
1.2 Order-preserving mappings 5

EXERCISES

1.5. Draw the Hasse diagrams for all possible orders on sets of 3, 4, 5 elements.
1.6. Draw the Hasse diagram for the set of positive divisors of 210 when ordered

by divisibility.
1.7. If p, q are distinct primes and m, n are positive integers, draw the Hasse

diagram for the set of positive divisors of pmqn, ordered by divisibility.
1.8. Let P1 and P2 be the ordered sets with Hasse diagrams

� ��
�� ❅❅

P1

��
P2

Draw the Hasse diagrams of P1 × P2 and P2 × P1 under the cartesian order
(Example 1.6). Comment on the result.

1.9. With P1 and P2 as in Exercise 1.8, draw the Hasse diagrams of P1 × P2

and P2 × P1 under the lexicographic order (Exercise 1.1), and those of the
vertical sums P1 ⊕ P2 and P2 ⊕ P1 (Exercise 1.3).

1.2 Order-preserving mappings

Definition If (A; �1) and (B; �2) are ordered sets then we say that a map-
ping f : A → B is isotone (or order-preserving) if

(∀x, y ∈ A) x �1 y ⇒ f(x) �2 f(y);

and is antitone (or order-inverting) if

(∀x, y ∈ A) x �1 y ⇒ f(x) �2 f(y).

Example 1.12 If E is a non-empty set and A ⊆ E then fA : P(E) → P(E)
given by fA(X) = A ∩ X is isotone. If X � is the complement of X in E then
the assignment X �→ X � defines an antitone mapping on P(E).

Example 1.13 Given f : E → F consider the induced direct image map
f→ : P(E) → P(F ) defined for every X ⊆ E by f→(X) = {f(x)

�� x ∈ X}
and the induced inverse image map f← : P(F ) → P(E) defined for every
Y ⊆ F by f←(Y ) = {x ∈ E

�� f(x) ∈ Y }. Each of these mappings is isotone.

We shall now give a natural interpretation of isotone mappings. For this
purpose we require the following notions.

Definition By a down-set (or hereditary subset) of an ordered set (E; �)
we shall mean a subset D of E with the property that if x ∈ D and y ∈ E
is such that y � x then y ∈ D. We include the empty subset of E as a
down-set. By a principal down-set we shall mean a down-set of the form
x↓ = {y ∈ E

�� y � x}. Dually, we define an up-set to be a subset U such that
if x ∈ U and y ∈ E is such that y � x then y ∈ U ; and a principal up-set
to be an up-set of the form x↑ = {y ∈ E

�� y � x}.

Example 1.14 In the chain Q+ of positive rationals the set {q ∈ Q+
�� q2 � 2}

is a down-set that is not principal.
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Example 1.15 If A and B are down-sets of an ordered set E then clearly so
also are A ∩ B and A ∪ B. This is not true in general for principal down-sets.
For example, in

�� ���
�
❅

❅
a b

c d

we have c↓ ∩ d↓ = {a, b} = a↓ ∪ b↓.

Isotone mappings are characterised by the following properties.

Theorem 1.2 If E, F are ordered sets and if f : E → F is any mapping then
the following statements are equivalent :

(1) f is isotone ;
(2) the inverse image of every principal down-set of F is a down-set of E;
(3) the inverse image of every principal up-set of F is an up-set of E.

Proof (1) ⇒ (2): Suppose that f is isotone. Let y ∈ F and let A = f←(y↓).
If A �= ∅ let x ∈ A. Then for every z ∈ E with z � x we have f(z) � f(x) � y
whence z ∈ A. Thus A is a down-set of E.

(2) ⇒ (1): For every x ∈ E we have x ∈ f←[f(x)↓]. By (2) this is a down-
set of E, so if y ∈ E is such that y � x we have y ∈ f←[f(x)↓]. It follows that
f(y) � f(x) and therefore f is isotone.

(1) ⇔ (3): This follows from the above by the Principle of Duality. �

1.3 Residuated mappings

In view of the above natural result, we now investigate under what conditions
the inverse image of a principal down-set is also a principal down-set. The
outcome will be a type of mapping that will play an important role in the
sequel.

Theorem 1.3 If E, F are ordered sets then the following conditions concern-
ing f : E → F are equivalent :

(1) the inverse image under f of every principal down-set of F is a prin-
cipal down-set of E;

(2) f is isotone and there is an isotone mapping g : F → E such that
g ◦ f � idE and f ◦ g � idF .

