

Things to know:

Animal

Nutrient requirements/ diet specifications

Raw materials available

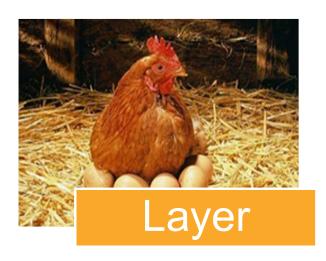
Raw material prices

Other considerations

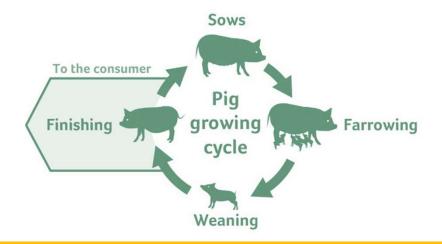
Formulation tool

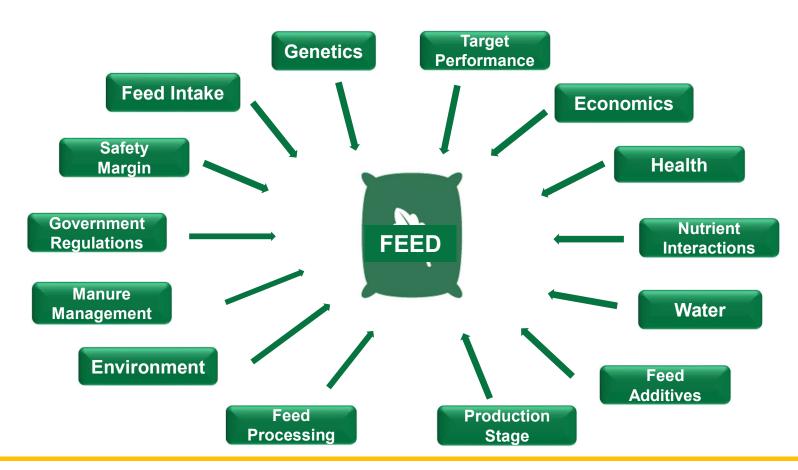
What is FEED FORMULATION?

Feed formulation is the process of matching the **nutrient** requirements of a class of **animal** with the nutrient contents of the **available ingredients** (raw materials) in an **economic** manner.



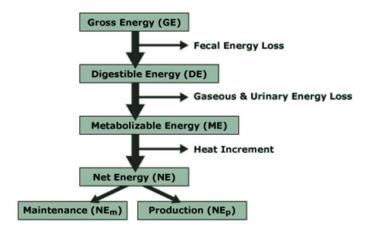
Each animal has different nutrient requirements




Each production stage also has different nutrient requirements

Different factors should be considered in establishing nutrient requirements and diet specifications

What are the nutrients?


Nutrients – compounds in food essential to life and health which provides energy, building blocks for repair and growth, and substances necessary to regulate chemical processes

- Carbohydrates compounds composed of C, H, O and come in simple forms such as sugars and complex forms such as starches and fiber
- **Lipids (fat)** chemically defined as substances insoluble in water and soluble in alcohol, ether and chloroform. Includes fatty acids, neutral fats, waxes and steroids
- **Protein** large molecules composed of one or more chains of **amino acids** and are essential components of muscles, skin, bones and the body as whole
- Vitamins complex organic compounds that are needed in small amounts for normal growth and metabolism. Classified as either fat-soluble vitamins (Vitamin A, D, E, K) or water-soluble vitamins (Vitamin C and B-complex vitamins)
- Minerals inorganic substances that must be ingested and absorbed in adequate amounts to satisfy a wide variety of essential metabolic and/or structural functions in the body. Categorized according to amount required in the diet (macrominerals and trace minerals)
- Water an essential nutrient because it is required in amounts that exceed the body's ability to produce it

Choose an energy system that can better predict animal performance

Energy Partitioning

DE vs ME vs NE

Performance of growing-finishing pigs according to energy system and diet characteristics^{a,b}

Energy system	DE	ME	NE	
Trial 1: Added fat (%)				
0	100	100	100	
2	100	100	100	
4	99	99	100	
6	98	98	100	
Trial 2: crude protein conte	nt (30-100 kg)			
Normal	100	100	100	
Low	96	97	100	
Trial 3: crude protein conte	nt (90-120 kg)			
Normal	100	100	100	
Low	97	98	100	

^a Energy requirements (or energy cost of BW gain) for similar daily BW gain and composition of BW gain; values are expressed relative to the energy requirement (or energy cost of BW gain) in the control treatment (considered as 100; values in bold characters); from Noblet (2006), Wu et al. (2007) and unpublished data.

