EXERCISES

1.5. Draw the Hasse diagrams for all possible orders on sets of $3,4,5$ elements.
1.6. Draw the Hasse diagram for the set of positive divisors of 210 when ordered by divisibility.
1.7. If p, q are distinct primes and m, n are positive integers, draw the Hasse diagram for the set of positive divisors of $p^{m} q^{n}$, ordered by divisibility.
1.8. Let P_{1} and P_{2} be the ordered sets with Hasse diagrams

Draw the Hasse diagrams of $P_{1} \times P_{2}$ and $P_{2} \times P_{1}$ under the cartesian order (Example 1.6). Comment on the result.
1.9. With P_{1} and P_{2} as in Exercise 1.8, draw the Hasse diagrams of $P_{1} \times P_{2}$ and $P_{2} \times P_{1}$ under the lexicographic order (Exercise 1.1), and those of the vertical sums $P_{1} \oplus P_{2}$ and $P_{2} \oplus P_{1}$ (Exercise 1.3).

1.2 Order-preserving mappings

Definition If $\left(A ; \leqslant_{1}\right)$ and $\left(B ; \leqslant_{2}\right)$ are ordered sets then we say that a mapping $f: A \rightarrow B$ is isotone (or order-preserving) if

$$
(\forall x, y \in A) \quad x \leqslant_{1} y \Rightarrow f(x) \leqslant_{2} f(y)
$$

and is antitone (or order-inverting) if

$$
(\forall x, y \in A) \quad x \leqslant_{1} y \Rightarrow f(x) \geqslant_{2} f(y) .
$$

Example 1.12 If E is a non-empty set and $A \subseteq E$ then $f_{A}: \mathbb{P}(E) \rightarrow \mathbb{P}(E)$ given by $f_{A}(X)=A \cap X$ is isotone. If X^{\prime} is the complement of X in E then the assignment $X \mapsto X^{\prime}$ defines an antitone mapping on $\mathbb{P}(E)$.

Example 1.13 Given $f: E \rightarrow F$ consider the induced direct image map $f \rightarrow: \mathbb{P}(E) \rightarrow \mathbb{P}(F)$ defined for every $X \subseteq E$ by $f \rightarrow(X)=\{f(x) \mid x \in X\}$ and the induced inverse image map $f^{\leftarrow}: \mathbb{P}(F) \rightarrow \mathbb{P}(E)$ defined for every $Y \subseteq F$ by $f^{\leftarrow}(Y)=\{x \in E \mid f(x) \in Y\}$. Each of these mappings is isotone.

We shall now give a natural interpretation of isotone mappings. For this purpose we require the following notions.
Definition By a down-set (or hereditary subset) of an ordered set ($E ; \leqslant$) we shall mean a subset D of E with the property that if $x \in D$ and $y \in E$ is such that $y \leqslant x$ then $y \in D$. We include the empty subset of E as a down-set. By a principal down-set we shall mean a down-set of the form $x^{\downarrow}=\{y \in E \mid y \leqslant x\}$. Dually, we define an up-set to be a subset U such that if $x \in U$ and $y \in E$ is such that $y \geqslant x$ then $y \in U$; and a principal up-set to be an up-set of the form $x^{\uparrow}=\{y \in E \mid y \geqslant x\}$.

Example 1.14 In the chain \mathbb{Q}^{+}of positive rationals the set $\left\{q \in \mathbb{Q}^{+} \mid q^{2} \leqslant 2\right\}$ is a down-set that is not principal.

Example 1.15 If A and B are down-sets of an ordered set E then clearly so also are $A \cap B$ and $A \cup B$. This is not true in general for principal down-sets. For example, in

we have $c^{\downarrow} \cap d^{\downarrow}=\{a, b\}=a^{\downarrow} \cup b^{\downarrow}$.
Isotone mappings are characterised by the following properties.
Theorem 1.2 If E, F are ordered sets and if $f: E \rightarrow F$ is any mapping then the following statements are equivalent:
(1) f is isotone;
(2) the inverse image of every principal down-set of F is a down-set of E;
(3) the inverse image of every principal up-set of F is an up-set of E.

Proof (1) \Rightarrow (2): Suppose that f is isotone. Let $y \in F$ and let $A=f \leftarrow\left(y^{\downarrow}\right)$. If $A \neq \emptyset$ let $x \in A$. Then for every $z \in E$ with $z \leqslant x$ we have $f(z) \leqslant f(x) \leqslant y$ whence $z \in A$. Thus A is a down-set of E.
$(2) \Rightarrow(1)$: For every $x \in E$ we have $x \in f^{\leftarrow}\left[f(x)^{\downarrow}\right]$. By (2) this is a downset of E, so if $y \in E$ is such that $y \leqslant x$ we have $y \in f^{\leftarrow}\left[f(x)^{\downarrow}\right]$. It follows that $f(y) \leqslant f(x)$ and therefore f is isotone.
$(1) \Leftrightarrow(3)$: This follows from the above by the Principle of Duality.

