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Ordered sets; residuated mappings

1.1 The concept of an order

The reader will recall that a binary relation on a non-empty set E is a
subset R of the cartesian product set E × E = {(x, y)

�� x, y ∈ E}. We shall
say that x, y ∈ E are R-related whenever (x, y) ∈ R, this often being written
in the equivalent form x R y. In general there are many properties that binary
relations may satisfy on a given set E. In particular, for example, the reader
will be familiar with the notion of an equivalence relation on E, namely a
binary relation R that is

(1) reflexive [(∀x ∈ E) (x, x) ∈ R];
(2) symmetric [(∀x, y ∈ E) if (x, y) ∈ R then (y, x) ∈ R];
(3) transitive [(∀x, y, z ∈ E) if (x, y) ∈ R and (y, z) ∈ R then (x, z) ∈ R].

If we define the dual of R to be the relation Rd given by
(x, y) ∈ Rd ⇐⇒ (y, x) ∈ R,

then we may state (2) in the equivalent form R = Rd.
Here we shall be particularly interested in the situation where property

(2) is replaced by the property
(2�) anti-symmetric [(∀x, y ∈ E) if (x, y) ∈ R and (y, x) ∈ R then x = y],

which may be expressed as R ∩ Rd = idE where idE denotes the relation of
equality on E.

Definition If E is a non-empty set then by an order on E we mean a binary
relation on E that is reflexive, anti-symmetric, and transitive.

We usually denote an order by the symbol �. Variants include 	 and 
. It
is traditional to write the expression (x, y) ∈ � in the equivalent form x � y
which we read as ‘x is less than or equal to y’.

Thus � is an order on E if and only if
(1) (∀x ∈ E) x � x;
(2�) (∀x, y ∈ E) if x � y and y � x then x = y;
(3) (∀x, y, z ∈ E) if x � y and y � z then x � z.
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Definition By an ordered set (E; �) we shall mean a set E on which there
is defined an order �.

Other common terminology for an order is a partial order, and for an
ordered set is a partially ordered set or a poset.

According to Birkhoff [13] the defining properties of an order occur in a
fragmentary way in the work of Leibniz (circa 1690). The present formulation
emerged from the work of Peirce [91], Schröder [101], and Hausdorff [62].

Example 1.1 On every set the relation of equality is an order.

Example 1.2 On the set P(E) of all subsets of a non-empty set E the relation
⊆ of set inclusion is an order.

Example 1.3 On the set N of natural numbers the relation | of divisibility,
defined by m|n if and only if m divides n, is an order.

Example 1.4 If (P ; �) is an ordered set and Q is a subset of P then the
relation �Q defined on Q by

x �Q y ⇐⇒ x � y

is an order on Q. We often write �Q simply as � and say that Q inherits the
order � from P .

Thus, for example, the set Equ E of equivalence relations on E inherits
the order ⊆ from P(E × E).

Example 1.5 The set of even positive integers may be ordered in the usual
way, or by divisibility.

Example 1.6 If (E1; �1), . . . , (En; �n) are ordered sets then the cartesian

product set
n

✁❆
i=1

Ei can be given the cartesian order � defined by

(x1, . . . , xn) � (y1, . . . , yn) ⇐⇒ (i = 1, . . . , n) xi �i yi.

More generally, if
�
(Eα; �)

�
α∈A

is a family of ordered sets then we can order
the cartesian product set ✁❆

α∈A
Eα by defining

(xα)α∈A � (yα)α∈A ⇐⇒ (∀α ∈ A) xα � yα.

Note that here we have used the same symbol � for each of the orders involved.

Example 1.7 Let E and F be ordered sets. Then the set Map(E, F ) of all
mappings f : E → F can be ordered by defining

f � g ⇐⇒ (∀x ∈ E) f(x) � g(x).

In particular, if we let n = {1, 2, . . . , n} and consider a real n × n matrix
A = [aij ] to be the mapping f : n×n → R given by f(i, j) = aij then we can
order the set of such matrices by

A � B ⇐⇒ (∀i, j) aij � bij .
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We say that elements x, y of an ordered set (E; �) are comparable if
either x � y or y � x. We denote this symbolically by writing x∦y. If all pairs
of elements of E are comparable then we say that E forms a chain, or that �
is a total order. In contrast, we say that x, y ∈ E are incomparable, and
write x � y, when x � y and y � x. If all pairs of distinct elements of E are
incomparable then clearly � is equality, in which case we say that E forms
an antichain.