Proof (1) ⇒ (2): If (1) holds then it follows from Theorem 1.2 that f is
isotone. In symbolic form, (1) becomes

(∀y ∈ F )(∃x ∈ E) f←(y↓) = x↓.

Now for every given y ∈ F this element x is clearly unique, so we can define a
mapping g : F → E by setting g(y) = x. Since f← is isotone it follows that so
is g. For this mapping g we have g(y) ∈ g(y)↓ = x↓ = f←(y↓), so f [g(y)] � y
for all y ∈ F and therefore f ◦ g � idF ; and x ∈ f←[f(x)↓] = g[f(x)]↓ so that
x � g[f(x)] for all x ∈ E and therefore g ◦ f � idE .
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(2) ⇒ (1): If (2) holds then on the one hand we have

f(x) � y ⇒ x � g[f(x)] � g(y),

and on the other we have

x � g(y) ⇒ f(x) � f [g(y)] � y.

It follows from these observations that f(x) � y if and only if x � g(y) and
therefore f←(y↓) = g(y)↓ from which (1) follows. �

Definition A mapping f : E → F that satisfies either of the equivalent
conditions of Theorem 1.3 is said to be residuated.

We note in particular that if f : E → F is a residuated mapping then an
isotone mapping g : F → E which is such that g ◦ f � idE and f ◦ g � idF is
in fact unique. To see this, suppose that g and g� are each isotone and satisfy
these properties. Then g = idE ◦g � (g� ◦ f) ◦ g = g� ◦ (f ◦ g) � g� ◦ idF = g�.
Similarly, g� � g and therefore g = g�.

We shall denote this unique g by f+ and call it the residual of f .

It is clear from the above that f : E → F is residuated if and only if, for
every y ∈ F , there exists

f+(y) = max f←(y↓) = max{x ∈ E
�� f(x) � y}.

Moreover, f+ ◦ f � idE and f ◦ f+ � idF .

Example 1.16 Simple calculations reveal that if f : E → F then the direct
image map f→ : P(E) → P(F ) is residuated with residual f← : P(F ) → P(E).

Example 1.17 If E is any set and A ⊆ E then λA : P(E) → P(E) defined by
λA(X) = A ∩ X is residuated with residual λ+

A given by λ+
A(Y ) = Y ∪ A�.

Example 1.18 For m ∈ N\0 define fm : N → N by fm(n) = mn. Then fm is
residuated with f+

m(p) = � p
m� where �q� denotes the integer part of q ∈ Q.

Example 1.19 Every bounded operator f on a Hilbert space H induces a
residuated mapping on the set of closed subspaces of H, namely that given
by M �→ [f→(M)]⊥⊥.

Example 1.20 If S is a semigroup, define a multiplication on P(S) by

XY =
�

{xy
�� x ∈ X, y ∈ Y } if X, Y �= ∅;

∅ otherwise.

Then multiplication by a fixed subset of S is a residuated mapping on P(S).

Example 1.21 If R is a commutative ring with a 1 then multiplication by a
fixed ideal of R is a residuated mapping on the ordered set (I(R); ⊆) of ideals.

The notion of a residuated mapping has its roots in investigations by
Certaine [37], Ward and Dilworth [112], and Dilworth [43] into multiplicative
ideal theory which relates directly to Example 1.21.
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EXERCISES

1.10. For each integer n � 1 let n denote the chain 1 < 2 < 3 < · · · < n. Prove
that a mapping f : n → m is residuated if and only if it is isotone and
f(1) = 1.

1.11. Let E be a bounded ordered set with bottom element 0 and top element 1.
Given e ∈ E, let αe, βe : E → E be defined by

αe(x) =
�

0 if x = 0;
e otherwise, βe(x) =

�
0 if x � e;
1 otherwise.

Prove that αe and βe are residuated and determine their residuals.
1.12. Let E be the ordered set given by the Hasse diagram

�x01

�x11

�x21

��xp1

...

�x02

�x12

�x22

��xp2

...

�x03

�x13

�x23

��xp3

... · · ·

�x0n

�x1n

�x2n

��xpn

...

