani (Broglie et al., 1991). Many other traits have been 
examined and tested in laboratory-scale experiments but, to date, no commercial 
crops with transgenic disease resistance have been released (Logemann et al., 1992; 
Toubart et al., 1992; Gurr and Rushton, 2005).

The reasons for this glaring failure are partly scientific but also partly political. 
Developing a GM disease resistance trait is beset with many of the same difficulties 
as developing a new fungicide; the GM trait should generate good levels of disease 
resistance against a wide spectrum of pathogens and should be safe. Research was 
carried out on a wide scale in both university and chemical company laboratories. 
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Indeed, many chemical companies bought seed companies so as to have a route to 
market the new disease resistance traits.

The first major disease resistance genes (R-genes) were cloned and analysed 
around 1994 (Jones et al., 1994; Hammond-Kosack and Jones, 1997). The first 
thought was to express these genes in other plants to see whether they conferred 
resistance. However, it soon became apparent that R-genes were very specific and 
only worked in the species or at best the family from which they were derived (Gurr 
and Rushton, 2005). Hence this route has limited spectrum and has not attracted 
sufficient commercial interest.

Activation of resistance genes during infections leads to the production of a 
defence response which somehow kills the fungus (Anderson et al., 2005). So-called 
PR (pathogenesis related) genes producing chitinases and glucanases were among the 
induced genes. The release of active oxygen was also involved. Hence many people 
pursued the idea that enhanced expression of these genes would lead to resistance. 
This strategy has been undermined to some extent by the growth reductions seen 
in plants expressing PR proteins that outweigh the potential benefit of disease 
resistance.

Another line of thought was to deploy antifungal proteins in transgenic plants 
(Jach et al., 1995). These are diverse proteins with potent activity against several 
fungi. However such traits have failed the very stringent animal toxicology tests.

The latest research involves the use of RNA interference to inhibit the expression 
of fungal genes essential for infection (Nowara et al., 2010; Duan et al., 2012; 
Panwar et al., 2013). The mRNA is targeted by a short RNA molecule that is com-
plementary in sequence. This creates a short stretch of double-stranded RNA 
(dsRNA). dsRNA is efficiently detected in plants by a set of enzymes that cleave the 
RNA and inactivate it before it is translated into proteins. This is a very promising 
technology that can be delivered either by direct delivery of RNA molecules instead 
of a chemical fungicide or via expression of the RNA in the infected plant tissue. The 
proponents of this technology predict its widespread use in the next 5–15 years. It 
seems likely that a combination of chemical, conventional genetic and GM traits 
using antifungal genes, signalling molecules and RNA interference will become the 
norm in the next decades.

Developments in GM disease resistance have so far failed to progress to market. 
The scientific questions are tough but surely would have been solved had the level of 
investment present through the 1980s and 1990s been maintained. However the 
backlash against GM products that emerged in Europe in 1996 following the ‘mad-cow 
disease’ outbreaks caused both public- and private-sector organizations to cut back 
investments in this area. GM herbicide- and insect-resistant crops have been grown 
on a huge area and no deleterious effects have been reported. Nonetheless, no relax-
ation of the regulations has been forthcoming albeit there are signs of reduced anxiety 
at the moment. We will see whether investment now increases to exploit the potential 
of the GM disease resistance market.

Market Development

The last decades have seen a major consolidation in the fungicide market. Currently 
only three major companies are engaged in the full range from discovery to marketing. 
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A further merger within these companies seems unlikely. It is also hard to imagine 
how a new company could enter the market for conventional fungicides. Generic 
manufacturers are increasing in number and global importance, especially as China, 
India and many other tropical and semi-tropical countries become both fungicide 
users and manufacturers. There is the potential for new companies to enter the arena 
through the provision of GM traits, but the extremely demanding regulatory burden 
makes this unlikely. Clearly, the future for fungicide discovery is firmly fixed within 
a few very large companies.
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