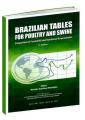
The ability of NE system to predict performance of pigs is greater than DE and ME system

bNoblet (2013)

Select a more accurate measure of amino acid digestibility

Total AA vs Digestible AA

		TREATMENT					
	HD	LD	LD + AA				
GROWTH DATA, 1-21	DAYS OF AGE ^A	Aprope Water					
Weight gain (g)	697ª	673 ^b	706 ^a	7.7			
Feed intake (g)	1026ª	1030 ^a	1060 ^a	13.5			
Feed/gain	1.473 ^a	1.532 ^b	1.502 ^{ab}	0.016			
GROWTH DATA, 1-42	DAYS OF AGE ^A						
Weight gain (g)	2333ª	2241 ^b	2330 ^a	18.5			
Feed intake (g)	4165ª	4140 ^a	4190 ^a	29.8			
Feed/gain	1.786ª	1.848 ^b	1.799 ^a	0.011			



How to set nutrient specifications?

Check nutrient recommendations

• From organizations and institutions

• From breeding/private companies

Use prediction models

- ME (pig) = $106 \times BW^{0.75}$
- Lys requirement of nursery pigs = 19g SID Lys/kg weight gain

Nutrient Recommendation for Cobb 500 Broiler Chicken

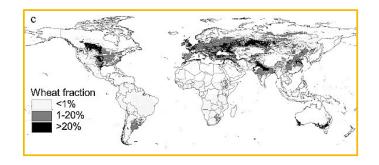
		Starter	Grower	Finisher 1	Finisher 2*	
FEEDING AMOUNT/bird		180 g 0.40 lb	700 g 1.54 lb	1350 g 3.0 lb		
FEEDING PERIOD days		0 - 8	9 - 18	19 - 28	> 29	
FEED STRUCTURE		Crumble	Crumble / Pellet	Pellet	Pellet	
Crude Protein	%	21-22	19-20	18-19	17-18	
Metabolizable energy (AMEn')	MJ/kg Kcal/kg Kcal/lb	12.45 2,975 1,349	12.66 3,025 1,372	12.97 3,100 1,406	13.18 3,150 1,429	
Digestible Lysine	%	1.22	1.12	1.02	0.97	
Digestible Methionine	%	0.46	0.45	0.42	0.40	
Digestible Met + Cys	%	0.91	0.85	0.80	0.76	
Digestible Tryptophan	%	0.20	0.18	0.18	0.17	
Digestible Threonine	%	0.83	0.73	0.66	0.63	
Digestible Arginine	%	1.28	1.18	1.07	1.02	
Digestible Valine	%	0.89	0.85	0.76	0.73	
Digestible Isoleucine	%	0.77	0.72	0.67	0.64	
Calcium	%	0.90	0.84	0.76	0.76	
Available Phosphorus	%	0.45	0.42	0.38	0.38	
Sodium	%	0.16-0.23	0.16-0.23	0.16-0.23	0.16-0.23	
Chloride	%	0.16-0.30	0.16-0.30	0.16-0.30	0.16-0.30	
Potassium	%	0.60-0.95	0.60-0.95	0.60-0.95	0.60-0.95	
Linoleic Acid	%	1.00	1.00	1.00	1.00	

¹ Energy system is based on the Apparent Metabolizable Energy corrected by Nitrogen (AMEn).