Show that the mapping f : E → E given by

f(xij) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x0,j+1 if i = 0, j �= n;
x01 if i = 0, j = n;
xi−1,j+1 if i �= 0, j �= n;
xi−1,1 if i �= 0, j = n.

is residuated and determine f+.

For every non-empty set E the residuated mappings on P(E) are com-
pletely described in the following result.

Theorem 1.4 Let E be a non-empty set and let R be a binary relation on E.
Then the mapping ξR : P(E) → P(E) given by the prescription

ξR(A) = {y ∈ E
�� (∃x ∈ A) (x, y) ∈ R}

is residuated. Moreover, every residuated mapping f : P(E) → P(E) is of this
form for some binary relation R on E.

Proof Let i : P(E) → P(E) be the antitone mapping that sends each subset
of E to its complement. Consider the isotone mapping ξ+

R = i ◦ ξRd ◦ i. It is
readily verified (draw pictures!) that ξR ◦ ξ+

R � id and ξ+
R ◦ ξR � id, whence

ξ+
R is the residual of ξR.

To see that every residuated mapping f : P(E) → P(E) is of this form for
some binary relation R on E, consider the relation Rf defined on E by

(x, y) ∈ Rf ⇐⇒ y ∈ f({x}).

Observe that ξRf
({x}) = {y ∈ E

�� (x, y) ∈ Rf} = f({x}), so that f and ξRf

agree on singletons.
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Now if k : P(E) → P(E) is any residuated mapping then, since it is
isotone, for every non-empty subset A of E we have k(A) = k

� �
x∈A

{x}
�

=
�

x∈A

k({x}). In fact, if B =
�

x∈A

k({x}) then clearly k(A) ⊇ B. On the other

hand, k({x}) ⊆ B for every x ∈ A and so {x} ⊆ k+(B) whence A =
�

x∈A

{x} ⊆

k+(B) and therefore k(A) ⊆ B. The resulting equality, applied to both f and
ξRf

, together with the fact that f and ξRf
agree on singletons now gives

f(A) =
�

x∈A

f({x}) =
�

x∈A

ξRf
({x}) = ξRf

(A) whence we obtain f = ξRf
. �

Particular properties of residuated mappings are the following.

Theorem 1.5 If f : E → F is residuated then

f ◦ f+ ◦ f = f and f+ ◦ f ◦ f+ = f+.

Proof Since f is isotone, it follows from Theorem 1.3 that f ◦f+◦f � f ◦idE =
f , and that f ◦f+ ◦f � idF ◦f = f , from which the first equality follows. The
second is established similarly. �

Theorem 1.6 If f : E → F and g : F → G are residuated mappings then so
is g ◦ f : E → G, and (g ◦ f)+ = f+ ◦ g+.

Proof Clearly, g ◦ f and f ◦ g are isotone. Moreover,

(f+ ◦ g+) ◦ (g ◦ f) � f+ ◦ idF ◦f = f+ ◦ f � idE ;
(g ◦ f) ◦ (f+ ◦ g+) � g ◦ idF ◦g+ = g ◦ g+ � idG .

Thus, by the uniqueness of residuals, (g ◦ f)+ exists and is f+ ◦ g+. �

Corollary For every ordered set E the set ResE of residuated mappings
f : E → E forms a semigroup, as does the set Res+ E of residual mappings
f+ : E → E. �

EXERCISES

1.13. If f, g : E → E are residuated prove that f � g ⇐⇒ g+ � f+. Deduce
that the semigroups Res E and Res+ E are anti-isomorphic.

1.14. If f : E → E is residuated prove that f = f+ ⇐⇒ f2 = idE .
1.15. If f : E → F is residuated prove that the following are equivalent:

(1) f+ ◦ f = idE ; (2) f is injective; (3) f+ is surjective.

1.16. If E has a top element 1 prove that the mapping Θ : Res E → E given by
Θ(f) = f(1) is residuated, with residual the mapping Ψ : E → Res E given
by Ψ(e) = αe where αe is defined in Exercise 1.11.

1.17. Let S be a semigroup with a zero element 0. Let P0(S) be the set of all
subsets of S that contain 0. For each A ∈ P0(S) let λA : P0(S) → P0(S) be
given by

λA(X) = AX = {ax
�� a ∈ A, x ∈ X}.

Prove that λA is residuated and determine λ+
A. Do likewise for the mapping

ρA : P0(S) → P0(S) given by ρA(X) = XA.


