Ordered sets; residuated mappings

1.1 The concept of an order

The reader will recall that a **binary relation** on a non-empty set E is a subset R of the cartesian product set $E \times E = \{(x, y) \mid x, y \in E\}$. We shall say that $x, y \in E$ are R-related whenever $(x, y) \in R$, this often being written in the equivalent form x R y. In general there are many properties that binary relations may satisfy on a given set E. In particular, for example, the reader will be familiar with the notion of an equivalence relation on E, namely a binary relation R that is

(1) **reflexive** $[(\forall x \in E) (x, x) \in R];$

(2) symmetric $[(\forall x, y \in E) \text{ if } (x, y) \in R \text{ then } (y, x) \in R];$

(3) **transitive** $[(\forall x, y, z \in E) \text{ if } (x, y) \in R \text{ and } (y, z) \in R \text{ then } (x, z) \in R].$ If we define the **dual** of R to be the relation R^d given by

$$(x,y) \in R^d \iff (y,x) \in R,$$

then we may state (2) in the equivalent form $R = R^d$.

Here we shall be particularly interested in the situation where property (2) is replaced by the property

(2') **anti-symmetric** $[(\forall x, y \in E) \text{ if } (x, y) \in R \text{ and } (y, x) \in R \text{ then } x = y]$, which may be expressed as $R \cap R^d = \text{id}_E$ where id_E denotes the relation of equality on E.

Definition If E is a non-empty set then by an **order** on E we mean a binary relation on E that is reflexive, anti-symmetric, and transitive.

We usually denote an order by the symbol \leq . Variants include \leq and \sqsubseteq . It is traditional to write the expression $(x, y) \in \leq$ in the equivalent form $x \leq y$ which we read as 'x is less than or equal to y'.

Thus \leq is an order on E if and only if

(1)
$$(\forall x \in E) \ x \leq x;$$

- (2') $(\forall x, y \in E)$ if $x \leq y$ and $y \leq x$ then x = y;
- (3) $(\forall x, y, z \in E)$ if $x \leq y$ and $y \leq z$ then $x \leq z$.

Definition By an ordered set $(E; \leq)$ we shall mean a set E on which there is defined an order \leq .

Other common terminology for an order is a **partial order**, and for an ordered set is a **partially ordered set** or a **poset**.

According to Birkhoff [13] the defining properties of an order occur in a fragmentary way in the work of Leibniz (circa 1690). The present formulation emerged from the work of Peirce [91], Schröder [101], and Hausdorff [62].

Example 1.1 On every set the relation of equality is an order.

Example 1.2 On the set $\mathbb{P}(E)$ of all subsets of a non-empty set E the relation \subseteq of set inclusion is an order.

Example 1.3 On the set \mathbb{N} of natural numbers the relation | of divisibility, defined by m|n if and only if m divides n, is an order.

Example 1.4 If $(P; \leq)$ is an ordered set and Q is a subset of P then the relation \leq_Q defined on Q by

$$x \leqslant_Q y \iff x \leqslant y$$

is an order on Q. We often write \leq_Q simply as \leq and say that Q inherits the order \leq from P.

Thus, for example, the set Equ E of equivalence relations on E inherits the order \subseteq from $\mathbb{P}(E \times E)$.

Example 1.5 The set of even positive integers may be ordered in the usual way, or by divisibility.

Example 1.6 If $(E_1; \leq_1), \ldots, (E_n; \leq_n)$ are ordered sets then the cartesian product set $\bigwedge_{i=1}^{n} E_i$ can be given the **cartesian order** \leq defined by

 $(x_1,\ldots,x_n) \leqslant (y_1,\ldots,y_n) \iff (i=1,\ldots,n) \ x_i \leqslant_i y_i.$

More generally, if $((E_{\alpha}; \leq))_{\alpha \in A}$ is a family of ordered sets then we can order the cartesian product set $\bigwedge_{\alpha \in A} E_{\alpha}$ by defining

$$(x_{\alpha})_{\alpha \in A} \leqslant (y_{\alpha})_{\alpha \in A} \iff (\forall \alpha \in A) \ x_{\alpha} \leqslant y_{\alpha}.$$

Note that here we have used the same symbol \leq for each of the orders involved.

