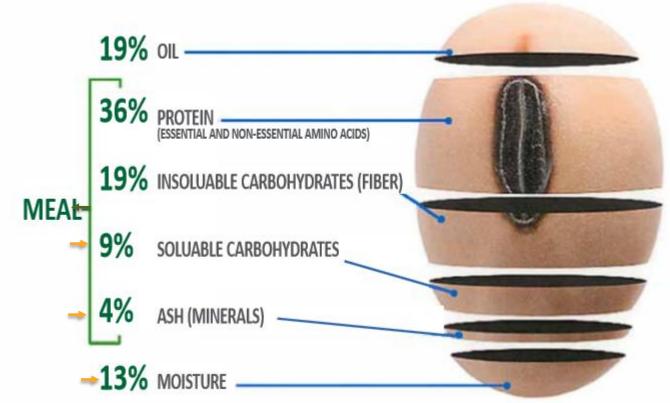


Full Fat Processing

Carlos Campabadal, Ph.D. – Kansas State University

CENTER


Learning Objectives

- Learn about the differences between soybean and its co-products.
- Learn about the different full fat processes.
- Learn about the basic of oil mechanical press.

Soybean Composition

• Soybeans: Source of proteins and fat

Problem: Naturally, soybeans have anti nutritional factors (ANF) and allergens

Types of Soy Processing Co-Products

Soybean Meal:

- Coproduct of the oil extraction processing using solvents (hexane).
- Number protein source for animal feed around the world.
- High protein content (44% with hulls or 48% without hulls).
- Low oil contents (<1%)
- El 75% of it is used in poultry and swine diets (Stein, 2013).

Source: Campabadal, 2016 y van Edys, 2013.

Soybean Meal Composition

	Min/Max	With Hulls	s Without Hulls	CPM produced	
Moisture Content %	Max	12	12	SBM produced from solvent	
Protein %	Min	44	47-49	extraction of	
Oil %	Min	0.5	0.5	oil	
Fiber %	Max	7	3.3-3.5		
Anti-Compacting Agents%	Max	0.5	0.5		
U.S. SBM specifications	Digestible lysine Ash Acid insoluble ash (silica) Protein solubility in 0.2% KOH Urease activity Trypsin inhibitors Bulk density Screen analysis (mesh) Texture Color Odor		 >2.85% (basis 88% dry matter) Equal or >88% of total lysine <7.5% <1% 78-85% 0.000 - 0.100 pH unit rise 1.75 - 2.50 mg/g 57 - 64 g/100cc 95% thru #10, 45% thru #20, 6% thru #80 Uniform, free flowing, no lumps, cakes, dust Light tan to light brown Fresh, not musty, sour, ammonia, burned No urea, ammonia, pesticides, grains, seeds, molds 		

Source: van Edys, 2013 y www.nopa.org.

Soy Oil Meal (Full Fat Soybean Meal)

- Co-product obtained when soybeans are process and the oil is not extracted.
- Excellent source of protein amino acids and energy.
- Used in countries were good fat or oil products are no easy to find and the cost benefit is better for soy oil meal.
- Use when the addition of fat is difficult in an animal feed diet.
- At the end its usage is a matter of costs:
 \$SBM + \$Fat > \$FFSBM

