

Quality Control Parameters: From the Feedmill to the Farm

Basilisa P Reas (Neneth, DVM Msc Technical Director, Animal Protein-USSEC SEA

Content

- Premise of Quality Assurance Program
- What to check in raw materials and feeds
- Quality parameters for soybean meal
- Recommendations

Quality Assurance (QA) vs Quality Control (QC)

QA - The process of verifying or determining whether the products or services meet or exceed customer satisfaction

QC - The operational techniques and activities for controlling, checking, or testing that specifications are met

- involves sampling, inspecting and testing of starting materials, in process, intermediate, bulk and finished products.
- includes where applicable, review of batch documentation, sample retention program, stability studies, product complaints, product recalls, and maintaining correct specifications of materials and products.

Practical Application Of QA & QC

Premises of Quality Assurance Program

You can not improve what you do not control

You can not measure what you do not define You can not control what you do not measure

FEED QUALITY PARAMETERS; WHAT & WHERE TO CHECK?

Receiving

- Entrance control sampling, sensory, quick tests
- Laboratory checks and tests sampling prep, proximate analyses,etc
- Storage & warehouse

First line of defense

Sampling – the distribution Pproblem

Non-homogeneous and Homogeneous Distribution

Adapted from; E Yeow, 2013.

What to check in raw materials and feeds?

Physical:

Damaged, contaminated or infected raw materials from harvests; immature seeds, insect damaged, molds & lumps.

At the lab

Nutritional/Chemical:

- Proximate analysis
- Nutrient variability
- Anti nutritional factors (ANFs)
- Chemical (dioxin)
- Contamination and residues,
- Presence of bacteria
- Molds/mycotoxins.

Errors in Analysis

We need amino acids!

By the Nutritionist & Feed Formulator

- Availability & supply of raw materials
- Chemical analysis assays/ profile
- Nutrient specifications
- (Updated) Database of all ingredients
- Target production performance
- Prices

.. Feed Formulation

- Carbohydrates (Energy)
- Protein (essential AA)
- Fats/lipids
- Vitamins
- Minerals
- Water

- Nutrient requirement of the animal
- Raw material nutrient content
- Availability
- Safety
- Cost

					E Equation of feed formulation					×	
13	1 Mar		Daning a	1000		Equation r	lanter -	Volue			-
19	7 March 2000 R 301-Growing Pbg				2 Lysine a	ic globlewh	6.52				
						37. Metail	unine :	36.04			
201-Linneing Prg.			Intal amount \$250.00			1: Met-Cyc as Lyone 56		56.18			
						Ti Tripfop	han as kys	36.67			- 1
14	Code II	rgredent name	Amount	SAs led.	32,04 3	11.Threoner	e ac Lyone	60.53			
Ц	1 8	loker Rice	200.00	16.000	16.000	California	Not Swene	2.32			
늰	3 6	Cessava	343.00	27,440	27.440	Digest, Ly	C. C. Parage	1.30			
	10 P	tice-bran Oil	18.29	1.463	1.465					_	_
Ц	20 F	Care loce bran	364.90	29.192	29.792		The .		3.00	5.09	- 1
н	30 5	cy bean neal	161.66	12 933	25.800	15	Calcium		0.99	1.16	
	32 F	What say bean meal	34.00	1.120	1.120	37.	Total Shore	phonus	0.74	1.03	
曰	40 8	Sub-tread SER	126.00	10.000	10.000	_ 73 JU	Aval Phot	for Swine	0.45	0.50	
Ц	50 L	- tysze	2.79	0.223	0.223	130.	Sal.		0.30	0.34	
Ц	51 0	C-methionine	1.14	0.091	E 091	240	Lycine		1.05	7.14	
Ц	53 L	- Evenine	1.09	0.000	0.000	220.	Methionine	- Cystine	0.60	0.64	
	50 N	forodicalciumphosphala?	6,78	0.543	0.543	- 72	Methorine		0.32	0.42	
	65 T	incakkan phosphate B1	9.39	0.751	0.751	0	Theoreme		0.65	0.69	
	20 5	lat.	0.96	0.076	0.076	2.00	Stopkophan		0.28	0.19	
1.00	101 (***					×111					

Possible Feed production errors

Failure of process to achieve target weights

- ✓ FIFO management of ingredients & complete feed
- Uncontrolled hand add ingredients
- Cross contamination & mill hygiene
- Physical quality
- Medication selection

;.. At the Feedmill.

