

#### Soy Excellence Center SEC Feed Manufacturing Track – Basic Level



# Animal Nutrition for Feed Manufacturing "Understanding feed ingredients used for each feed formulation"

Patrick Clark, PhD



## **Feed Mills**

- Feed is the single greatest expense in poultry production
  - Ingredients Major cost
  - Processing Significative cost







## **Feed Ingredients**

- Soybean Meal:
  - Excellent balance of amino acids
  - 44 to 48% protein
- Corn:
  - High energy
  - 8.5% protein
- Alternative Ingredients







## **Soybean Meal**

- The most commonly source of protein in poultry diets worldwide
  - High CP content
  - Excellent amino acid (AA) profile that complements cereal grains
  - High AA digestibility
- In a typical corn-soybean meal broiler diet, SBM contributes up to 70% of the dietary CP
- Minimal anti-nutritional factors if properly processed



#### **Protein Quality**

- Regardless of the process used to extract the oil (solvent vs. extrude/expeller), SBM must be properly heated to eliminate trypsin inhibitors
- Overheating results in deterioration of protein quality by destroying heat-sensitive amino acids
  - Result in a decrease in both concentration and digestibility of several AA, especially lysine
  - The reduction in digestibility is due to the Maillard reaction which binds free amino acids to free carbonyl groups (i.e., from carbohydrates)
  - The Maillard reaction-end products are not bio-available for all livestock species



#### **Trypsin Inhibitors**

- Most important group of antinutritional factors present in raw beans
  - Inactivated by heat
  - Lower trypsin inhibitor levels = better nutrient digestibility





#### **Soybean Processing**

- Underheating soybean meal reduces the nutritional value by decreasing amino acid digestibility
- Trypsin inhibitors bind with trypsin to form an inactive complex
  - Induces pancreatic hypertrophy
  - Increases trypsin and chymotrypsin production and secretion
  - Increases cysteine and methionine losses
  - Have been correlated with the occurrence of "rapid feed passage" syndrome in broilers
- Deactivated by sufficient heat treatment
  - 80°C for 10 minutes (solvent extraction)
  - Extruder might vary on design



http://www.intechopen.com/books/soybean-and-nutrition/soybean-meal-quality-and-analytical-techniques







#### TIA and AA Digestibility of Broilers from 19 to 25 d of Age





Clark and Wiseman, 2007

#### **Soybean Processing**

**Over-processed** soybean meal will be darker in color

- Maillard reaction
  - Reduces AA digestibility



http://www.intechopen.com/books/soybean-and-nutrition/soybean-meal-quality-and-analytical-techniques



#### **Indirect Methods for Quality Evaluation**

- Urease activity
  - Preferred method to evaluate SBM quality
    - Range (0.05 to 0.10 △pH)
  - Urea is not an ANF in poultry and its presence does not affect productivity
  - Inactivation resembles the inactivation of trypsin inhibitors
  - High urease values = high levels of trypsin inhibitors)
  - Values close to zero can indicate adequate processing or over-processing
- Protein dispersibility index (PDI)
  - Range15 to 30% National Soybean Processor Association
- Protein solubility in KOH (KOH)
  - Range 78 to 85%
  - Both methods estimate the solubility of the protein faction in SBM
  - High values = under processing
  - Low values = over processing



#### **Recommended Specifications for Dehulled SBM**

| Parameter                      | Level                                       |
|--------------------------------|---------------------------------------------|
| Crude Protein                  | 47.5 to 49.0%                               |
| Total Lysine, 88% DM           | >2.85%                                      |
| Digestible Lysine, %           | >88%                                        |
| Ash                            | <7.5%                                       |
| Protein solubility in 0.2% KOH | 78-85%                                      |
| Urease activity, pH unit rise  | 0.00 - 0.01                                 |
| Trypsin inhibitors, mg/g       | 1.75 – 2.50                                 |
| Mycotoxins                     | Aflatoxin (<20 ppb), DON (< 2ppm)           |
| Texture                        | Uniform, free flowing, no lumps, cake, dust |
| Color                          | Light tan to light Brown                    |
| Odor                           | Fresh, not musty, sour, ammonia, burned     |



**Source: National Oil Processors Association** 

#### **Crude Protein and AA Digestibility**

- Crude protein is influenced by:
  - Cultivar
  - Agronomic and soil conditions
  - Climate
  - Post-Harvest management
  - Processing conditions