Composition Comparisons

Source: Johnson & Smith

		an Meal Ivent	Dehulled-Solvent	Expeller	Soybeans Full-fat
Proximate Analyses					
Dry Matter	%	90	88	89	90
Crude Protein	%	44.0	47.8	42.0	38.0
Ether Extract	%	0.5	1.0	3.5	18.0
Crude Fiber	%	7.0	3.0	6.5	5.0
Ash	%	6.0	6.0	6.0	4.6
Ruminant Values					
Ruminant Dig. Protein	%	37.5	46.6	35.5	34.1
Ruminant TDN	%	78	79	78	85
Energy Values					
Poultry ME	Kcal/lb	1020	1125	1100	1520
	Kcal/lb	1405	1425	1360	1610
Amino acids					
Methionine	%	0.65	0.70	0.6	0.54
Cystine	%	0.67	0.71	0.62	0.55
Lysine	%	2.9	3.02	2.7	2.4
Tryptophan	%	0.60	0.70	0.58	0.52
Threonine	%	1.7	2.0	1.7	1.69
Isoluecine	%	2.5	2.6	2.8	2.18
Histidine	%	1.1	1.3	1.1	1.01
Valine	%	2.4	2.7	2.2	2.02
Leucine	%	3.4	3.8	3.8	2.8
Arginine	%	3.4	3.6	3.2	2.8
Phenylalanine	%	2.2	2.7	2.1	2.1

Anti-Nutritional Factors (ANF) on Soybeans

- Trypsin Inhibitors (Proteases):
 - Reduce protein digestibility
 - Reduce growth (make susceptible to diseases)
- Lectin:
 - Damage to intestine walls- effect on nutrient absorption.
- Glycinine:
 - Gastrointestinal problems- allergens.
- Urease:
 - Increase available nitrogen (indicator of level of processing)

Composition of ANF in Soybeans

ANF	Units	Soybeans	SBM
Trypsin Inhibitor	mg/g	25-50	1.60-5.00
Glycine	mg/g	150-200	20-70
Lecithin	mg/g	2.100-3.500	20-600

Important:

- Reduction of ANF with heat treatment process called denaturalization since the majority of them are proteins.
- In some process, steam is used.

Why do we process soybeans?

- Heat Treatment
 - It needs to absorb 1650 Joules of energy per gran to inactivate 95% of trypsin inhibitors (Rakis, 1986).
 - If it is too much, proteins will be denatured and can oxidize the oil content.
- Benefits:
 - Reduction of ANF
 - Protein becomes more digestible
 - Oil of better quality
 - More appealing to animals
 - Flavors and aromas
 - More stable
 - Destruction of lipoxidases

Soybean Processing

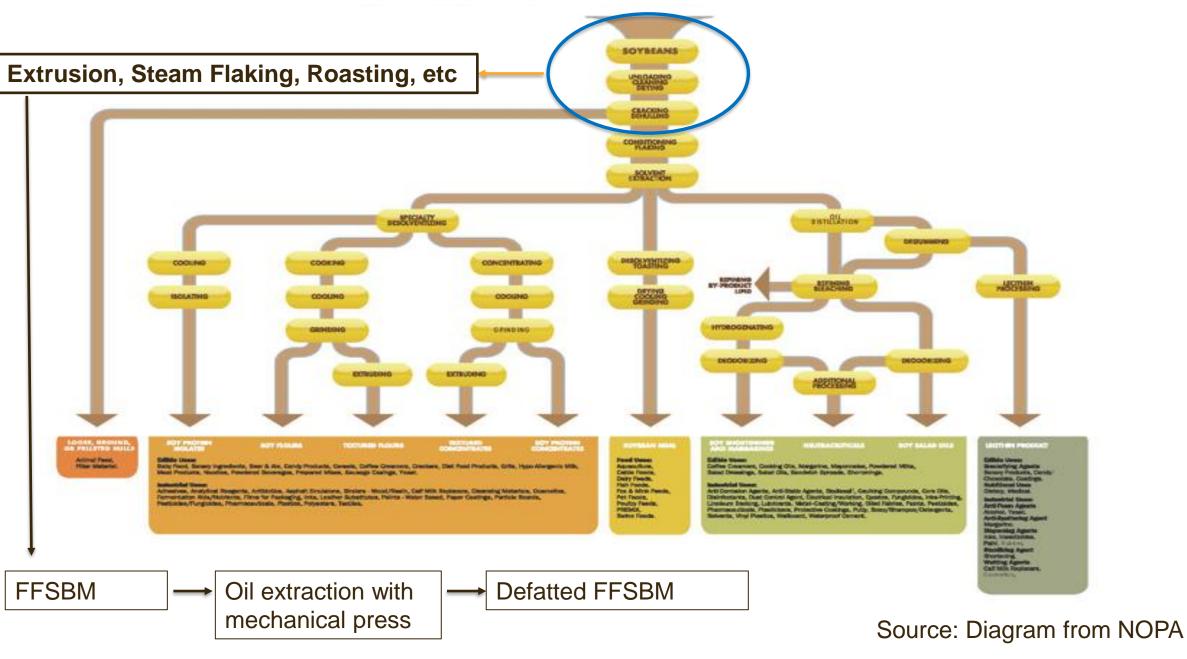
- The different technologies will use:
 - Temperature
 - Moisture
 - Pressure
 - Surface exposure
 - Particle size reduction
 - Time
 - Different sources of energy