What to check at the farm

✓ failure of the diet to meet nutrient specifications

- At the Farm
- ✓ inconsistent quality of raw materials
 - ✓ sudden changes in ingredients use
 - ✓ inappropriate particle size
 - ✓ inadequate/inconsistent feed mixing
 - ✓ deterioration of feed and ingredients in storage

Application of Quality Control in SBM

Average nutrient components of raw soybeans

Average inclusion rate of SBM: 20 to 25%

Contributes:

- Morethan 50% protein & EAA
- About 25% of Energy

All Soybean Meals are <u>NOT</u> created Equally!!
Variability cost you \$

- **Degree of cooking;** over cooked or under cooked SBM reduced nutrient availability
- Level of fiber affects energy in SBM
- Particle size affects digestibility
- re grinding adds to the cost

Sources of variability of nutrient values of SBM

- <u>Soybean quality at harvest</u> (% damaged beans, FM)
 US soy are graded according to pre-determined quality parameters
- Post-harvest handling, storage and transport

- Processing involved
 - Degree of heat treatment overcooked/undercooked SBM reduced AA dig
 - Level of fiber & ash dilutes nutrient and energy in SBM
 - Particle size reduced digestibility in young animals, re-grinding adds to the

US vs Brazilian Soybean Damage at

Harvest. Uranga et al, 2021

US & BR Total Damage Content

- US has 4.18% lower average total damage (5.39% vs 1.21%)
- Brazil allows a max of 8% of total damage while US allows a max of 3% for Grade 2.

Quality of Soybeans collected in the different ports in Spain, 2022. G Mateos, 2023

	Brazil	USA
Farm gate ^b	> 4.5	≤ 1.0
Port of origin ^c	> 6.2	1.1
Port of destinations ^d	9.4	3.6

^b Samples collected at Mato Grosso and Iowa
 ^c Average 2022 (FGIS and Ag Commodities)
 ^d Europe, Spain ports

What do we want from Soybean meal? Precision Animal Nutrition

- Soybean meal value should be based on:
 - Digestible amino acids (Crude Protein is reported based on Nitrogen, and not all N are true protein and therefore are not digestible)
 - Energy (comes from digestible protein, fats/oil, starch and sucrose)
 - Consistency each point of SD adds to the cost in formulating diets. The higher the SD, the higher the effects on safety margin during feed formulation.
 - Moisture content every 1% of moisture in SBM is equivalent to US5.00/MT (at US\$500.00/MT price)

Quality variability

SOY EXCELLENCE CENTER A SOY program

Analysis of SBMs from Different Origins

Origi n	No	C.P. (%)	Dig coef C.P,%	Dig CP (%)	Tot Lys (%)	Tot Met (%)	Dig coef Lys (%)	Dig coef Met(%)	Dig Lys (%)	Dig Met (%)
Arg	16	46.9 ^{bc} (1.08)	82 ^a (4.1)†	38.6 ^b (1.96)†	2.84 (0.19)	0.68 ^{bc} (0.04)	86 ^a (4.5)	86 ^a (3.4)	2.44 ^a (0.23)	0.59 ^b (0.04)
Brazil	10	48.2 ^a (1.65)	83 a (3.6)	39.8 ^a (1.99)	2.79 (0.25)	0.69 ^{ab} (0.07)	85 ^a (5.3)	87 ^a (3.7)	2.39 ^{ab} (0.33)	0.60 ^{ab} (0.06)
USA	16	47.3 ^b (0.50)	85 ^a (1.8)	40.0 ^a (0.82)	2.88 (0.20)	0.72 ^a (0.02)	88 ^a (2.4)	88 ^a (1.7)	2.52 ^a (0.22)	0.63 ^a (0.02)
Proba bility		**	**	* * *	NS	**	*	**	*	***

Ravindran 2014. Internal Poultry Journal

[†] Values within parenthesis represents standard deviation

Apparent Metabolizable Energy (AME), kcal/kg

Origin	Νο	AME (Range, kcal/kg)	AME (Mean, kcal/kg)	US vs Other Origin, kcal/kg
Argentina	16	1796 – 2417	2227 ^b (148)†	148
Brazil	10	2003 – 2531	2317 ^{ab} (165)	58
India	13	1567 – 2299	2000 ^b (191)	237
USA	16	2120 – 2541	2375 ^a (114)	
Probability		* * *	* * *	

Every 150 kcal of extra energy is equivalent to about US\$2.00/MT (based on corn priced at US\$400.00/MT)

SOY EXCELLENCE CENTER A SOY program

Effect of heat treatment on ANFs and protein or amino acid digestibility.

CENTER

Recommendations: Quality Control Points

- 1. Creation of standards
- 2. Stipulation of quality standards at purchasing
- 3. Quality assurance on raw material deliveries
- 4. Quality assurance in raw material storage
- 5. Quality assurance in feed production
- 6. Quality assurance in finished feeds storage

Recommendations: *Quality management..;*

Summary & Conclusions

- Feed Quality is equal to animal performance
- Controlling feed quality should start from the point of raw material entry, storage, formulation, processing and finally to the farm;
- Quality Control application should be a responsibility of whole production chain

••••

Animal Performance is the Ultimate test!

Thank you for your time