Example 1.8 The sets N, Z, Q, R of natural numbers, integers, rationals,
and real numbers form chains under their usual orders.

Example 1.9 In Example 1.2, the singleton subsets of P(E) form an antichain
under the inherited inclusion order.

EXERCISES

1.1. Let (P1; �1) and (P2; �2) be ordered sets. Prove that the relation � defined
on P1 × P2 by

(x1, y1) � (x2, y2) ⇐⇒
�

x1 <1 x2,
or x1 = x2 and y1 �2 y2

is an order (the lexicographic order on P1 × P2). Show also that � is a
total order if and only if �1 and �2 are total orders.

1.2. Let P1 and P2 be disjoint sets. If �1 is an order on P1 and �2 is an order
on P2 prove that the following defines an order on P1 ∪ P2:

x � y ⇐⇒
�

x, y ∈ P1 and x �1 y,
or x, y ∈ P2 and x �2 y.

The resulting ordered set is called the ordered disjoint union of P1 and
P2 and is denoted by P1 ∪· P2.

1.3. Let P1 and P2 be disjoint sets. If �1 is an order on P1 and �2 is an order
on P2 prove that the following defines an order on P1 ∪ P2:

x � y ⇐⇒

⎧
⎨
⎩

x, y ∈ P1 and x �1 y,
or x, y ∈ P2 and x �2 y,
or x ∈ P1 and y ∈ P2.

The resulting ordered set is called the vertical sum, or the linear sum,
of P1 and P2 and is denoted by P1 ⊕ P2.

1.4. Let E be an ordered set in which every chain and every antichain is finite.
Prove that E is finite.

Theorem 1.1 If R is an order on E then so is its dual Rd.

Proof Clearly, if R satisfies the properties of being reflexive, anti-symmetric
and transitive then so also does Rd. 
�

In what follows we shall denote the dual of an order � on E by the symbol
� which we read as ‘greater than or equal to’. Then the ordered set (E; �) is
called the dual of (E; �) and is often written as Ed.

As a consequence of Theorem 1.1 we can assert that to every statement
that concerns an order on a set E there is a dual statement that concerns the
corresponding dual order on E. This is the basis of the useful
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Principle of Duality To every theorem that concerns an ordered set E
there is a corresponding theorem that concerns the dual ordered set Ed. This is
obtained by replacing each statement that involves �, explicitly or implicitly,
by its dual.

In what follows we shall make several applications of the Principle of Du-
ality. By way of illustration, if (E; �) is an ordered set then by a top element
or maximum element of E we mean an element x ∈ E such that y � x for
every y ∈ E. A top element, when it exists, is unique. In fact, if x, y are both
top elements of E then on the one hand y � x and on the other x � y whence,
by the anti-symmetric property of �, we have x = y. The dual notion is that
of a bottom element or minimum element, namely an element z ∈ E
such that z � y for every y ∈ E. By the above and the Principle of Duality,
we can assert immediately that a bottom element, when it exists, is unique.
An ordered set that has both a top element and a bottom element is said to
be bounded.

In what follows we shall use the notation x < y to mean x � y and x �= y.
Note that the relation < thus defined is transitive but is not an order since it
fails to be reflexive; moreover, x < y and y < x are incompatible. We denote
the dual of the relation < by the symbol >.

Definition In an ordered set (E; �) we say that x is covered by y (or that
y covers x) if x < y and there is no a ∈ E such that x < a < y. We denote
this by using the notation x ≺ y.

Many ordered sets can be represented by means of a Hasse diagram. In
such a diagram we represent elements by points and interpret x ≺ y by

� �
�

�
x

y

i.e. we join the points representing x and y by an increasing line segment.