shutterstock.com • 766309771

Soybean Processing

- To know which process is the best:
 - Physical and chemical conditions in the process
 - Animal that will be feeding:
 - Extrusion monogastrics
 - Roasting ruminants
 - Cost of equipment and source of energy

Processes to Denaturalized ANF in Oilseeds


- Cooking (autoclave)
- Micronizing
- Microwave
- Jet-sploding/Expansion

- Steam Flaking
- Roasting
- Extrusion
- Expanders (expansion)

- Longer processing (brown) maximum temperatures of 105 °C for 30 to 120 minutes. Steam Flaking can take longer.
- Short processing (black) temperatures between 130 to 180 ° C for 10 a 180 seconds.

Oil Extraction Process Using Solvents and Mechanically

Cooking

- **Cooking:** Soybeans are mixed with water and cook to boiling point for 30 to 120 minutes.
- Needs further drying and processing

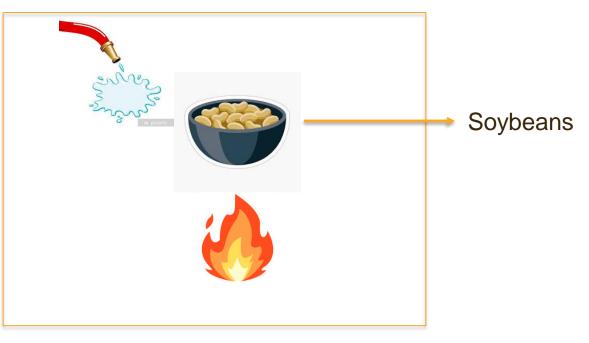
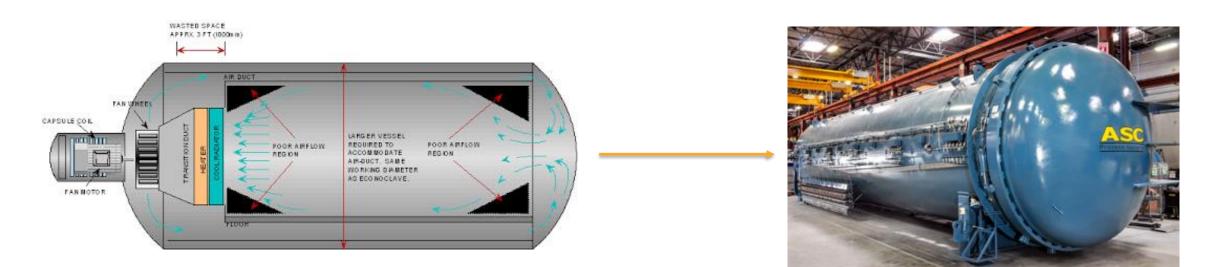
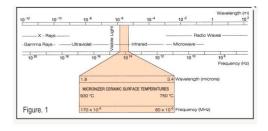
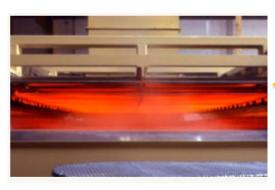
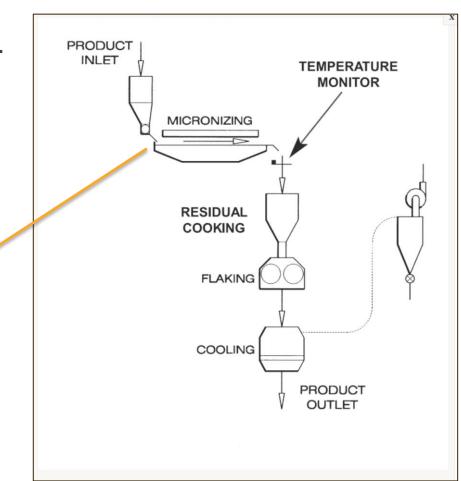