		Starter	Grower	Finisher 1 & 2
Vitamin A	(MIU)	10-13	10	10
Vitamin D3	(MIU)	5	5	5
Vitamin E	(KIU)	80	50	50
Vitamin K	(g)	3	3	3
Vitamin B1 (thiamine)	(g)	3	2	2
Vitamin B2 (riboflavin)	(g)	9	8	6
Vitamin B6 (pyridoxine)	(g)	4	3	3
Vitamin B12	(mg)	20	15	15
Biotin (Maize Diets)	(mg)	150	120	120
Biotin (Wheat Diets)	(mg)	200	180	180
Choline*	(g)	500	400	350
Folic Acid	(g)	2	2	1.5
Nicotinic Acid	(g)	60	50	50
Pantothenic Acid	(g)	15	12	10
Manganese	(g)	100	100	100
Zinc	(g)	100	100	100
Iron	(g)	40	40	40
Copper	(g)	15	15	15
lodine	(g)	1	- 1	1
Selenium	(g)	0.35	0.35	0.35

added directly into the mixer rather than via a premix because of its Vitamin and trace mineral levels may vary depending on the source and supplier. The numbers above refers to e.g. usage of inorganic minerals and a vitamin D3 source. MIU = million international units KIU = thousand international units mg = milligrams Supplementary levels of trace elements should always be reviewed to ensure total those set in local legislation (e.g. EU 1334/2003).

^{*} Should withdrawal feed be required use same finisher specification.



Survey raw materials available locally

Global Biogeochemical Cycles (2004)

Commonly Used Raw Materials

Plant and Animal Protein Sources

Soybean meal

Fish meal

Oils

Coconut oil

Soybean oil

Broken rice

Palm oil

Commonly Used Raw Materials

Co-products

Rice bran

Wheat pollard

Copra meal

Supplements

Limestone

Phosphates

Salt

Sodium bicarbonate

Amino acids

Choline chloride

Vitamin premix

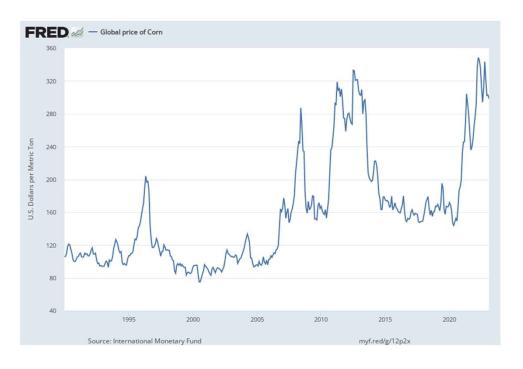
Mineral premix

Additives

Enzymes

Acidifiers

Performance enhancers


Toxin binders

Flavor and sweeteners

Mold inhibitor

Check updated RM prices

Global price of Soybean Meal

500

400

200

100

1995

2000

2010

2015

2020

Source: International Monetary Fund

myf.red/g/12p2C

Corn

Soybean meal

Analyze RM Quality

Physical

Chemical

- Proximate analysis
- Fiber (NDF, ADF)
- Amino acid content
- Minerals (Ca, P, Na)
- Mycotoxin contamination

Know energy and nutrient composition of RM

Corn, Grain 7.86% CP (Mean)