Example 1.7 Let *E* and *F* be ordered sets. Then the set Map(E, F) of all mappings $f: E \to F$ can be ordered by defining

$$f \leqslant g \iff (\forall x \in E) \ f(x) \leqslant g(x).$$

In particular, if we let $\mathbf{n} = \{1, 2, ..., n\}$ and consider a real $n \times n$ matrix $A = [a_{ij}]$ to be the mapping $f : \mathbf{n} \times \mathbf{n} \to \mathbb{R}$ given by $f(i, j) = a_{ij}$ then we can order the set of such matrices by

$$A \leqslant B \iff (\forall i, j) \ a_{ij} \leqslant b_{ij}$$

We say that elements x, y of an ordered set $(E; \leq)$ are **comparable** if either $x \leq y$ or $y \leq x$. We denote this symbolically by writing $x \not|\!| y$. If all pairs of elements of E are comparable then we say that E forms a **chain**, or that \leq is a **total order**. In contrast, we say that $x, y \in E$ are **incomparable**, and write $x \parallel y$, when $x \leq y$ and $y \leq x$. If all pairs of distinct elements of E are incomparable then clearly \leq is equality, in which case we say that E forms an **antichain**.

Example 1.8 The sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} of natural numbers, integers, rationals, and real numbers form chains under their usual orders.

Example 1.9 In Example 1.2, the singleton subsets of $\mathbb{P}(E)$ form an antichain under the inherited inclusion order.

EXERCISES

1.1. Let $(P_1; \leq_1)$ and $(P_2; \leq_2)$ be ordered sets. Prove that the relation \leq defined on $P_1 \times P_2$ by

$$(x_1, y_1) \leqslant (x_2, y_2) \iff \begin{cases} x_1 <_1 x_2, \\ or \ x_1 = x_2 \text{ and } y_1 \leqslant_2 y_2 \end{cases}$$

is an order (the **lexicographic order** on $P_1 \times P_2$). Show also that \leq is a total order if and only if \leq_1 and \leq_2 are total orders.

1.2. Let P_1 and P_2 be disjoint sets. If \leq_1 is an order on P_1 and \leq_2 is an order on P_2 prove that the following defines an order on $P_1 \cup P_2$:

$$x \leqslant y \iff \begin{cases} x, y \in P_1 \text{ and } x \leqslant_1 y, \\ or \ x, y \in P_2 \text{ and } x \leqslant_2 y. \end{cases}$$

The resulting ordered set is called the **ordered disjoint union** of P_1 and P_2 and is denoted by $P_1 \cup P_2$.

1.3. Let P_1 and P_2 be disjoint sets. If \leq_1 is an order on P_1 and \leq_2 is an order on P_2 prove that the following defines an order on $P_1 \cup P_2$:

$$x \leqslant y \iff \begin{cases} x, y \in P_1 \text{ and } x \leqslant_1 y, \\ or \ x, y \in P_2 \text{ and } x \leqslant_2 y, \\ or \ x \in P_1 \text{ and } y \in P_2. \end{cases}$$

The resulting ordered set is called the **vertical sum**, or the **linear sum**, of P_1 and P_2 and is denoted by $P_1 \oplus P_2$.

1.4. Let E be an ordered set in which every chain and every antichain is finite. Prove that E is finite.

Theorem 1.1 If R is an order on E then so is its dual \mathbb{R}^d .

Proof Clearly, if R satisfies the properties of being reflexive, anti-symmetric and transitive then so also does R^d .

In what follows we shall denote the dual of an order \leq on E by the symbol \geq which we read as 'greater than or equal to'. Then the ordered set $(E; \geq)$ is called the **dual** of $(E; \leq)$ and is often written as E^d .

As a consequence of Theorem 1.1 we can assert that to every statement that concerns an order on a set E there is a dual statement that concerns the corresponding dual order on E. This is the basis of the useful **Principle of Duality** To every theorem that concerns an ordered set E there is a corresponding theorem that concerns the dual ordered set E^d . This is obtained by replacing each statement that involves \leq , explicitly or implicitly, by its dual.

In what follows we shall make several applications of the Principle of Duality. By way of illustration, if $(E; \leq)$ is an ordered set then by a **top element** or **maximum element** of E we mean an element $x \in E$ such that $y \leq x$ for every $y \in E$. A top element, when it exists, is unique. In fact, if x, y are both top elements of E then on the one hand $y \leq x$ and on the other $x \leq y$ whence, by the anti-symmetric property of \leq , we have x = y. The dual notion is that of a **bottom element** or **minimum element**, namely an element $z \in E$ such that $z \leq y$ for every $y \in E$. By the above and the Principle of Duality, we can assert immediately that a bottom element, when it exists, is unique. An ordered set that has both a top element and a bottom element is said to be **bounded**.