Example 1.10 Let E = {1, 2, 3, 4, 6, 12} be the set of positive divisors of 12.
If we order E in the usual way, we obtain a chain. If we order E by divisibility,
we obtain the Hasse diagram

�� �� ��
�

�
��

�
�

❅❅
❅❅

❅❅

1
2

4
3

6
12

Example 1.11 Ordered by set inclusion, P({a, b, c}) has Hasse diagram

�
� � �
� � �

�

�
��

�
��

�
��

�
��

❅
❅❅

❅
❅❅

❅
❅❅

❅
❅❅

∅

{c}{b}

{b, c}{a, c}

{a, b, c}

{a}

{a, b}

Clearly, the Hasse diagram for the dual of an ordered set E is obtained by
turning that of E upside-down.
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EXERCISES

1.5. Draw the Hasse diagrams for all possible orders on sets of 3, 4, 5 elements.
1.6. Draw the Hasse diagram for the set of positive divisors of 210 when ordered

by divisibility.
1.7. If p, q are distinct primes and m, n are positive integers, draw the Hasse

diagram for the set of positive divisors of pmqn, ordered by divisibility.
1.8. Let P1 and P2 be the ordered sets with Hasse diagrams

� ��
�� ❅❅

P1

��
P2

Draw the Hasse diagrams of P1 × P2 and P2 × P1 under the cartesian order
(Example 1.6). Comment on the result.

1.9. With P1 and P2 as in Exercise 1.8, draw the Hasse diagrams of P1 × P2

and P2 × P1 under the lexicographic order (Exercise 1.1), and those of the
vertical sums P1 ⊕ P2 and P2 ⊕ P1 (Exercise 1.3).

1.2 Order-preserving mappings

Definition If (A; �1) and (B; �2) are ordered sets then we say that a map-
ping f : A → B is isotone (or order-preserving) if

(∀x, y ∈ A) x �1 y ⇒ f(x) �2 f(y);

and is antitone (or order-inverting) if

(∀x, y ∈ A) x �1 y ⇒ f(x) �2 f(y).

Example 1.12 If E is a non-empty set and A ⊆ E then fA : P(E) → P(E)
given by fA(X) = A ∩ X is isotone. If X � is the complement of X in E then
the assignment X �→ X � defines an antitone mapping on P(E).

Example 1.13 Given f : E → F consider the induced direct image map
f→ : P(E) → P(F ) defined for every X ⊆ E by f→(X) = {f(x)

�� x ∈ X}
and the induced inverse image map f← : P(F ) → P(E) defined for every
Y ⊆ F by f←(Y ) = {x ∈ E

�� f(x) ∈ Y }. Each of these mappings is isotone.

We shall now give a natural interpretation of isotone mappings. For this
purpose we require the following notions.

Definition By a down-set (or hereditary subset) of an ordered set (E; �)
we shall mean a subset D of E with the property that if x ∈ D and y ∈ E
is such that y � x then y ∈ D. We include the empty subset of E as a
down-set. By a principal down-set we shall mean a down-set of the form
x↓ = {y ∈ E

�� y � x}. Dually, we define an up-set to be a subset U such that
if x ∈ U and y ∈ E is such that y � x then y ∈ U ; and a principal up-set
to be an up-set of the form x↑ = {y ∈ E

�� y � x}.

Example 1.14 In the chain Q+ of positive rationals the set {q ∈ Q+
�� q2 � 2}

is a down-set that is not principal.
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Example 1.15 If A and B are down-sets of an ordered set E then clearly so
also are A ∩ B and A ∪ B. This is not true in general for principal down-sets.
For example, in

�� ���
�
❅

❅
a b

c d

we have c↓ ∩ d↓ = {a, b} = a↓ ∪ b↓.

Isotone mappings are characterised by the following properties.

Theorem 1.2 If E, F are ordered sets and if f : E → F is any mapping then
the following statements are equivalent :

(1) f is isotone ;
(2) the inverse image of every principal down-set of F is a down-set of E;
(3) the inverse image of every principal up-set of F is an up-set of E.

Proof (1) ⇒ (2): Suppose that f is isotone. Let y ∈ F and let A = f←(y↓).
If A �= ∅ let x ∈ A. Then for every z ∈ E with z � x we have f(z) � f(x) � y
whence z ∈ A. Thus A is a down-set of E.

(2) ⇒ (1): For every x ∈ E we have x ∈ f←[f(x)↓]. By (2) this is a down-
set of E, so if y ∈ E is such that y � x we have y ∈ f←[f(x)↓]. It follows that
f(y) � f(x) and therefore f is isotone.

(1) ⇔ (3): This follows from the above by the Principle of Duality. 
�

1.3 Residuated mappings

In view of the above natural result, we now investigate under what conditions
the inverse image of a principal down-set is also a principal down-set. The
outcome will be a type of mapping that will play an important role in the
sequel.