Diagram of cooking

Cooking (Autoclave)


- Autoclave: Sterilization process that increases temperature gradually to 121°C then steam pressure to at least 15 psi = 1 bar).
 - Needs further drying and processing




Micronizing

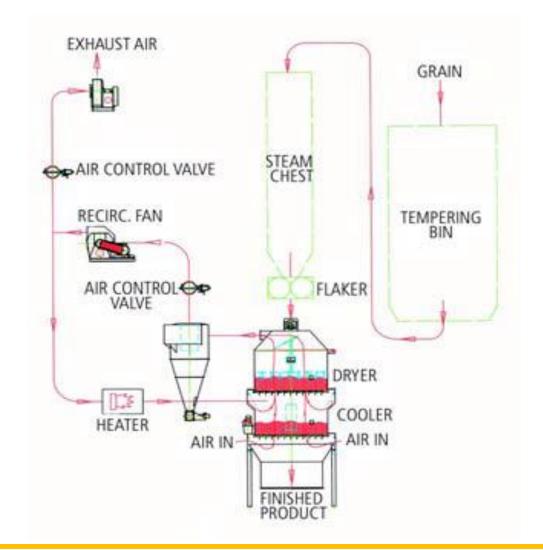
- Ceramic plates heated to 100°C in 35 seconds.
- Plates emit infrared radiation between 1.8 to 3.4 microns (higher tan microwaves).
- Soybeans absorbed heat waves increasing temperature to180°- 220°C).
- Internal molecular vibration breaks the lipase cell walls degrading the ANF
- Used in cocoa processing