## **Soybean Meal**







#### **Better AA Digestibility = Less N in the Litter**







#### **Animal Welfare**





#### **Economic Value**



#### **Suggested Nutritional Values for SBM**

| Nutrient             | US   | Argentina | Brazil |
|----------------------|------|-----------|--------|
| Moisture, %          | 12.5 | 12.0      | 11.2   |
| Crude Protein, %     | 46.7 | 46.0      | 47.1   |
| Lysine, %            | 2.99 | 2.83      | 2.86   |
| TSAA, %              | 1.35 | 1.35      | 1.34   |
| Trypthopan, %        | 0.65 | 0.63      | 0.63   |
| Threonine, %         | 1.82 | 1.82      | 1.82   |
| Crude Fat, %         | 1.63 | 1.60      | 1.90   |
| Sugars, %            | 7.90 | 6.70      | 5.30   |
| AME broiler, kcal/kg | 2000 | 1910      | 1970   |
| AME layer, kcal/kg   | 2325 | 2242      | 2320   |

Source: G.G. Mateos (425 samples taken between 2007-2012)



#### Inverted Cone – Steel Silo



#### Soybeans with ~10% moisture





#### Soybeans Receiving and Processing









#### **Heat Treatment in the Extruder**





#### Effect of Extrusion Temperature Full Fat Soybean Meal

| Indicators                | Range                          | 135°C | 145°C | 155°C | 160°C | 165°C | 170°C |
|---------------------------|--------------------------------|-------|-------|-------|-------|-------|-------|
| <b>PDI</b> , %            | 20-35%<br>(adequately process) | 40.27 | 36.05 | 33.47 | 32.25 | 28.61 | 26.47 |
| KOH Protein Solubility, % | < 65%<br>(overprocesing)       | 79.09 | 73.50 | 74.57 | 77.58 | 68.29 | 57.04 |
| Trypsin inhibitor, mg/g   | 1 to 3.5 mg/g                  | 3.76  | 3.91  | 3.65  | 3.52  | 2.26  | 0.50  |
| Crude Protein, %          |                                | 40.57 | 41.74 | 41.59 | 41.61 | 43.85 | 45.23 |
| Moisture, %               |                                | 5.32  | 4.93  | 4.40  | 4.25  | 3.85  | 3.57  |
| Lys:CP ratio              | >6<br>(Protein quality)        | 6.53  | 6.07  | 6.27  | 6.44  | 6.05  | 6.00  |



Patiño et al., , 2022

#### Effect of Extrusion Temperature Full Fat Soybean Meal

| Indicators                | Range                          | 135°C        | 145°C        | 155°C        | 160°C        | 165°C        | 170°C        |
|---------------------------|--------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| PDI, %                    | 20-35%<br>(adequately process) | ×            | ×            | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| KOH Protein Solubility, % | < 65%<br>(overprocesing)       | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            | ×            |
| Trypsin inhibitor, mg/g   | 1 to 3.5 mg/g                  | ×            | ×            | ×            | ~            | ~            | ×            |
| Lys:CP ratio              | >6<br>(Protein quality)        | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | ×            |



#### **SBM Particle Size**



#### Pacheco et al., 2013



# Yellow Corn

- Good source of:
- Energy: 1,535 kcal/lb
  - Primary feed energy source of all animal feeds
  - No antinutritional factors that limit dietary inclusion
- Protein, fiber, calcium, phosphorus
- Very low in lysine: 0.25%
- Provides carotene and xanthophyll

•Due to its high and consistent energy content, corn has been established as the standard for other cereals and cereal by products

|  | Yellow Corn |      |  |  |  |  |
|--|-------------|------|--|--|--|--|
|  | DM          | 86   |  |  |  |  |
|  | Energy      | 1535 |  |  |  |  |
|  | СР          | 7.5  |  |  |  |  |
|  | EE          | 3.5  |  |  |  |  |
|  | CF          | 1.9  |  |  |  |  |
|  | Ca          | 0.01 |  |  |  |  |
|  | Met         | 0.18 |  |  |  |  |
|  | Lys         | 0.25 |  |  |  |  |



### Yellow Corn – Potential Issues

- Molds and mycotoxins: Excessive rain coupled with high temperatures late in production
  - DON
  - Aflatoxin
  - Zearalenone
- Corn-based diets have lower pellet quality



# **Corn Composition**

- Nutritional composition is influenced by:
  - Type
  - Color
  - Moisture content
  - Drying temperature
  - Grinding method
  - Particle Size (Amerah et al., 2007a).