1.3 Residuated mappings

In view of the above natural result, we now investigate under what conditions the inverse image of a principal down-set is also a principal down-set. The outcome will be a type of mapping that will play an important role in the sequel.

Theorem 1.3 If E, F are ordered sets then the following conditions concern$\operatorname{ing} f: E \rightarrow F$ are equivalent:
(1) the inverse image under f of every principal down-set of F is a principal down-set of E;
(2) f is isotone and there is an isotone mapping $g: F \rightarrow E$ such that $g \circ f \geqslant \operatorname{id}_{E}$ and $f \circ g \leqslant \operatorname{id}_{F}$.

Proof (1) \Rightarrow (2): If (1) holds then it follows from Theorem 1.2 that f is isotone. In symbolic form, (1) becomes

$$
(\forall y \in F)(\exists x \in E) f^{\leftarrow}\left(y^{\downarrow}\right)=x^{\downarrow} .
$$

Now for every given $y \in F$ this element x is clearly unique, so we can define a mapping $g: F \rightarrow E$ by setting $g(y)=x$. Since $f \leftarrow$ is isotone it follows that so is g. For this mapping g we have $g(y) \in g(y)^{\downarrow}=x^{\downarrow}=f^{\leftarrow}\left(y^{\downarrow}\right)$, so $f[g(y)] \leqslant y$ for all $y \in F$ and therefore $f \circ g \leqslant \operatorname{id}_{F}$; and $x \in f^{\leftarrow}\left[f(x)^{\downarrow}\right]=g[f(x)]^{\downarrow}$ so that $x \leqslant g[f(x)]$ for all $x \in E$ and therefore $g \circ f \geqslant \operatorname{id}_{E}$.
$(2) \Rightarrow(1)$: If (2) holds then on the one hand we have

$$
f(x) \leqslant y \Rightarrow x \leqslant g[f(x)] \leqslant g(y)
$$

and on the other we have

$$
x \leqslant g(y) \Rightarrow f(x) \leqslant f[g(y)] \leqslant y .
$$

It follows from these observations that $f(x) \leqslant y$ if and only if $x \leqslant g(y)$ and therefore $f^{\leftarrow}\left(y^{\downarrow}\right)=g(y)^{\downarrow}$ from which (1) follows.

Definition A mapping $f: E \rightarrow F$ that satisfies either of the equivalent conditions of Theorem 1.3 is said to be residuated.

We note in particular that if $f: E \rightarrow F$ is a residuated mapping then an isotone mapping $g: F \rightarrow E$ which is such that $g \circ f \geqslant \operatorname{id}_{E}$ and $f \circ g \leqslant \operatorname{id}_{F}$ is in fact unique. To see this, suppose that g and g^{\star} are each isotone and satisfy these properties. Then $g=\operatorname{id}_{E} \circ g \leqslant\left(g^{\star} \circ f\right) \circ g=g^{\star} \circ(f \circ g) \leqslant g^{\star} \circ \mathrm{id}_{F}=g^{\star}$. Similarly, $g^{\star} \leqslant g$ and therefore $g=g^{\star}$.

We shall denote this unique g by f^{+}and call it the residual of f.
It is clear from the above that $f: E \rightarrow F$ is residuated if and only if, for every $y \in F$, there exists

$$
f^{+}(y)=\max f^{\leftarrow}\left(y^{\downarrow}\right)=\max \{x \in E \mid f(x) \leqslant y\}
$$

Moreover, $f^{+} \circ f \geqslant \operatorname{id}_{E}$ and $f \circ f^{+} \leqslant \operatorname{id}_{F}$.
Example 1.16 Simple calculations reveal that if $f: E \rightarrow F$ then the direct image map $f^{\rightarrow}: \mathbb{P}(E) \rightarrow \mathbb{P}(F)$ is residuated with residual $f \leftarrow: \mathbb{P}(F) \rightarrow \mathbb{P}(E)$.

Example 1.17 If E is any set and $A \subseteq E$ then $\lambda_{A}: \mathbb{P}(E) \rightarrow \mathbb{P}(E)$ defined by $\lambda_{A}(X)=A \cap X$ is residuated with residual λ_{A}^{+}given by $\lambda_{A}^{+}(Y)=Y \cup A^{\prime}$.

