
The Molecular Nature of the Genetic 

Material

• Mendel published his work in 1865.

• That work was lost until ca. 1900.

• With the “rediscovery” of Mendel’s conceptual 

work the hunt was on for the physical nature of the 

gene.

• What was it and how did it function?

• These questions were largely answered from 

1940’s through the 1960’s and lead to the biotech 

revolution beginning of the 1970’s.



Bacterial transformation implicates 

DNA as the substance of genes

• 1928 – Frederick Griffith – experiments 
with smooth (S), virulent strain 
Streptococcus pneumoniae, and rough (R), 
nonvirulent strain

– Bacterial transformation demonstrates transfer 
of genetic material

• 1944 – Oswald Avery, Colin MacLeod, and 
MacIyn McCarty – determined that DNA is 
the transformation material



Griffith experiment

Fig. 6.3



Griffith experiment

Fig. 6.3 b
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Fig. 2.2  Griffith’s transformation experiment



Avery, MacLeod, McCarty 

Experiment

Fig. 6.4 a
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Fig. 2.3   Experiment that showed that DNA, not RNA, was the 
transforming principle



Avery, MacLeod, McCarty 

experiment

Fig. 6.4 c



Hershey and Chase experiments

• 1952 – Alfred Hershey and Martha Chase 

provide convincing evidence that DNA is 

genetic material

• Waring blender experiment using T2 

bacteriophage and bacteria

• Radioactive labels 32P for DNA and 35S for 

protein
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Fig. 2.4  Bacteriophage T2
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Fig. 2.5  Lytic life cycle of a virulent phage, such as T2
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Fig. 2.6  Hershey-Chase experiment demonstrating DNA is genetic 
material



Chargaff’s ratios



DNA’s chemical constituents

Assembly into a nucleotide

Fig. 6.7
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Figs. 2.9, 2.10  Structures of deoxyribose and ribose, and of the 
nitrogenous bases in 

DNA and RNA



The Watson-Crick Model:  DNA is a 

double helix

• 1951 – James Watson learns about x-ray 

diffraction pattern projected by DNA

• Knowledge of the chemical structure of 

nucleotides (deoxyribose sugar, phosphate, and 

nitrogenous base)

• Erwin Chargaff’s experiments demonstrate that 

ratio of A and T are 1:1, and G and C are 1:1

• 1953 – James Watson and Francis crick propose 

their double helix model of DNA structure



X-ray diffraction patterns produced by DNA 

fibers – Rosalind Franklin and Maurice 

Wilkins

Fig. 6.6



• DNA is double helix

• Strands are antiparallele with 
a sugar-phosphate backbone 
on outside and pairs of bases 
in the middle

• Two strands wrap around 
each other every 30 
Angstroms, once every 10 
base pairs

• Two chains are held together 
by hydrogen bonds between 
A-T and G-C base pairs

Fig. 6.9



DNA’s 

chemical 

constituents

Fig. 6.7c
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Fig. 2.11  Chemical structures of DNA and RNA



• Stucturally, purines (A and G pair best 

with pyrimadines (T and C)

• Thus, A pairs with T and G pairs with 

C, also explaining Chargaff’s ratios

Fig. 6.9 d



Complementary base pairing by formation of 

hydrogen bonds explain Chargaff’s ratios

Fig. 6.8
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Fig. 2.15  Structures of the complementary base pairs found in DNA
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Fig. 2.14  Molecular structure of DNA



Double helix may assume alternative 

forms

Fig. 6.10



Meselson-Stahl experiments confirm 

semiconservative replication

Fig. 6.16



DNA replication:  Copying genetic information for 

transmission to the next generation

• Complementary base pairing produces 

semiconservative replication

– Double helix unwinds

– Each strand acts as template

– Complementary base pairing ensures that T 

signals addition of A on new strand, and G 

signals addition of C

– Two daughter helices produced after replication
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Fig. 3.1  Three models for the replication of DNA
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Fig. 3.2  The Meselson-Stahl experiment, which showed that DNA 
replicates semiconservatively
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Box Fig. 3.1  Equilibrium centrifugation of DNA of different densities in 
a cesium chloride density gradient
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Fig. 3.4a  DNA chain elongation catalyzed by DNA polymerase
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Fig. 3.5  Model for the formation of a replication bubble at a 
replication origin in 

E. coli and the initiation of the new DNA strand



Replication is bidirectional

• Replication forks move in opposite directions

• In linear chromosomes, telomeres ensure the 
maintenance and accurate replication of 
chromosome ends

• In circular chromosomes, such as E. coli, there is 
only one origin of replication.

• In circular chromosomes, unwinding and 
replication causes supercoiling, which may 
impede replication

• Topoisomerase – enzyme that relaxes supercoils 
by nicking strands
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Fig. 3.6a, b   Model for the events occurring around a single 
replication fork of the 

E. coli chromosome
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Fig. 3.6c-e   Model for the events occurring around a single 
replication fork of the 

E. coli chromosome
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Fig. 3.7  Action of DNA ligase in sealing the gap between adjacent 
DNA fragments to 

form a longer, covalently continuous chain
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Fig. 3.8  Model for the “replication machine,” or replisome, the 
complex of key 

replication proteins, with the DNA at the replication fork
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Fig. 3.9  Diagram of the formation at a replication origin sequence of 
two replication 

forks that move in opposite directions
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Fig. 3.10  Bidirectional replication of circular DNA molecules
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Fig. 3.11b  Diagram showing the unreplicated, supercoiled parent 
strands and the 

portions already replicated
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Fig. 3.12  The replication process of double-stranded circular DNA 
molecules through 

the rolling circle mechanism
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Fig. 3.17  Temporal ordering of DNA replication initiation events in 
replication units 

of eukaryotic chromosomes
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Fig. 3.18  The problem of replicating completely a linear chromosome 
in eukaryotes
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Fig. 3.19  Synthesis of telomeric DNA by telomerase
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Fig. 2.25  A possible nucleosome structure
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Fig. 2.26  Nucleosomes connected together by linker DNA and H1 
histone to produce 

the “beads-on-a-string” extended form of chromatin
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Fig. 2.28b  Packaging of nucleosomes into the 30-nm chromatin 
fiber
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Fig. 2.29  Model for the organization of 30-nm chromatin fiber into 
looped domains 

that are anchored to a nonhistone protein chromosome 
scaffold
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Fig. 2.31  The many different orders of chromatin packing that give rise 
to the highly 

condensed metaphase chromosome


