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EXERCISES

1.5. Draw the Hasse diagrams for all possible orders on sets of 3,4, 5 elements.

1.6. Draw the Hasse diagram for the set of positive divisors of 210 when ordered
by divisibility.

1.7. If p,q are distinct primes and m,n are positive integers, draw the Hasse
diagram for the set of positive divisors of p™¢", ordered by divisibility.

1.8. Let P1 and P> be the ordered sets with Hasse diagrams

AN ]

Py P>
Draw the Hasse diagrams of P; x P> and P> x P; under the cartesian order
(Example 1.6). Comment on the result.
1.9. With P; and P» as in Exercise 1.8, draw the Hasse diagrams of P; x P
and P, x P; under the lexicographic order (Exercise 1.1), and those of the
vertical sums P; @ P> and P> @ Py (Exercise 1.3).

1.2 Order-preserving mappings

Definition If (A;<;) and (B; <2) are ordered sets then we say that a map-
ping f: A — B is isotone (or order-preserving) if

(Ve,ye A) z<iy= flz) <2 fy);
and is antitone (or order-inverting) if

(Vr,ye A) x<iy= f(x) 22 f(y)

Example 1.12 If E is a non-empty set and A C E then f4 : P(E) — P(E)
given by fa(X) = AN X is isotone. If X’ is the complement of X in F then
the assignment X + X’ defines an antitone mapping on P(F).

Example 1.13 Given f : E — F consider the induced direct image map
7+ P(E) — P(F) defined for every X C E by f7(X) = {f(z) | z € X}
and the induced inverse image map f* : P(F) — P(F) defined for every
Y C Fby f(Y)={x € E| f(z) € Y}. Each of these mappings is isotone.

We shall now give a natural interpretation of isotone mappings. For this
purpose we require the following notions.

Definition By a down-set (or hereditary subset) of an ordered set (EF; <)
we shall mean a subset D of E with the property that if x € D and y € F
is such that y < = then y € D. We include the empty subset of E as a
down-set. By a principal down-set we shall mean a down-set of the form
rt={yekE | y < a}. Dually, we define an up-set to be a subset U such that
if x € U and y € F is such that y > x then y € U; and a principal up-set
to be an up-set of the form " = {y € E | y > a}.

Example 1.14 In the chain Q7 of positive rationals the set {q € QT ‘ ¢ <2}
is a down-set that is not principal.
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Example 1.15 If A and B are down-sets of an ordered set E then clearly so
also are AN B and AU B. This is not true in general for principal down-sets.
For example, in

we have ¢t Ndb = {a,b} = at UL
Isotone mappings are characterised by the following properties.

Theorem 1.2 If E, F' are ordered sets and if f : E — F is any mapping then
the following statements are equivalent:
(1) f is isotone;
(2) the inverse image of every principal down-set of F is a down-set of E;
(3) the inverse image of every principal up-set of F' is an up-set of E.

Proof (1) = (2): Suppose that f is isotone. Let y € F and let A = f< (y}).
If A= (let 2 € A. Then for every z € E with z < = we have f(z) < f(z) <y
whence z € A. Thus A is a down-set of F.

(2) = (1): For every x € E we have z € f< [f(z)"]. By (2) this is a down-
set of E, so if y € E is such that y < = we have y € f<[f(x)}]. It follows that
f(y) < f(z) and therefore f is isotone.

(1) < (3): This follows from the above by the Principle of Duality. O

1.3 Residuated mappings

In view of the above natural result, we now investigate under what conditions
the inverse image of a principal down-set is also a principal down-set. The
outcome will be a type of mapping that will play an important role in the
sequel.

Theorem 1.3 If E, F are ordered sets then the following conditions concern-
ing f: E— F are equivalent:

(1) the inverse image under f of every principal down-set of F' is a prin-
cipal down-set of E;

(2) f is isotone and there is an isotone mapping g : F — E such that
gof>idg and fog <idp.

Proof (1) = (2): If (1) holds then it follows from Theorem 1.2 that f is
isotone. In symbolic form, (1) becomes
(Vy € F)(3z € E) f~(y%) = z*.

Now for every given y € F' this element z is clearly unique, so we can define a
mapping g : F — E by setting g(y) = . Since f* is isotone it follows that so
is g. For this mapping g we have g(y) € g(y)* = z* = f< (y*), so flg(y)] <y
for all y € F and therefore f o g <idp; and x € f[f(z)¥] = g[f(x)]* so that
x < g[f(z)] for all x € E and therefore go f > idg.
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(2) = (1): If (2) holds then on the one hand we have
f@) <y = x<glf(@)] <g(y),

and on the other we have

r<gly) = f(@) < flgy)] <v.

It follows from these observations that f(z) < y if and only if < g(y) and
therefore f* (y*) = g(y)* from which (1) follows. O

Definition A mapping f : E — F that satisfies either of the equivalent
conditions of Theorem 1.3 is said to be residuated.

We note in particular that if f : E' — F is a residuated mapping then an
isotone mapping ¢ : F' — E which is such that go f > idg and fog <idp is
in fact unique. To see this, suppose that g and g* are each isotone and satisfy
these properties. Then g = idgog < (g* o f)og =g*o(fog) < g*oidr = g*.
Similarly, g* < g and therefore g = g*.

We shall denote this unique g by fT and call it the residual of f.

It is clear from the above that f : ' — F is residuated if and only if, for
every y € F| there exists

fH(y) = max [ (y") = max{z € E | f(x) <y}
Moreover, fT o f > idg and fo fT <idp.

Example 1.16 Simple calculations reveal that if f : E — F then the direct
image map f7 : P(E) — P(F) is residuated with residual f< : P(F) — P(E).

