The Molecular Nature of the Genetic
Material

» Mendel published his work in 1865.
« That work was lost until ca. 1900.

« With the “rediscovery” of Mendel’s conceptual
work the hunt was on for the physical nature of the
gene.

 What was it and how did 1t function?

» These questions were largely answered from
1940°s through the 1960’s and lead to the biotech

revolution beginning of the 1970’s.



Bacterial transformation implicates
DNA as the substance of genes

» 1928 — Frederick Griffith — experiments
with smooth (S), virulent strain
Streptococcus pneumoniae, and rough (R),
nonvirulent strain

— Bacterial transformation demonstrates transfer
of genetic material

e 1944 — Oswald Avery, Colin MacLeod, and
Maclyn McCarty — determined that DNA Is
the transformation material
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Fig. 2.2 Griffith’s transformation experiment
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Avery, MacLeod, McCarty
Experiment
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Fig. 2.3 Experiment that showed that DNA, not RNA, was the

transforming principle
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Avery, MacLeod, McCarty
experiment
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Hershey and Chase experiments

« 1952 — Alfred Hershey and Martha Chase
provide convincing evidence that DNA IS

genetic material

« Waring blender experiment using T2
pacteriophage and bacteria

« Radioactive labels 32P for DNA and 3°S for
orotein




Fig. 2.4 Bacteriophage T2
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Fig. 2.5 Lytic life cycle of a virulent phage, such as T2
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Fig. 2.6 Hershey-Chase experiment demonstrating DNA is genetic

material

a) Preparation of radioactively labeled T2 bacteriophage
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Chargaft’s ratios

TABLE 6.1 Chargaff’s Data on Nucleotide Base Composition in the DNA of Various Organisms

Percentage of Base in DNA Ratios
Organism A T G (& A:T G:C
Staphylococcus afermentams 12.8 12.9 36.9 37.5 0.99 0.99
Escherichia coli 26.0 23.9 24.9 25.2 1.09 0.99
Yeast 31.3 329 18.7 171 0.95 1.09
Caenorhabditis elegans* 31.2 29.1 193 20.5 1.07 0.96
Arabadopsis thaliana* 29.1 29.7 20.5 20.7 0.98 0.99
Drosophila melanogaster 27.3 27.6 22.5 22.5 0.99 1.00
Honeybee 34.4 33.0 16.2 16.4 1.04 0.99
Mus musculus (mouse) 29.2 29.4 217 19.7 0.99 1.10
Human (liver) 30.7 31.2 19.3 18.8 0.98 1.03

7

*Data for C. elegans and A. thaliana is based on that for close relative organisms,
Note that even though the level of any one nucleotide is different in different organisms, the amount of A always approximately equals the amount of T, and the level of G is always

similar to that of C. Moreover, as you can calculate for yourself, the total amount of purines (A plus G) nearly always equals the total amount of pyrimidines (C plus T).



DNA’s chemical constituents
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Figs. 2.9, 2.10 Structures of deoxyribose and ribose, and of the

nitrogenous bases in
DNA and RNA
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The Watson-Crick Model: DNAIs a
double helix

« 1951 — James Watson learns about x-ray
diffraction pattern projected by DNA

» Knowledge of the chemical structure of
nucleotides (deoxyribose sugar, phosphate, and
nitrogenous base)

e Erwin Chargaff’s experiments demonstrate that
ratio of Aand T are 1:1, and G and C are 1:1

« 1953 — James Watson and Francis crick propose
their double helix model of DNA structure



X-ray diffraction patterns produced by DNA
fibers — Rosalind Franklin and Maurice
Wilkins

Fig. 6.6



« DNA Is double helix

 Strands are antiparallele with
a sugar-phosphate backbone
on outside and pairs of bases
In the middle

» Two strands wrap around
each other every 30
Angstroms, once every 10
base pairs

« Two chains are held together
by hydrogen bonds between
A-T and G-C base pairs

Flg 6.9 T meeen d
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Fig. 2.11 Chemical structures of DNA and RNA

a) DNA and RNA nucleotides b) DNA polynucleotide chain
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o Stucturally, purines (A and G pair best
with pyrimadines (T and C)

» Thus, A pairs with T and G pairs with
C, also explaining Chargaff’s ratios

. _) Pyrimidine—pyrimidine
~ :\) Purine—purine
~ . Purine—pyrimidine

| |

20 A diameter Fig. 6.9 d




Complementary base pairing by formation of
hydrogen bonds explain Chargaft’s ratios

nydrogen bonds
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Fig. 2.15 Structures of the complementary base pairs found in DNA
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Fig. 2.14 Molecular structure of DNA

a) Molecular model b) Stylized diagram
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Double helix may assume alternative
forms
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Meselson-Stahl experiments confirm
semiconservative replication