In what follows we shall use the notation x < y to mean $x \leq y$ and $x \neq y$. Note that the relation < thus defined is transitive but is not an order since it fails to be reflexive; moreover, x < y and y < x are incompatible. We denote the dual of the relation < by the symbol >.

Definition In an ordered set $(E; \leq)$ we say that x is **covered by** y (or that y **covers** x) if x < y and there is no $a \in E$ such that x < a < y. We denote this by using the notation $x \prec y$.

Many ordered sets can be represented by means of a **Hasse diagram**. In such a diagram we represent elements by points and interpret $x \prec y$ by

i.e. we join the points representing x and y by an increasing line segment.

Example 1.10 Let $E = \{1, 2, 3, 4, 6, 12\}$ be the set of positive divisors of 12. If we order E in the usual way, we obtain a chain. If we order E by divisibility, we obtain the Hasse diagram

Example 1.11 Ordered by set inclusion, $\mathbb{P}(\{a, b, c\})$ has Hasse diagram

Clearly, the Hasse diagram for the dual of an ordered set E is obtained by turning that of E upside-down.

EXERCISES

- 1.5. Draw the Hasse diagrams for all possible orders on sets of 3, 4, 5 elements.
- 1.6. Draw the Hasse diagram for the set of positive divisors of 210 when ordered by divisibility.
- 1.7. If p, q are distinct primes and m, n are positive integers, draw the Hasse diagram for the set of positive divisors of $p^m q^n$, ordered by divisibility.
- 1.8. Let P_1 and P_2 be the ordered sets with Hasse diagrams

Draw the Hasse diagrams of $P_1 \times P_2$ and $P_2 \times P_1$ under the cartesian order (Example 1.6). Comment on the result.

1.9. With P_1 and P_2 as in Exercise 1.8, draw the Hasse diagrams of $P_1 \times P_2$ and $P_2 \times P_1$ under the lexicographic order (Exercise 1.1), and those of the vertical sums $P_1 \oplus P_2$ and $P_2 \oplus P_1$ (Exercise 1.3).

1.2 Order-preserving mappings

Definition If $(A; \leq_1)$ and $(B; \leq_2)$ are ordered sets then we say that a mapping $f: A \to B$ is **isotone** (or **order-preserving**) if

$$(\forall x, y \in A) \quad x \leq_1 y \Rightarrow f(x) \leq_2 f(y);$$

and is **antitone** (or **order-inverting**) if

$$(\forall x, y \in A) \quad x \leq_1 y \Rightarrow f(x) \geq_2 f(y).$$

Example 1.12 If E is a non-empty set and $A \subseteq E$ then $f_A : \mathbb{P}(E) \to \mathbb{P}(E)$ given by $f_A(X) = A \cap X$ is isotone. If X' is the complement of X in E then the assignment $X \mapsto X'$ defines an antitone mapping on $\mathbb{P}(E)$.

Example 1.13 Given $f : E \to F$ consider the induced **direct image map** $f^{\to} : \mathbb{P}(E) \to \mathbb{P}(F)$ defined for every $X \subseteq E$ by $f^{\to}(X) = \{f(x) \mid x \in X\}$ and the induced **inverse image map** $f^{\leftarrow} : \mathbb{P}(F) \to \mathbb{P}(E)$ defined for every $Y \subseteq F$ by $f^{\leftarrow}(Y) = \{x \in E \mid f(x) \in Y\}$. Each of these mappings is isotone.

We shall now give a natural interpretation of isotone mappings. For this purpose we require the following notions.

Definition By a **down-set** (or **hereditary subset**) of an ordered set $(E; \leq)$ we shall mean a subset D of E with the property that if $x \in D$ and $y \in E$ is such that $y \leq x$ then $y \in D$. We include the empty subset of E as a down-set. By a **principal down-set** we shall mean a down-set of the form $x^{\downarrow} = \{y \in E \mid y \leq x\}$. Dually, we define an **up-set** to be a subset U such that if $x \in U$ and $y \in E$ is such that $y \geq x$ then $y \in U$; and a **principal up-set** to be an up-set of the form $x^{\uparrow} = \{y \in E \mid y \geq x\}$.

Example 1.14 In the chain \mathbb{Q}^+ of positive rationals the set $\{q \in \mathbb{Q}^+ \mid q^2 \leq 2\}$ is a down-set that is not principal.