Example 1.18 For $m \in \mathbb{N} \backslash 0$ define $f_{m}: \mathbb{N} \rightarrow \mathbb{N}$ by $f_{m}(n)=m n$. Then f_{m} is residuated with $f_{m}^{+}(p)=\left\lfloor\frac{p}{m}\right\rfloor$ where $\lfloor q\rfloor$ denotes the integer part of $q \in \mathbb{Q}$.

Example 1.19 Every bounded operator f on a Hilbert space H induces a residuated mapping on the set of closed subspaces of H, namely that given by $M \mapsto\left[f^{\rightarrow}(M)\right]^{\perp \perp}$.

Example 1.20 If S is a semigroup, define a multiplication on $\mathbb{P}(S)$ by

$$
X Y=\left\{\begin{array}{cl}
\{x y \mid x \in X, y \in Y\} & \text { if } X, Y \neq \emptyset \\
\emptyset & \text { otherwise }
\end{array}\right.
$$

Then multiplication by a fixed subset of S is a residuated mapping on $\mathbb{P}(S)$.
Example 1.21 If R is a commutative ring with a 1 then multiplication by a fixed ideal of R is a residuated mapping on the ordered set $(I(R) ; \subseteq)$ of ideals.

The notion of a residuated mapping has its roots in investigations by Certaine [37], Ward and Dilworth [112], and Dilworth [43] into multiplicative ideal theory which relates directly to Example 1.21.

EXERCISES

1.10. For each integer $n \geqslant 1$ let \mathbf{n} denote the chain $1<2<3<\cdots<n$. Prove that a mapping $f: \mathbf{n} \rightarrow \mathbf{m}$ is residuated if and only if it is isotone and $f(1)=1$.
1.11. Let E be a bounded ordered set with bottom element 0 and top element 1 . Given $e \in E$, let $\alpha_{e}, \beta_{e}: E \rightarrow E$ be defined by

$$
\alpha_{e}(x)=\left\{\begin{array}{ll}
0 & \text { if } x=0 ; \\
e & \text { otherwise },
\end{array} \quad \beta_{e}(x)= \begin{cases}0 & \text { if } x \leqslant e \\
1 & \text { otherwise }\end{cases}\right.
$$

Prove that α_{e} and β_{e} are residuated and determine their residuals.
1.12. Let E be the ordered set given by the Hasse diagram

Show that the mapping $f: E \rightarrow E$ given by

$$
f\left(x_{i j}\right)= \begin{cases}x_{0, j+1} & \text { if } i=0, j \neq n \\ x_{01} & \text { if } i=0, j=n \\ x_{i-1, j+1} & \text { if } i \neq 0, j \neq n \\ x_{i-1,1} & \text { if } i \neq 0, j=n\end{cases}
$$

is residuated and determine f^{+}.
For every non-empty set E the residuated mappings on $\mathbb{P}(E)$ are completely described in the following result.

Theorem 1.4 Let E be a non-empty set and let R be a binary relation on E. Then the mapping $\xi_{R}: \mathbb{P}(E) \rightarrow \mathbb{P}(E)$ given by the prescription

$$
\xi_{R}(A)=\{y \in E \mid(\exists x \in A) \quad(x, y) \in R\}
$$

is residuated. Moreover, every residuated mapping $f: \mathbb{P}(E) \rightarrow \mathbb{P}(E)$ is of this form for some binary relation R on E.

Proof Let $i: \mathbb{P}(E) \rightarrow \mathbb{P}(E)$ be the antitone mapping that sends each subset of E to its complement. Consider the isotone mapping $\xi_{R}^{+}=i \circ \xi_{R^{d}} \circ i$. It is readily verified (draw pictures!) that $\xi_{R} \circ \xi_{R}^{+} \leqslant \mathrm{id}$ and $\xi_{R}^{+} \circ \xi_{R} \geqslant \mathrm{id}$, whence ξ_{R}^{+}is the residual of ξ_{R}.

To see that every residuated mapping $f: \mathbb{P}(E) \rightarrow \mathbb{P}(E)$ is of this form for some binary relation R on E, consider the relation R_{f} defined on E by

$$
(x, y) \in R_{f} \Longleftrightarrow y \in f(\{x\})
$$

Observe that $\xi_{R_{f}}(\{x\})=\left\{y \in E \mid(x, y) \in R_{f}\right\}=f(\{x\})$, so that f and $\xi_{R_{f}}$ agree on singletons.