Theorem 1.3 If E, F are ordered sets then the following conditions concern-
ing f : E → F are equivalent :

(1) the inverse image under f of every principal down-set of F is a prin-
cipal down-set of E;

(2) f is isotone and there is an isotone mapping g : F → E such that
g ◦ f � idE and f ◦ g � idF .

Proof (1) ⇒ (2): If (1) holds then it follows from Theorem 1.2 that f is
isotone. In symbolic form, (1) becomes

(∀y ∈ F )(∃x ∈ E) f←(y↓) = x↓.

Now for every given y ∈ F this element x is clearly unique, so we can define a
mapping g : F → E by setting g(y) = x. Since f← is isotone it follows that so
is g. For this mapping g we have g(y) ∈ g(y)↓ = x↓ = f←(y↓), so f [g(y)] � y
for all y ∈ F and therefore f ◦ g � idF ; and x ∈ f←[f(x)↓] = g[f(x)]↓ so that
x � g[f(x)] for all x ∈ E and therefore g ◦ f � idE .
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(2) ⇒ (1): If (2) holds then on the one hand we have

f(x) � y ⇒ x � g[f(x)] � g(y),

and on the other we have

x � g(y) ⇒ f(x) � f [g(y)] � y.

It follows from these observations that f(x) � y if and only if x � g(y) and
therefore f←(y↓) = g(y)↓ from which (1) follows. 
�

Definition A mapping f : E → F that satisfies either of the equivalent
conditions of Theorem 1.3 is said to be residuated.

We note in particular that if f : E → F is a residuated mapping then an
isotone mapping g : F → E which is such that g ◦ f � idE and f ◦ g � idF is
in fact unique. To see this, suppose that g and g� are each isotone and satisfy
these properties. Then g = idE ◦g � (g� ◦ f) ◦ g = g� ◦ (f ◦ g) � g� ◦ idF = g�.
Similarly, g� � g and therefore g = g�.

We shall denote this unique g by f+ and call it the residual of f .

It is clear from the above that f : E → F is residuated if and only if, for
every y ∈ F , there exists

f+(y) = max f←(y↓) = max{x ∈ E
�� f(x) � y}.

Moreover, f+ ◦ f � idE and f ◦ f+ � idF .

Example 1.16 Simple calculations reveal that if f : E → F then the direct
image map f→ : P(E) → P(F ) is residuated with residual f← : P(F ) → P(E).

Example 1.17 If E is any set and A ⊆ E then λA : P(E) → P(E) defined by
λA(X) = A ∩ X is residuated with residual λ+

A given by λ+
A(Y ) = Y ∪ A�.

Example 1.18 For m ∈ N\0 define fm : N → N by fm(n) = mn. Then fm is
residuated with f+

m(p) = � p
m� where �q� denotes the integer part of q ∈ Q.

Example 1.19 Every bounded operator f on a Hilbert space H induces a
residuated mapping on the set of closed subspaces of H, namely that given
by M �→ [f→(M)]⊥⊥.

Example 1.20 If S is a semigroup, define a multiplication on P(S) by

XY =
�

{xy
�� x ∈ X, y ∈ Y } if X, Y �= ∅;

∅ otherwise.

Then multiplication by a fixed subset of S is a residuated mapping on P(S).

Example 1.21 If R is a commutative ring with a 1 then multiplication by a
fixed ideal of R is a residuated mapping on the ordered set (I(R); ⊆) of ideals.

The notion of a residuated mapping has its roots in investigations by
Certaine [37], Ward and Dilworth [112], and Dilworth [43] into multiplicative
ideal theory which relates directly to Example 1.21.
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EXERCISES

1.10. For each integer n � 1 let n denote the chain 1 < 2 < 3 < · · · < n. Prove
that a mapping f : n → m is residuated if and only if it is isotone and
f(1) = 1.

1.11. Let E be a bounded ordered set with bottom element 0 and top element 1.
Given e ∈ E, let αe, βe : E → E be defined by

αe(x) =
�

0 if x = 0;
e otherwise, βe(x) =

�
0 if x � e;
1 otherwise.

Prove that αe and βe are residuated and determine their residuals.
1.12. Let E be the ordered set given by the Hasse diagram

�x01

�x11

�x21

��xp1

...

�x02

�x12

�x22

��xp2

...

�x03

�x13

�x23

��xp3

... · · ·

�x0n

�x1n

�x2n

��xpn

...