		Ma		onents (%)			
	Mean	n	SD	420.00	Mean	n	SD
Dry Matter	88.9	245	2.35	Organic Matter (OM)	87.8	-	
Crude Protein	7.86	402	0.94	Coef. Dig. OM Swine	86.0	-	
Starch	63.4	148	2.51	Digestible OM Swine	75.5	*	
Crude Fiber (CF)	1.73	151	0.19	Non Dig. OM Swine	12.3	27	
Coef. Dig. CF Swine	41.4	1		Ether Extract (EE)	3.81	157	0.29
NDF	13.8	3	1.20	Coef. Dig. EE Poultry	92.0	1	-
Coef. Dig. NDF Swine	66.4	1	1.7	Digestible EE Poultry	3.50	-	-
ADF	3.16	3	0.29	Coef. Dig. EE Swine	90.0	1	
Coef. Dig. ADF Swine	68.2	1		Digestible EE Swine	3.43	-	-
Nitrogen Free Ext (NFE)	74.4	-	-	Linoleic Acid	1.91	1	-
Coef. Dig. NFE Poultry	89.0	-	100	Linolenic Acid	0.03	1	-
Digestible NFE Poultry	66.2	-					
Non Dig. NFE + CF Poultry	9.91	-	100				
			Energy	(kcal/kg)			
	Mean	n	SD		Mean	n	SD
Gross Energy	3901	6	35	Swine			-
Poultry				Digestible Energy	3442	7	27
Metabolizable Energy	3364	14	100	Metabolizable Energy	3360	4	30
Std. Metab. Energy	3481	1	-	Net Energy	2668	-	-
Net Energy	2713	290	1000	Sows			
Hens			11111	Digestible Energy	3565	-	
Std. Metab. Energy	3394	-		Metabolizable Energy	3452	-	-
Net Energy	2742	-	-	Net Energy	2735	-	-
			Mine				
	Mean	n	SD		Mean	N	SD
Ash, %	1.11	18	0.23	Trace Minerals, mg/kg	7		
, was in	10.00		0.20	Manganese (Mn)	5.30	-1	-
Macro Minerals (%)				Iron (Fe)	23.5	1	
Potassium (K)	0.32	4	0.04	Copper (Cu)	2.10	1	-
Sodium (Na)	0.01	4	0.01	Zinc (Zn)	21.5	1	-
Chlorine (CI)	0.09	3	0.04	Selenium (Se)	0.07	1	-
Sulfur (S)	0.08	2	0.04	lodine (I)	0.07		8.0
Magnesium (Mg)	0.11	4	0.02	100.110 (1)			
Total Calcium (Ca)	0.02	7	0.01				
Total Phosphorus (P)	0.24	9	0.05				
Phytate P	0.18	70	0.03				
Available P (Pav)	0.03	-	0.00				
Coef. Dig. P Poultry	40.8	-1	-				
Std. Dig. P Poultry	0.10	-	1150				
Coef. Dig. P Swine	44.0	1					

Pav = Non Phytate P (Total P - Phytate P).

Corn, Grain 7.86% CP (Mean)

	T-4-1	W OD	W CD Poultry		Swine		
	Total	% CP	SID	Coef.	SID1	Coef	
Crude Protein, %	7.86	100	6.83	87.0	6.50	82.7	
Lysine, %	0.23	2.93	0.19	82.5	0.18	78.9	
Methionine, %	0.16	2.04	0.15	93.4	0.14	86.4	
Met + Cys, %	0.33	4.20	0.29	88.4	0.29	88.1	
Threonine, %	0.31	3.94	0.29	93.9	0.24	78.8	
Tryptophan, %	0.06	0.76	0.06	95.2	0.05	75.7	
Arginine, %	0.37	4.71	0.34	91.0	0.33	89.6	
Gly + Ser, %	0.72	9.16	0.57	78.9		-	
Valine, %	0.36	4.58	0.31	87.3	0.32	88.5	
Isoleucine, %	0.26	3.31	0.24	94.0	0.23	89.9	
Leucine, %	0.95	12.1	0.91	95.4	0.85	89.5	
Histidine, %	0.24	3.05	0.22	93.3	0.21	86.5	
Phenylalanine, %	0.37	4.71	0.33	90.5	0.33	89.7	
Phe + Tyr, %	0.65	8.27	0.60	92.6	0.59	90.9	
Alanine, %	0.61	7.76	0.49	81.0	0.52	85.6	
Cystine, %	0.17	2.16	0.14	83.6	0.15	89.7	
Tyrosine, %	0.28	3.56	0.27	95.4	0.26	92.6	
Glycine, %	0.32	4.07	0.24	76.0	0.25	79.2	
Serine, %	0.40	5.09	0.32	81.2	0.34	83.8	
Proline, %	0.80	10.2	0.76	94.5	0.66	82.7	
Glutamine ² , %	0.93	11.8	0.88	94.4	0.81	87.6	
Glutamic acid², %	0.59	7.51	0.56	94.4	0.52	87.6	
Asparagine ² , %	0.24	3.05	0.20	82.4	0.20	81.7	
Aspartic acid², %	0.30	3.82	0.25	82.4	0.25	81.7	
Total Nitrogen (CP/6.25) %	1.26	16.0	1.10	87.0	1.04	82.7	
Essential Nitrogen Poultry, %	0.61	48.5*	0.55	89.5		-	
Essential Nitrogen Swine,%	0.49	38.9*			0.42	85.3	

^{&#}x27;SID = Standardized Ileal Digestibility.