Now if $k: \mathbb{P}(E) \rightarrow \mathbb{P}(E)$ is any residuated mapping then, since it is isotone, for every non-empty subset A of E we have $k(A)=k\left(\bigcup_{x \in A}\{x\}\right)=$ $\bigcup_{x \in A} k(\{x\})$. In fact, if $B=\bigcup_{x \in A} k(\{x\})$ then clearly $k(A) \supseteq B$. On the other hand, $k(\{x\}) \subseteq B$ for every $x \in A$ and so $\{x\} \subseteq k^{+}(B)$ whence $A=\bigcup_{x \in A}\{x\} \subseteq$ $k^{+}(B)$ and therefore $k(A) \subseteq B$. The resulting equality, applied to both f and $\xi_{R_{f}}$, together with the fact that f and $\xi_{R_{f}}$ agree on singletons now gives $f(A)=\bigcup_{x \in A} f(\{x\})=\bigcup_{x \in A} \xi_{R_{f}}(\{x\})=\xi_{R_{f}}(A)$ whence we obtain $f=\xi_{R_{f}}$.

Particular properties of residuated mappings are the following.
Theorem 1.5 If $f: E \rightarrow F$ is residuated then

$$
f \circ f^{+} \circ f=f \quad \text { and } \quad f^{+} \circ f \circ f^{+}=f^{+} .
$$

Proof Since f is isotone, it follows from Theorem 1.3 that $f \circ f^{+} \circ f \geqslant f \circ \mathrm{id}_{E}=$ f, and that $f \circ f^{+} \circ f \leqslant \operatorname{id}_{F} \circ f=f$, from which the first equality follows. The second is established similarly.

Theorem 1.6 If $f: E \rightarrow F$ and $g: F \rightarrow G$ are residuated mappings then so is $g \circ f: E \rightarrow G$, and $(g \circ f)^{+}=f^{+} \circ g^{+}$.

Proof Clearly, $g \circ f$ and $f \circ g$ are isotone. Moreover,

$$
\begin{aligned}
& \left(f^{+} \circ g^{+}\right) \circ(g \circ f) \geqslant f^{+} \circ \operatorname{id}_{F} \circ f=f^{+} \circ f \geqslant \operatorname{id}_{E} \\
& (g \circ f) \circ\left(f^{+} \circ g^{+}\right) \leqslant g \circ \operatorname{id}_{F} \circ g^{+}=g \circ g^{+} \leqslant \operatorname{id}_{G}
\end{aligned}
$$

Thus, by the uniqueness of residuals, $(g \circ f)^{+}$exists and is $f^{+} \circ g^{+}$.
Corollary For every ordered set E the set Res E of residuated mappings $f: E \rightarrow E$ forms a semigroup, as does the set $\operatorname{Res}^{+} E$ of residual mappings $f^{+}: E \rightarrow E$.

EXERCISES

1.13. If $f, g: E \rightarrow E$ are residuated prove that $f \leqslant g \Longleftrightarrow g^{+} \leqslant f^{+}$. Deduce that the semigroups Res E and $\operatorname{Res}^{+} E$ are anti-isomorphic.
1.14. If $f: E \rightarrow E$ is residuated prove that $f=f^{+} \Longleftrightarrow f^{2}=\operatorname{id}_{E}$.
1.15. If $f: E \rightarrow F$ is residuated prove that the following are equivalent:
(1) $f^{+} \circ f=\operatorname{id}_{E}$;
(2) f is injective;
(3) f^{+}is surjective.
1.16. If E has a top element 1 prove that the mapping $\Theta: \operatorname{Res} E \rightarrow E$ given by $\Theta(f)=f(1)$ is residuated, with residual the mapping $\Psi: E \rightarrow \operatorname{Res} E$ given by $\Psi(e)=\alpha_{e}$ where α_{e} is defined in Exercise 1.11.
1.17. Let S be a semigroup with a zero element 0 . Let $\mathbb{P}_{0}(S)$ be the set of all subsets of S that contain 0 . For each $A \in \mathbb{P}_{0}(S)$ let $\lambda_{A}: \mathbb{P}_{0}(S) \rightarrow \mathbb{P}_{0}(S)$ be given by

$$
\lambda_{A}(X)=A X=\{a x \mid a \in A, x \in X\}
$$

Prove that λ_{A} is residuated and determine λ_{A}^{+}. Do likewise for the mapping $\rho_{A}: \mathbb{P}_{0}(S) \rightarrow \mathbb{P}_{0}(S)$ given by $\rho_{A}(X)=X A$.