Example 1.15 If A and B are down-sets of an ordered set E then clearly so also are $A \cap B$ and $A \cup B$. This is not true in general for principal down-sets. For example, in

we have $c^{\downarrow} \cap d^{\downarrow} = \{a, b\} = a^{\downarrow} \cup b^{\downarrow}$.

Isotone mappings are characterised by the following properties.

Theorem 1.2 If E, F are ordered sets and if $f : E \to F$ is any mapping then the following statements are equivalent:

- (1) f is isotone;
- (2) the inverse image of every principal down-set of F is a down-set of E;
- (3) the inverse image of every principal up-set of F is an up-set of E.

Proof (1) \Rightarrow (2): Suppose that f is isotone. Let $y \in F$ and let $A = f^{\leftarrow}(y^{\downarrow})$. If $A \neq \emptyset$ let $x \in A$. Then for every $z \in E$ with $z \leq x$ we have $f(z) \leq f(x) \leq y$ whence $z \in A$. Thus A is a down-set of E.

 $(2) \Rightarrow (1)$: For every $x \in E$ we have $x \in f^{\leftarrow}[f(x)^{\downarrow}]$. By (2) this is a downset of E, so if $y \in E$ is such that $y \leq x$ we have $y \in f^{\leftarrow}[f(x)^{\downarrow}]$. It follows that $f(y) \leq f(x)$ and therefore f is isotone.

(1) \Leftrightarrow (3): This follows from the above by the Principle of Duality. \Box

1.3 Residuated mappings

In view of the above natural result, we now investigate under what conditions the inverse image of a principal down-set is also a principal down-set. The outcome will be a type of mapping that will play an important role in the sequel.

Theorem 1.3 If E, F are ordered sets then the following conditions concerning $f: E \to F$ are equivalent:

(1) the inverse image under f of every principal down-set of F is a principal down-set of E;

(2) f is isotone and there is an isotone mapping $g: F \to E$ such that $g \circ f \ge \mathrm{id}_E$ and $f \circ g \le \mathrm{id}_F$.

Proof (1) \Rightarrow (2): If (1) holds then it follows from Theorem 1.2 that f is isotone. In symbolic form, (1) becomes

$$(\forall y \in F)(\exists x \in E) \ f^{\leftarrow}(y^{\downarrow}) = x^{\downarrow}.$$

Now for every given $y \in F$ this element x is clearly unique, so we can define a mapping $g: F \to E$ by setting g(y) = x. Since f^{\leftarrow} is isotone it follows that so is g. For this mapping g we have $g(y) \in g(y)^{\downarrow} = x^{\downarrow} = f^{\leftarrow}(y^{\downarrow})$, so $f[g(y)] \leq y$ for all $y \in F$ and therefore $f \circ g \leq \operatorname{id}_F$; and $x \in f^{\leftarrow}[f(x)^{\downarrow}] = g[f(x)]^{\downarrow}$ so that $x \leq g[f(x)]$ for all $x \in E$ and therefore $g \circ f \geq \operatorname{id}_E$.

 $(2) \Rightarrow (1)$: If (2) holds then on the one hand we have

$$f(x) \leqslant y \Rightarrow x \leqslant g[f(x)] \leqslant g(y),$$

and on the other we have

$$x \leqslant g(y) \Rightarrow f(x) \leqslant f[g(y)] \leqslant y.$$

It follows from these observations that $f(x) \leq y$ if and only if $x \leq g(y)$ and therefore $f^{\leftarrow}(y^{\downarrow}) = g(y)^{\downarrow}$ from which (1) follows. \Box

Definition A mapping $f : E \to F$ that satisfies either of the equivalent conditions of Theorem 1.3 is said to be **residuated**.

We note in particular that if $f: E \to F$ is a residuated mapping then an isotone mapping $g: F \to E$ which is such that $g \circ f \ge \mathrm{id}_E$ and $f \circ g \le \mathrm{id}_F$ is in fact *unique*. To see this, suppose that g and g^* are each isotone and satisfy these properties. Then $g = \mathrm{id}_E \circ g \le (g^* \circ f) \circ g = g^* \circ (f \circ g) \le g^* \circ \mathrm{id}_F = g^*$. Similarly, $g^* \le g$ and therefore $g = g^*$.

We shall denote this unique g by f^+ and call it the **residual** of f.