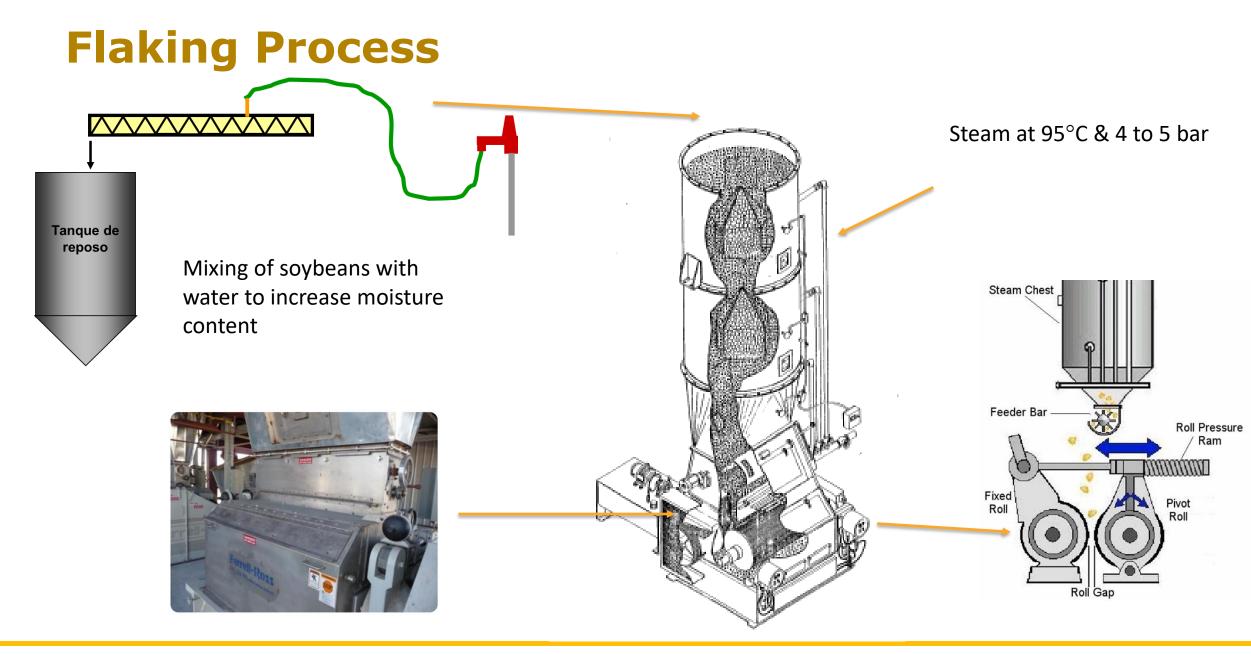
Microwaves

- Uses infrared radiation produced by heat.
- Temperatures up to 150 °C in short times (60 s).
- Microwaves (1-2 cm) in tunnel will generate vibration of the soybean molecules.
- The generated heat will denature the trypsin inhibitors.

Jet Sploding (Injecting Hot Air)

- Pre-heat air to 140°C to 315°C to avoid contact of heat source with soybeans.
- Process like popcorn cooking.
- Soybean molecules vibrate reaching 90 °C a 95 °C.
- Soybeans expand and explode, so oil can be extracted.
- Use for canola processing.




Steam Flaking

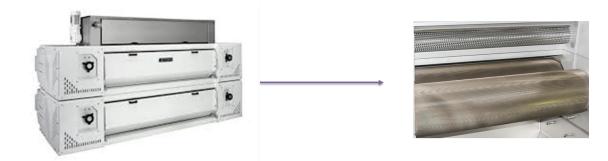
- Similar process as corn or sorghum steam flaking for cattle feed.
- Soybeans are mixed with water.
- Cook with steam to 60 psi (4 to 5 bar).
 - Flaker to increase surface area
 - Cooling of flake (dried).

Source: Diagram from World Grain

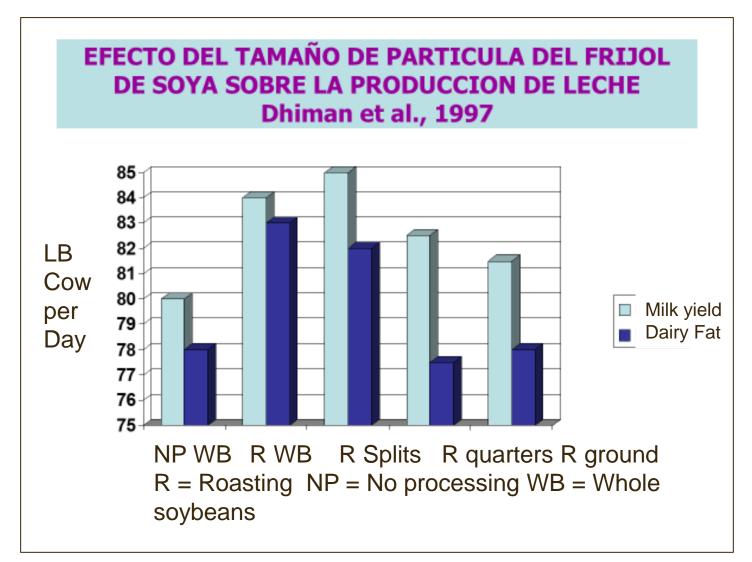
Source: Diagrams from KSU and CPM, photo from Ferrell-Ross