Show that the mapping f : E → E given by

f(xij) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

x0,j+1 if i = 0, j �= n;
x01 if i = 0, j = n;
xi−1,j+1 if i �= 0, j �= n;
xi−1,1 if i �= 0, j = n.

is residuated and determine f+.

For every non-empty set E the residuated mappings on P(E) are com-
pletely described in the following result.

Theorem 1.4 Let E be a non-empty set and let R be a binary relation on E.
Then the mapping ξR : P(E) → P(E) given by the prescription

ξR(A) = {y ∈ E
�� (∃x ∈ A) (x, y) ∈ R}

is residuated. Moreover, every residuated mapping f : P(E) → P(E) is of this
form for some binary relation R on E.

Proof Let i : P(E) → P(E) be the antitone mapping that sends each subset
of E to its complement. Consider the isotone mapping ξ+

R = i ◦ ξRd ◦ i. It is
readily verified (draw pictures!) that ξR ◦ ξ+

R � id and ξ+
R ◦ ξR � id, whence

ξ+
R is the residual of ξR.

To see that every residuated mapping f : P(E) → P(E) is of this form for
some binary relation R on E, consider the relation Rf defined on E by

(x, y) ∈ Rf ⇐⇒ y ∈ f({x}).

Observe that ξRf
({x}) = {y ∈ E

�� (x, y) ∈ Rf} = f({x}), so that f and ξRf

agree on singletons.
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Now if k : P(E) → P(E) is any residuated mapping then, since it is
isotone, for every non-empty subset A of E we have k(A) = k

� �
x∈A

{x}
�

=
�

x∈A

k({x}). In fact, if B =
�

x∈A

k({x}) then clearly k(A) ⊇ B. On the other

hand, k({x}) ⊆ B for every x ∈ A and so {x} ⊆ k+(B) whence A =
�

x∈A

{x} ⊆

k+(B) and therefore k(A) ⊆ B. The resulting equality, applied to both f and
ξRf

, together with the fact that f and ξRf
agree on singletons now gives

f(A) =
�

x∈A

f({x}) =
�

x∈A

ξRf
({x}) = ξRf

(A) whence we obtain f = ξRf
. 
�

Particular properties of residuated mappings are the following.

Theorem 1.5 If f : E → F is residuated then

f ◦ f+ ◦ f = f and f+ ◦ f ◦ f+ = f+.

Proof Since f is isotone, it follows from Theorem 1.3 that f ◦f+◦f � f ◦idE =
f , and that f ◦f+ ◦f � idF ◦f = f , from which the first equality follows. The
second is established similarly. 
�

Theorem 1.6 If f : E → F and g : F → G are residuated mappings then so
is g ◦ f : E → G, and (g ◦ f)+ = f+ ◦ g+.

Proof Clearly, g ◦ f and f ◦ g are isotone. Moreover,

(f+ ◦ g+) ◦ (g ◦ f) � f+ ◦ idF ◦f = f+ ◦ f � idE ;
(g ◦ f) ◦ (f+ ◦ g+) � g ◦ idF ◦g+ = g ◦ g+ � idG .

Thus, by the uniqueness of residuals, (g ◦ f)+ exists and is f+ ◦ g+. 
�

Corollary For every ordered set E the set Res E of residuated mappings
f : E → E forms a semigroup, as does the set Res+ E of residual mappings
f+ : E → E. 
�

EXERCISES

1.13. If f, g : E → E are residuated prove that f � g ⇐⇒ g+ � f+. Deduce
that the semigroups Res E and Res+ E are anti-isomorphic.

1.14. If f : E → E is residuated prove that f = f+ ⇐⇒ f2 = idE .
1.15. If f : E → F is residuated prove that the following are equivalent:

(1) f+ ◦ f = idE ; (2) f is injective; (3) f+ is surjective.

1.16. If E has a top element 1 prove that the mapping Θ : Res E → E given by
Θ(f) = f(1) is residuated, with residual the mapping Ψ : E → Res E given
by Ψ(e) = αe where αe is defined in Exercise 1.11.

1.17. Let S be a semigroup with a zero element 0. Let P0(S) be the set of all
subsets of S that contain 0. For each A ∈ P0(S) let λA : P0(S) → P0(S) be
given by

λA(X) = AX = {ax
�� a ∈ A, x ∈ X}.

Prove that λA is residuated and determine λ+
A. Do likewise for the mapping

ρA : P0(S) → P0(S) given by ρA(X) = XA.