^{*} Essential Nitrogen for Poultry and Swine calculated as a percentage of Total Nitrogen.

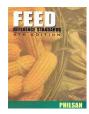
Recommend	ed Inclusion Le	evels of Poultry and	Swine Feeds (%	6)	
	Broilers	u.			
Starte	ır	Grower	Hens		
65		65			
65		65	6	65	
	Growing Pig	gs	Sows		
Starter	Grower	Finisher	Gestation	Lactation	
60	65	70	65	70	
60	65	70	65	70	
	Starter 65 65 Starter	Starter 65 65 Starter Growing Pig	Broilers Starter Grower 65 65 65 65 Growing Pigs Starter Grower Finisher 60 65 70	Starter Grower 65 65 6 65 65 6 65 65 6 Growing Pigs So Starter Grower Finisher Gestation 60 65 70 65	

²Values estimated based on data of Li et al., (2011).

Understand variability in nutrient composition

AA Profile (% of CP) of Soybean Meal from Different Origin

Ibáñez et al. (2020)


Some Reference RM Nutrient Tables

From organizations and institutions

Online

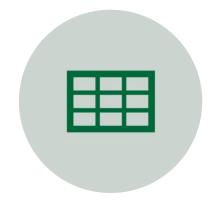
Study RM characteristics that can impact feed intake and nutrient digestibility

- Palatability
- Presence of anti-nutritional factors
- Level of mycotoxin
- Heat stability
- Buffering capacity
- Shelf life

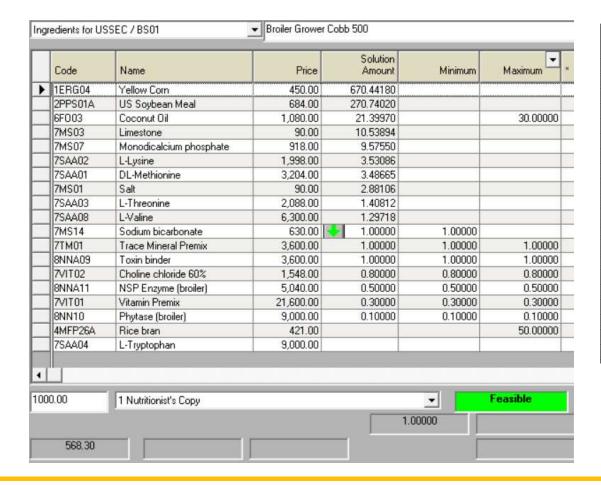
Feed mill Considerations when Formulating a Diet

For pelleted feeds

- minimum and maximum oil content
- minimum starch
- maximum co-products



Formulation Tools


EXCEL

FORMULATION SOFTWARE

What makes up a feed formula?

Code	Name		Solution Amount	Minimum	Maximum -
1	Weight (Kgs)	1	1.0000	1.0000	1.0000
2	Dry Matter (%)		87.9007		
3	Moisture Content (%)		12.0993		
4	Crude Protein (%)		19.0000	19.0000	20.0000
5	Crude Fat (%)		5.0513		
7	Crude Fiber (%)		2.3243		
8	Ash (%)		2.7119		
21	ME-Poultry (kcal/kg)		3,025.0000	3,025.0000	
25	Calcium (%)	-	0.8400	0.8400	
27	Available Phosphorus (%)		0.4200	0.4200	
29	Sodium (%)	-	0.1600	0.1600	0.2300
30	Chloride (%)		0.2135	0.1600	0.3000
33	Linoleic Acid (%)		1.3194	1.0000	
59	Lysine-Dig-Po (%)		1.1200	1.1200	
61	Methionine-Dig-Po (%)		0.6141	0.4500	
65	M+C-Dig-Po (%)		0.8500	0.8500	
67	Threonine-Dig-Po (%)	-	0.7300	0.7300	
69	Tryptophan-Dig-Po (%)		0.2023	0.1800	
77	Valine-Dig-Po (%)	1	0.8500	0.8500	
117	Potassium (%)		0.8129	0.6000	0.9500

Feed formulation is a process that needs thorough understanding of animal requirements, available raw materials and economic goals.

Thank you!

Rhona Niña R. Reyes, PhD rreyes@ct.ussec.org