#### • Major components:

- Endosperm
- Germ
- Pericarp
- Tip Cap



**Pericarp**: Protective outer covering

**Germ**: genetic information, enzymes, oil

Tip Cap: Water, nutrient flow



### **Corn Production**

• Corn is considered the third most important cereal grain worldwide and a main feed ingredient in the livestock diets (Suleiman et al., 2013)

- Global production 2017-2018
  - 1.03 billion metric tons





#### **Corn Usage in USA**



Source: USDA, ERS Feed Outlook, Jan. 15, 2021; ProExporter Network, Projected Crop Year Ending Aug. 31, 2021



### Wheat

- 95% of the energy value to corn
- Higher in protein and lysine than corn
- Diets containing wheat have good quality pellets
- In some countries, wheat is fed up to 40%



#### Wheat vs. Corn





## Wheat – Common Issues

- Wheat contains no yellow pigments
- Starch digestibility may be variable with young birds
- Nutrient content can be variable
- During drought conditions, less carbohydrate and more protein content







# Sorghum

- ME is about 96-97% of corn
- Protein level is higher than corn but less
  than wheat
- With Lys and Met supplementation, sorghum can be used with soybean meal



## **Sorghum – Common Issues**

- Some varieties are high in tannic acid, which prevents mold, and are bird resistant
- Tannins bind with protein and reduce amino acid digestibility
- Low in Arginine
  - 4<sup>th</sup> limiting AA in sorghum based diets





## Barley

- Better amino acid balance than corn or wheat
  - CP: 11-12%
  - Lysine: 0.35-0.40%
- Common Issues:
  - High content of NSP's
  - β-glucanases can be added to diets to enhance β-glucan digestibility



#### **Fats and Oils**

- Sources
  - Animal
  - Vegetable
  - Blended
- 2.25 times as much energy as carbohydrate
- Antioxidant must be added
- Added to mixer and sprayed on post-pelleting
  - Mixer fat addition increases pellet throughput, but reduces pellet quality





## **Bakery Meal**

- By-product from the bakery industry:
  - Breads
  - Snacks
  - Cookies
  - Chips
- These products are usually broken or not suited for human consumption
- · Good source of energy due to its starch and fat contents
- Common issues:
  - High nutrient variability
  - Can contain high levels of sodium
    - This can lead to wet litter if sodium level is underestimated









# DDGS

#### Good source of:

- Protein ~3x the protein content of corn
- Phosphorus
- Energy

#### Common issues:

- Nutrient variability
  - Lower lysine digestibility
- Mycotoxins
  - Purchase from the same provider to reduce variability
- Can reduce pellet quality
  - Low starch content



0

Corn



DDGS

# **Animal By-Product Meals**

- Meat and Bone Meal:
  - No blood, hair, hoof, horn, hide, manure, or stomach contents
  - > 4.0% phosphorus
  - Ca level should not exceed 2.2 times the P content

#### • Meat Meal:

- About the same as meat and bone meal
- Does not include bone
- High connective tissue

#### **Common Issues:**

- Nutrient uniformity is a primary concern
- Microbial contamination can be a problem



### **Macro Minerals – Phosphorus Sources**

- Dicalcium phosphate
- Monocalcium phosphate
- Defluorinated phosphate
  - Dicalcium phosphate has higher in phosphate availability
  - Defluorinated phosphate improves pelleting throughput by polishing pellet dies
    - The inclusion of phytase enzymes has reduced the level of phosphorus
    - Other alternatives have become available to increase production rate
      - Azomite
        - Hydrated sodium calcium aluminosilicate
      - Surfactants

»Reduce surface tension for better steam penetration



## **Calcium Sources**

- The appropriate particle size depends on the solubility of limestone
  - Fine: Broilers
  - Coarse: Layers
- Oyster shell and other marine shells are good sources of soluble calcium
- Limestone dark in color is geologically older, containing more impurities (typically magnesium) and is generally lower in solubility and calcium availability (Mohiti, 2021)





#### **Sodium**

• Sodium chloride: 39% Na



• Sodium bicarbonate: 27% Na





#### Conclusions

- Ingredients represent the major cost in poultry production
- It is important to know the nutritional content of the ingredient and their effect on feed quality and poultry performance



#### Thanks



Wilmer Javier Pacheco, MSc., PhD. Extension Specialist and Associate Professor Auburn University wjp0010@auburn.edu