5N cells transferred to'* N medium
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DNA replication: Copying genetic information for
transmission to the next generation

« Complementary base pairing produces
semiconservative replication
— Double helix unwinds
— Each strand acts as template

— Complementary base pairing ensures that T
signals addition of A on new strand, and G
signals addition of C

— Two daughter helices produced after replication



Fig. 3.1 Three models for the replication of DNA

a) The semiconservative model
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c) The dispersive model
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Fig. 3.2 The Meselson-Stahl experiment, which showed that DNA

replicates semiconservatively
DNA in e
E. coli CsClI DNA 3;%;;?: mre‘frlig 3
cultures  gradient composition bands scans

Start
| S A
- . » Heav
15N-<;onta|n|ng ‘ . - (15N/1)';N)
medium . S DNA

/

Continue growing first
generation in 1*N medium

Replication e
cycle 2 > Heavy, light I A

/

S (hybrid 15N/14N)

4 \{ DNA
Conlinue| 3
growing l / \.\
Rep|li03ation '\J ‘§
= a b  sme el
! iy = S DNA S S;'XNN)
Conti_nuel A )
growing
Replication

cycle 4

NS«
S/S
ANSS ~__
S/

14N/14AN MNjidN { ]
1aN1aN 15N/19N % % G % % %
227 %
"’o"'o ) o"’o"'o
%% % %%%
2.3, % %%, 7%
. % L. B
% % % %%
s ©%

Peter J. Russell, iGenetics: Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.



Box Fig. 3.1 Equilibrium centrifugation of DNA of different densities in

a cesium chloride density gradient
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Fig. 3.4a DNA chain elongation catalyzed by DNA polymerase
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Fig. 3.5 Model for the formation of a replication bubble at a

replication origin in
E. coli and the initiation of the new DNA strand
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Replication Is bidirectional

Replication forks move In opposite directions

In linear chromosomes, telomeres ensure the
maintenance and accurate replication of
chromosome ends

In circular chromosomes, such as E. coli, there Is
only one origin of replication.

In circular chromosomes, unwinding and
replication causes supercoiling, which may
Impede replication

Topoisomerase — enzyme that relaxes supercoils
by nicking strands



Fig. 3.6a, b Model for the events occurring around a single

replication fork of the
E. coli chromosome
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Fig. 3.6¢c-e Model for the events occurring around a single

replication fork of the

E. coli chromosome
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Fig. 3.7 Action of DNA ligase in sealing the gap between adjacent

DNA fragments to
form a longer, covalently continuous chain
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Fig. 3.8 Model for the “replication machine,” or replisome, the
complex of key

replication proteins, with the DNA at the replication fork
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Fig. 3.9 Diagram of the formation at a replication origin sequence of

two replication
forks that move in opposite directions
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Fig. 3.10 Bidirectional replication of circular DNA molecules
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Fig. 3.11b Diagram showing the unreplicated, supercoiled parent
strands and the

portions already replicated
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Fig. 3.12 The replication process of double-stranded circular DNA
molecules through
the rolling circle mechanism
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Fig. 3.17 Temporal ordering of DNA replication initiation events in

replication units
of eukaryotic chromosomes
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Fig. 3.18 The problem of replicating completely a linear chromosome

in eukaryotes

a) Parent chromosome with multiple origins
of replication

5, 3l
3 5
b) After replication J
¥ ki
3 / 5
RNA primer
and
RNA primer New DNA
5 / 3
3,1 I 5’

c¢) RNA primers removed, leaving gaps at telomeres

l

5 ankd
3 51 l
Gap left
Gap and after primer
{ removed
3’ l l l 5/

Peter J. Russell, iGenetics: Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.



Fig. 3.19 Synthesis of telomeric DNA by telomerase
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Fig. 2.25 A possible nucleosome structure
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Fig. 2.26 Nucleosomes connected together by linker DNA and H1

histone to produce
the “beads-on-a-string” extended form of chromatin

Beads-on-
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form of
chromatin
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Fig. 2.28b Packaging of nucleosomes into the 30-nm chromatin
fiber
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Fig. 2.29 Model for the organization of 30-nm chromatin fiber into
looped domains

that are anchored to a nonhistone protein chromosome
scaffold
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Fig. 2.31 The many different orders of chromatin packing that give rise

to the highly
condensed metaphase chromosome
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