It is clear from the above that $f: E \to F$ is residuated if and only if, for every $y \in F$, there exists

$$f^+(y) = \max f^{\leftarrow}(y^{\downarrow}) = \max\{x \in E \mid f(x) \leq y\}.$$

Moreover, $f^+ \circ f \ge \mathrm{id}_E$ and $f \circ f^+ \le \mathrm{id}_F$.

Example 1.16 Simple calculations reveal that if $f : E \to F$ then the direct image map $f^{\to} : \mathbb{P}(E) \to \mathbb{P}(F)$ is residuated with residual $f^{\leftarrow} : \mathbb{P}(F) \to \mathbb{P}(E)$.

Example 1.17 If *E* is any set and $A \subseteq E$ then $\lambda_A : \mathbb{P}(E) \to \mathbb{P}(E)$ defined by $\lambda_A(X) = A \cap X$ is residuated with residual λ_A^+ given by $\lambda_A^+(Y) = Y \cup A'$.

Example 1.18 For $m \in \mathbb{N} \setminus 0$ define $f_m : \mathbb{N} \to \mathbb{N}$ by $f_m(n) = mn$. Then f_m is residuated with $f_m^+(p) = \lfloor \frac{p}{m} \rfloor$ where $\lfloor q \rfloor$ denotes the integer part of $q \in \mathbb{Q}$.

Example 1.19 Every bounded operator f on a Hilbert space H induces a residuated mapping on the set of closed subspaces of H, namely that given by $M \mapsto [f^{\rightarrow}(M)]^{\perp \perp}$.

Example 1.20 If S is a semigroup, define a multiplication on $\mathbb{P}(S)$ by

$$XY = \begin{cases} \{xy \mid x \in X, y \in Y\} & \text{if } X, Y \neq \emptyset; \\ \emptyset & \text{otherwise.} \end{cases}$$

Then multiplication by a fixed subset of S is a residuated mapping on $\mathbb{P}(S)$.

Example 1.21 If R is a commutative ring with a 1 then multiplication by a fixed ideal of R is a residuated mapping on the ordered set $(I(R); \subseteq)$ of ideals.

The notion of a residuated mapping has its roots in investigations by Certaine [37], Ward and Dilworth [112], and Dilworth [43] into multiplicative ideal theory which relates directly to Example 1.21.

EXERCISES

- 1.10. For each integer $n \ge 1$ let **n** denote the chain $1 < 2 < 3 < \cdots < n$. Prove that a mapping $f : \mathbf{n} \to \mathbf{m}$ is residuated if and only if it is isotone and f(1) = 1.
- 1.11. Let E be a bounded ordered set with bottom element 0 and top element 1. Given $e \in E$, let $\alpha_e, \beta_e : E \to E$ be defined by

$$\alpha_e(x) = \begin{cases} 0 & \text{if } x = 0; \\ e & \text{otherwise,} \end{cases} \qquad \beta_e(x) = \begin{cases} 0 & \text{if } x \leq e; \\ 1 & \text{otherwise.} \end{cases}$$

Prove that α_e and β_e are residuated and determine their residuals.

1.12. Let E be the ordered set given by the Hasse diagram

Show that the mapping $f: E \to E$ given by

$$f(x_{ij}) = \begin{cases} x_{0,j+1} & \text{if } i = 0, \ j \neq n; \\ x_{01} & \text{if } i = 0, \ j = n; \\ x_{i-1,j+1} & \text{if } i \neq 0, \ j \neq n; \\ x_{i-1,1} & \text{if } i \neq 0, \ j = n. \end{cases}$$

is residuated and determine f^+ .

For every non-empty set E the residuated mappings on $\mathbb{P}(E)$ are completely described in the following result.

Theorem 1.4 Let E be a non-empty set and let R be a binary relation on E. Then the mapping $\xi_R : \mathbb{P}(E) \to \mathbb{P}(E)$ given by the prescription

$$\xi_R(A) = \{ y \in E \mid (\exists x \in A) \ (x, y) \in R \}$$

is residuated. Moreover, every residuated mapping $f : \mathbb{P}(E) \to \mathbb{P}(E)$ is of this form for some binary relation R on E.

Proof Let $i : \mathbb{P}(E) \to \mathbb{P}(E)$ be the antitone mapping that sends each subset of E to its complement. Consider the isotone mapping $\xi_R^+ = i \circ \xi_{R^d} \circ i$. It is readily verified (draw pictures!) that $\xi_R \circ \xi_R^+ \leq id$ and $\xi_R^+ \circ \xi_R \geq id$, whence ξ_R^+ is the residual of ξ_R .