Roasting

- In batches or continuous process.
 - Soybeans lose up to 30% moisture content
 - Direct heat source to cook soybeans.
 - Heat sources: oven (heat by resistence), coal cofiring or direct heat flame, (temperatures between 100°C to 210°C).
 - Some processes uses steam



Roasting


- Short times and don't exceed temperatures of 110°C to 116°C.
- Optimal temperature for soybeans:
 - 110°C to 113°C for monogastrics.
 - 116°C for ruminants to increase the % of non-degradable protein in the rumen.
 - Destroys pathogens due to high temperatures.
 - Does not break the cell walls that hold the oil in soybeans.
 - To extract the oil, it must be ground or broken into smaller pieces.

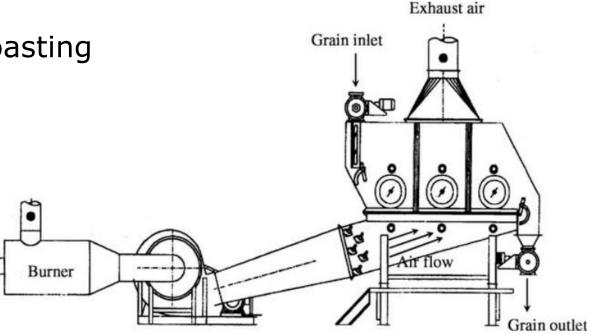
Source: Thomason, 1987 and www.buhlergroup.com/content/

Usage of FFSBM in Dairy Feed

Roasting

• Rotating drum: Rost-A-Matic & Agrotechnology

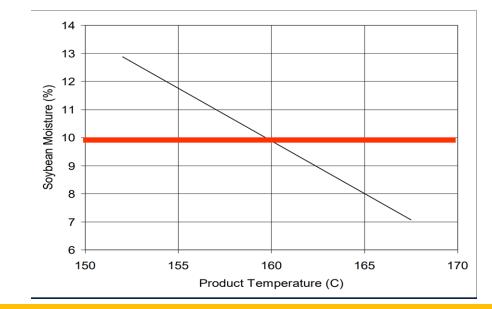
Capacity	18-20t/hr
Size	250"x74"
Voltage	230/440v
Amps	50/30
BTU's	8,500,000
Gas pressure	10-15 psi
Gas consumption	4 gal/ton
Shutdown	High temperature



Cooler to lower temperature

Roasting with Fluidized Bed

- Mix soybeans with air to make it floating to improve heat transfer and cooking.
- Max temperature of 150°C.
- Final temperature cooler than regular roasting
- Similar quality results as extrusion
- Might need water.
- Does not "toast" the soybeans.