Example 1.17 If E is any set and A C E then A4 : P(E) — P(F) defined by
Aa(X) = AN X is residuated with residual A} given by A{ (V) =Y U A"

Example 1.18 For m € N\0 define f,,, : N — N by f,,(n) = mn. Then f,, is
residuated with f,5(p) = | £] where |¢q] denotes the integer part of ¢ € Q.

m

Example 1.19 Every bounded operator f on a Hilbert space H induces a
residuated mapping on the set of closed subspaces of H, namely that given
by M+ [f~ (M)]LL.

Example 1.20 If S is a semigroup, define a multiplication on P(S) by
XY — {fay|ze X, yeY} XY #0;
o 0 otherwise.

Then multiplication by a fixed subset of S is a residuated mapping on P(S).

Example 1.21 If R is a commutative ring with a 1 then multiplication by a
fixed ideal of R is a residuated mapping on the ordered set (I(R); C) of ideals.

The notion of a residuated mapping has its roots in investigations by
Certaine [37], Ward and Dilworth [112], and Dilworth [43] into multiplicative
ideal theory which relates directly to Example 1.21.
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EXERCISES

1.10. For each integer n > 1 let n denote the chain 1 < 2 < 3 < --- < n. Prove
that a mapping f : n — m is residuated if and only if it is isotone and
f) =1

1.11. Let E be a bounded ordered set with bottom element 0 and top element 1.
Given e € E, let ae, e : E — E be defined by

_J0o ifzx=0; 0 ifx<e
ae(w) = { e otherwise, Be(z) = { 1  otherwise.

Prove that a. and (. are residuated and determine their residuals.

1.12. Let E be the ordered set given by the Hasse diagram

lmpl l’L’pz lwa lmpn

T21 XT22 T23 T2n
T11 XT12 T13 L1n
T0o1 T02 T03 Ton

Show that the mapping f : E — E given by

T0,j+1 ifi=0,j#mn;
To1 ifi=0,7=mn;
Ti—rj41 i1 #0, jFn
Ti—1,1 ifi #0, 7 =n.

f(zij) =

is residuated and determine fV.

For every non-empty set E the residuated mappings on P(E) are com-
pletely described in the following result.

Theorem 1.4 Let E be a non-empty set and let R be a binary relation on E.
Then the mapping g : P(E) — P(E) given by the prescription

Er(A)={y € E| @z € A) (x,y) € R}

is residuated. Moreover, every residuated mapping f : P(E) — P(E) is of this
form for some binary relation R on E.

Proof Let i : P(E) — P(F) be the antitone mapping that sends each subset
of E to its complement. Consider the isotone mapping §E =1t10&paoi. It is
readily verified (draw pictures!) that g o §§ < id and g; o &g > id, whence
5; is the residual of &g.

To see that every residuated mapping f : P(E) — P(FE) is of this form for
some binary relation R on F, consider the relation Ry defined on E by

(z,y) € Ry <= y e f({z}).

Observe that g, ({z}) = {y € E | (z,y) € Ry} = f({z}), so that f and &g,
agree on singletons.
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Now if &k : P(E) — P(F) is any residuated mapping then, since it is
isotone, for every non-empty subset A of E we have k(A) = k(| {z}) =
z€A

U k({z}). In fact, if B = |J k({z}) then clearly k(A) O B. On the other
€A A

T TE

hand, k({z}) C B for every z € A and so {z} C k*(B) whence A = |J {2} C
TEA

kT (B) and therefore k(A) C B. The resulting equality, applied to both f and

§R;, together with the fact that f and g, agree on singletons now gives

f(A) = LEJAf({x}) = LEJAng({x}) = fRf(Aj whence we obtain f =¢&gr,. O

Particular properties of residuated mappings are the following.
Theorem 1.5 If f : E — F is residuated then
foftof=1 and ftofoft=ft,

Proof Since f is isotone, it follows from Theorem 1.3 that foftof > foidg =
f,and that foftof <idrof = f, from which the first equality follows. The
second is established similarly. a

Theorem 1.6 If f: E — F and g : F — G are residuated mappings then so
is gof: E— G, and (go f)T = fTog™.

Proof Clearly, go f and f o g are isotone. Moreover,
(f+og+) o(gof)>= ftoidpof = ffof>idg;
(gof)o(fTogT)<goidpogt =gogt <idg.

Thus, by the uniqueness of residuals, (g o f)T exists and is fT o g™. O

Corollary For every ordered set E the set Res E of residuated mappings
f: E — E forms a semigroup, as does the set Res™ E of residual mappings
ff:E—E. O

EXERCISES

1.13. If f,g : E — E are residuated prove that f < g <= ¢+ < fT. Deduce
that the semigroups Res E and Res™ E are anti-isomorphic.

1.14. If f : E — FE is residuated prove that f = f7 < f? =idg.

1.15. If f: E — F is residuated prove that the following are equivalent:

(1) fYof=idg; (2) fisinjective; (3) fV is surjective.

1.16. If E has a top element 1 prove that the mapping © : Res E — E given by
O(f) = f(1) is residuated, with residual the mapping ¥ : £ — Res F given
by ¥(e) = ae where a is defined in Exercise 1.11.

1.17. Let S be a semigroup with a zero element 0. Let Po(S) be the set of all
subsets of S that contain 0. For each A € Po(S) let Aa : Po(S) — Po(S) be
given by

Aa(X)=AX ={az |a € A,z € X}.
Prove that A4 is residuated and determine /\X. Do likewise for the mapping
pa :Po(S) = Po(S) given by pa(X) = XA.