To see that every residuated mapping $f : \mathbb{P}(E) \to \mathbb{P}(E)$ is of this form for some binary relation R on E, consider the relation R_f defined on E by

$$(x,y) \in R_f \iff y \in f(\{x\}).$$

Observe that $\xi_{R_f}(\{x\}) = \{y \in E \mid (x, y) \in R_f\} = f(\{x\})$, so that f and ξ_{R_f} agree on singletons.

Now if $k : \mathbb{P}(E) \to \mathbb{P}(E)$ is any residuated mapping then, since it is isotone, for every non-empty subset A of E we have $k(A) = k(\bigcup_{x \in A} \{x\}) = \bigcup_{x \in A} k(\{x\})$. In fact, if $B = \bigcup_{x \in A} k(\{x\})$ then clearly $k(A) \supseteq B$. On the other hand, $k(\{x\}) \subseteq B$ for every $x \in A$ and so $\{x\} \subseteq k^+(B)$ whence $A = \bigcup_{x \in A} \{x\} \subseteq k^+(B)$ and therefore $k(A) \subseteq B$. The resulting equality, applied to both f and ξ_{R_f} , together with the fact that f and ξ_{R_f} agree on singletons now gives $f(A) = \bigcup_{x \in A} f(\{x\}) = \bigcup_{x \in A} \xi_{R_f}(\{x\}) = \xi_{R_f}(A)$ whence we obtain $f = \xi_{R_f}$. \Box

Particular properties of residuated mappings are the following.

Theorem 1.5 If $f: E \to F$ is residuated then $f \circ f^+ \circ f = f$ and $f^+ \circ f \circ f^+ = f^+$.

Proof Since f is isotone, it follows from Theorem 1.3 that $f \circ f^+ \circ f \ge f \circ \mathrm{id}_E = f$, and that $f \circ f^+ \circ f \le \mathrm{id}_F \circ f = f$, from which the first equality follows. The second is established similarly.

Theorem 1.6 If $f: E \to F$ and $g: F \to G$ are residuated mappings then so is $g \circ f: E \to G$, and $(g \circ f)^+ = f^+ \circ g^+$.

Proof Clearly, $g \circ f$ and $f \circ g$ are isotone. Moreover,

$$(f^+ \circ g^+) \circ (g \circ f) \ge f^+ \circ \mathrm{id}_F \circ f = f^+ \circ f \ge \mathrm{id}_E; (g \circ f) \circ (f^+ \circ g^+) \le g \circ \mathrm{id}_F \circ g^+ = g \circ g^+ \le \mathrm{id}_G.$$

Thus, by the uniqueness of residuals, $(g \circ f)^+$ exists and is $f^+ \circ g^+$.

Corollary For every ordered set E the set Res E of residuated mappings $f: E \to E$ forms a semigroup, as does the set $\text{Res}^+ E$ of residual mappings $f^+: E \to E$.

EXERCISES

- 1.13. If $f, g: E \to E$ are residuated prove that $f \leq g \iff g^+ \leq f^+$. Deduce that the semigroups Res E and Res⁺ E are anti-isomorphic.
- 1.14. If $f: E \to E$ is residuated prove that $f = f^+ \iff f^2 = \mathrm{id}_E$.
- 1.15. If $f: E \to F$ is residuated prove that the following are equivalent:

(1) $f^+ \circ f = \mathrm{id}_E$; (2) f is injective; (3) f^+ is surjective.

- 1.16. If E has a top element 1 prove that the mapping Θ : Res $E \to E$ given by $\Theta(f) = f(1)$ is residuated, with residual the mapping $\Psi : E \to \text{Res } E$ given by $\Psi(e) = \alpha_e$ where α_e is defined in Exercise 1.11.
- 1.17. Let S be a semigroup with a zero element 0. Let $\mathbb{P}_0(S)$ be the set of all subsets of S that contain 0. For each $A \in \mathbb{P}_0(S)$ let $\lambda_A : \mathbb{P}_0(S) \to \mathbb{P}_0(S)$ be given by

$$\lambda_A(X) = AX = \{ax \mid a \in A, x \in X\}.$$

Prove that λ_A is residuated and determine λ_A^+ . Do likewise for the mapping $\rho_A : \mathbb{P}_0(S) \to \mathbb{P}_0(S)$ given by $\rho_A(X) = XA$.