Source: Wiriyaumpaiwong, 2004 y Monari, 1996

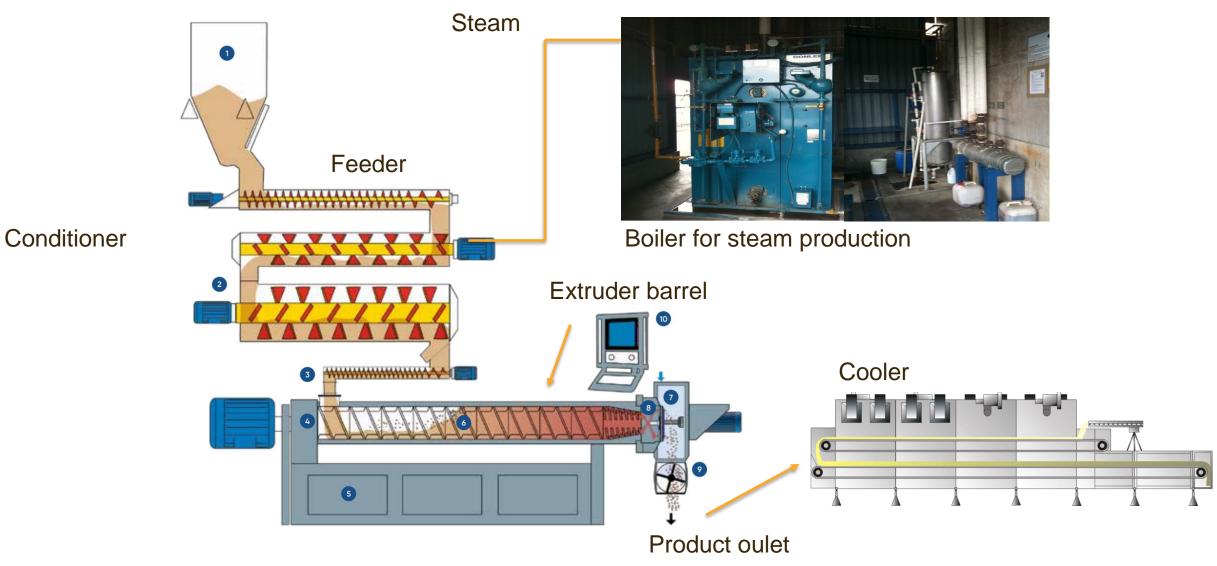
Extrusion

- Continuous process where the soybeans are cook by temperature, pressure, mechanical force.
- Mechanical and thermal energy to cook soybeans.
- Variables of process can be easily controlled.
- Temperatures between 150 to 160 °C (m.c. 9 to 11%).
- Dry or wet using steam.

www.insta-pro.com/en/equipment/extruders/

Low Protein Full Fat Soybean Extrusion (Expeller)

Cooling after Dry Extrusion


- Trypsin inhibitor and urease levels can go back up if product if not properly cool down.
- Can have compaction and condensation problems during storage.
- Coolers can take out 1% to 2.5% of moisture.
- Cooling with ambient temperatures above 37°C is difficult.

Source: www.insta-pro.com/en/blog/engineeringandmaintenance/cooler-maintenance/

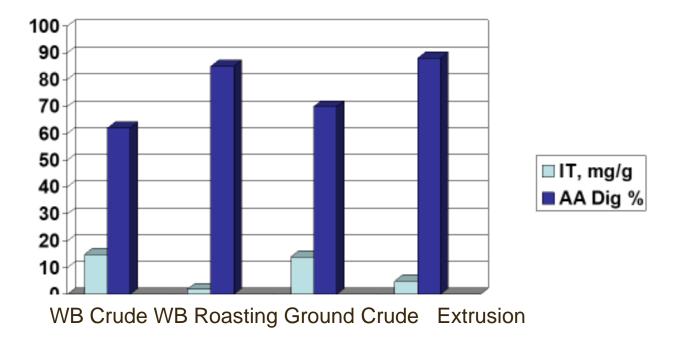
Wet Extrusion

Comparison Extrusion vs Roasting

Extrusion

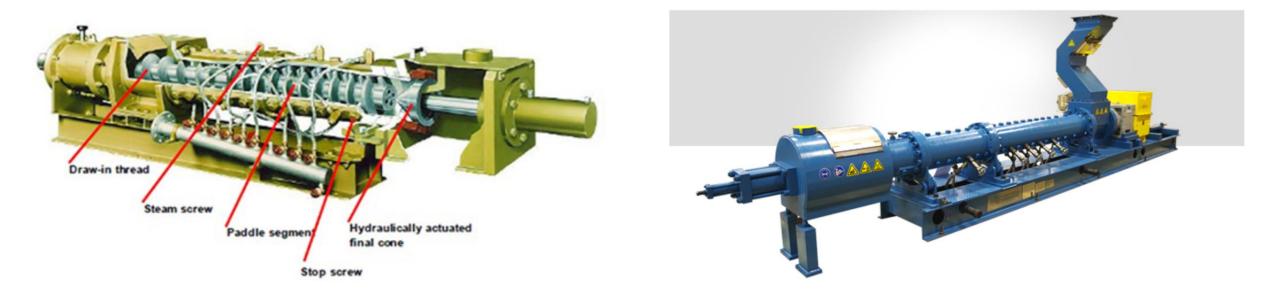
- More expensive but versatile.
- Process is more uniform.
- Can under or over cook
 soybeans
- Dairy:
 - Breaks cells that have the fat
 - Reduces the amount of milk production

Roasting


- Cheaper process.
- Process is less uniform
- Results in less soluble protein increasing the protein passage to the rumen.
- Can denature protein.
- Less metabolize energy.

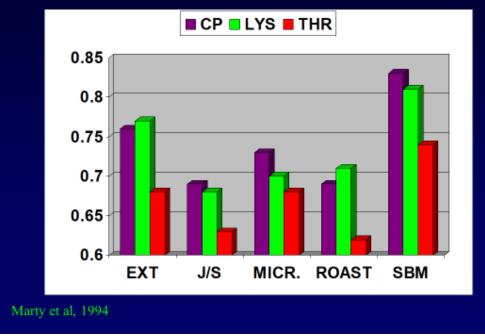
Comparison of Extrusion and Roasting

Effect of Heat Treatment on Trypsin Inhibitors


Aldrich et al., 1997

Expanders

- Temperatures between 70 °C to 170°C for short times 5 to 15 seconds.
- Add water, pressure and steam.
- Uses less energy than an extruder and outlet has a conic shape valve.
- More expensive than extruders.



Amino Acid Digestibility


- Ext = Extrusion
- J/S = Jet Sploding
- MICR = Micronizing
- ROAST = Roasting
- SBM = soybean meal solvent extraction
- CP = Protein
- LYS = Lysine
- THR = Threonine

DIGESTIBILITY OF PROCESSED FULL-FAT SOYA PRODUCT

Mechanical Press

References

- Aldrich, C. G., N. R. Merchen, and J. K. Drackley. 1995. The effect of roasting temperature applied to whole soybeans on site of digestion by steers: I. Organic matter, energy, fiber, and fatty acid digestion. J. Anim. Sci. 73:2120
- Riaz, M. 2007. Extruding full fat soy for maximum quality in All About Feed Magazine. <u>https://www.allaboutfeed.net/Nutrition/</u>
- Bellaver, C. & P. N. J. Snizek. 1999. Processamento da soja e suas implicações na alimentação de suínos e aves. p. 183-199. In Congresso Brasileiro da Soja, 1. Londrina, Paraná. 320 p. Anais.
- Bruns, H et al., 2015. Inclusion of various amounts of steam-flaked soybeans in lactating dairy cattle diets. J. Dairy Sci. 98:7218–7225.
- Campabadal, C. 2016. Uso de la pasta de soya en la alimentación animal, USSEC.
- Johnson, L. and Smith K., Fact Sheet Soybean Meal Processing, US Soybean Board. <u>https://www.soymeal.org/</u>

References

- Monari, S. 1996. Full-Fat Soya Handbook. 2nd edition. American Soybean Association.
- Publicación de Extensión de Universidad de Georgia: <u>https://poultry.caes.uga.edu/extension/poultry-nutrition/soybeans.html</u>
- Van Edys, J. 2013. Manual of quality analyses for soybean products in the feed industry.
 2nd edition. USSEC.
- S. Wiriyaumpaiwong et al. 2004. Comparative study of heating processes for full-fat soybeans. Journal of Food Engineering 653: 71–382
- Thomason, D. 1987. Review of processing systems for full- fat soy. En: Full fat soya. A regional Conference. American Soybean Association. Milán, Italia. Pp 114-122.
- Van Edys, J. 2013. Manual of quality analyses for soybean products in the feed industry.
 2nd edition. USSEC.

Carlos Campabadal, PhD Email: <u>campa@ksu.edu</u> Phone: +1-217-721-1025

Thank you!

