Fluid Mechanics (CT-213)

Course Instructor

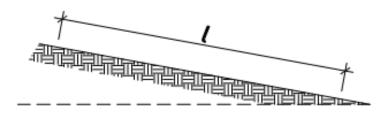
Engr. Abdul Rahim Khan

(Assistant Professor)

College of Engineering and Technology, University of Sargodha

Email: abdul.rahim@uos.edu.pk

Lecture - 11



Introduction

- □ An open channel is a passage through which the water flows under the force of gravity and atmospheric pressure.
- Or in other words, when the free surface of the flowing water is in contact with the atmosphere as in the case of canal, a sewer or an aqueduct, the flow is said to be through an open channel.
- \Box A channel may be covered or open at the top.
- □ The flow of water in the channel is due the slope of the bed of channel instead of pressure as in the case of pipe flow.
- □ The velocity is different at different points in the channel, but calculations are based on the mean velocity of flow.
- □ Here we will assume the flow to be steady and uniform.

Chezy's Formula for Discharge through an Open Channel

Slopping Bed of Channel

Consider an open channel of uniform cross section and bed slope as shown in figure.

Let

- $\blacksquare l = \text{Length of the channel}$
- $\square A = Area of flow$
- v = velocity of water
- \square P = Wetted perimeter of the cross-section
- \Box *f* = Frictional resistance per unit area at unit velocity, and
- i =Uniform slope in the bed.

It has been experimentally found that the total frictional resistance in the length l of the channel follows a law,

Frictional Resistance = $f x Contact Area x (Velocity)^n$

 $= f x Pl x v^{n}$

The value of n has been experiment ally found to be nearly equal to 2. But, for all practical purposes, its value is taken to be 2. Therefore frictional resistance

$$= f x Pl x v^2$$

Since the water moves through a distance v in one second, therefore workdone in overcoming the friction

= Frictional resistance x Distance

$$= f x Pl x v^{2} x v = f x Pl x v^{3}$$

We know that weight of water in the channel in a length of *l* metres.

$$= \gamma A l$$

Where γ is specific Weight of water.

This water will fall vertically down by the distance equal to (v. i) in one second. Therefore loss of potential energy

= Weight of water x Height

$$= \gamma A l x v.i$$

We also know that workdone in overcomong friction

= Loss of potential energy f x Pl x $v^3 = \gamma A l x v.i$ $v^2 = \frac{\gamma A i}{f D}$ $v = \sqrt{\frac{\gamma}{f}} x \sqrt{\frac{A}{P}} x i = C\sqrt{mi}$ Where $C = \sqrt{\frac{\gamma}{f}}$ (Known as Chezy's constant) and $m = \frac{A}{D} =$ (Known as hydraulic mead depth or hydraulic radius)

 \therefore Discharge Q = A x v = A C $\sqrt{\text{mi}}$

Problem-1

A rectangular channel is 1.5m deep and 6m wide. Find the discharge through channel, when it runs full. Take slope of the bed as 1 in 900 and Chezy's constant as 50.

Solution:

Given :

d =1.5m

b = 6m

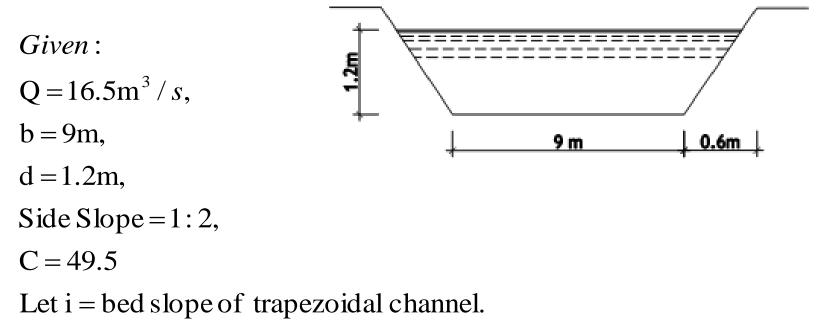
i = 1/900 and C = 50

We know that area of channel,

$$A = b.d = 6 \times 1.5 = 9m^2$$

And wetted perimeter = D = b + 2d = 6 + 2(1.5) = 9m

: Hydraulic mean depth = m = $\frac{A}{P} = \frac{9}{9} = 1m$


Discharge through channel,

Q = A. C
$$\sqrt{\text{mi}} = 9x50\sqrt{1x}\frac{1}{900} = 15m^3 / s$$

Q = A. C $\sqrt{\text{mi}} = 9x50\sqrt{1x}\frac{1}{900} = 15m^3 / s$

Problem-2

Water is flowing at the rate of 16.5 m³/s in an earthen trapezoidal channel with bed width 9m, water depth 1.2m and side slope 1:2. Calculate the bed slope, if the value of C is 49.5. Solution:

We know that area of flow,

$$A = 1/2 \times (9 + 10.2) \times 1.2m^2 = 11.52m^2$$

And wetted perimeter, $P = 9 + 2\sqrt{(1.2)^2 + (0.6)^2} = 11.68m$ Hydraulic Mean Depth = $m = \frac{A}{P} = \frac{11.52}{11.68} = 0.968$ Discharge through the pipe (Q), $Q = A.C\sqrt{m.i}$ $16.5 = 11.52x49.5\sqrt{0.986} \ x \ i$ $i = 8.47x10^{-4} = \frac{1}{1181}$

Problem-3

A channel has two sides vertical and semi-circular bottom of 2 meters diameter. Calculate the discharge of water through the channel, when the depth of flow is 2m. Take C = 70 and slope of bed as 1 in 1000.

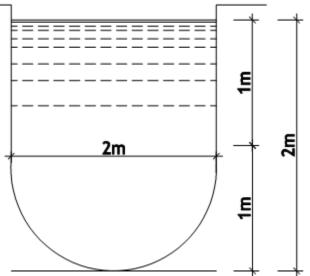
Solution:

Given:

Bottom Diameter = 2m, Depth of Water

C = 70 and i = 1/1000

We know that the area of flow,


$$A = (2x1) + \frac{\pi}{4}(2)^2$$

and Wetted Perimeter, $1 + (\pi x1) + 1 = 5.142m$

$$m = \frac{A}{P} = \frac{3.57}{5.14} = 0.695m$$

and Discharge of water through the channel,

10
$$Q = A.C\sqrt{mi} = 3.57 \times 70 \times \sqrt{0.695 \times \frac{1}{1000}} = 6.597 \text{m}^3/\text{s}$$

Bazin's Formula for Discharge

- 11
- Bazin, after carrying out series of experiments, deducted the following relation for the value of C in the Chezy's formula for discharge,

$$C = \frac{157.6}{1.81 + \frac{K}{\sqrt{m}}}$$

Where K is constant known as Bazin constant, whose value depends upon the roughness of the channel surface and m is the hydraulic mean depth.

Value of K:

S. No.	Type of inside surface of Channel	Value of K
1	Smooth Cement plaster or planed wood	0.11
2	Brickwork, stone or unplaned wood	0.21
3	Poor brickwork or rubble stone	0.83
4	Earth of very good surface	1.54
5	Earth of ordinary surface	2.35
6	Earth of rough surface	3.17

Problem-4

A rectangular channel 1.2m wide and 1m deep has longitudinal slope of 1 in 3000. Using Bazin's formula, find the discharge through the channel.

Solution: *Given* :

b = 1.2m, d = 1m, i = 1/3000 and K = 1.54

We know that the area of flow,

 $A = b.d = 1.2 x 1 = 1.2 m^2$

and Wetted Perimeter = P = 1 + 1.2 + 1 = 3.2m

Hydraulic mean depth = m =
$$\frac{A}{P} = \frac{1.2}{3.2} = 0.375m$$

We know that Chezy's Constant with Bazin's formula,

$$C = \frac{157.6}{1.81 + \frac{K}{\sqrt{m}}} = \frac{157.6}{1.81 + \frac{1.54}{\sqrt{0.375}}} = 36.4$$

and Discharge of water through the channel,

$$Q = A.C\sqrt{mi} = 1.2 \times 36.4 \times \sqrt{0.375 \times \frac{1}{3000}} = 0.489 \text{m}^3/\text{s}$$
Notes Compiled By: Engr. Abdul Rahim Khan (Assistant Professor, DCE, CET, UOS)

S. No.	Type of inside surface of Channel	Value of N
1	Smooth Cement plaster or planed wood	0.010
2	Brickwork, stone or unplaned wood	0.012
3	Poor brickwork or rubble stone	0.017
4	Earth of very good surface	0.020
5	Earth of ordinary surface	0.025
6	Earth of rough surface	0.030

Manning Formula for Discharge

- 15
- Manning, after carrying out series of experiments, deducted the following relation for the value or C in Chezy's formula for discharge: $1 = \frac{1}{6}$

$$\mathbf{C} = \frac{\mathbf{I}}{\mathbf{N}} \times m^{1/6}$$

- □ Where N is constant and has same value as previous table.
- □ Now we see that the velocity,

$$v = C\sqrt{mi} = \frac{1}{N} \times m^{1/6}\sqrt{mi} = \frac{1}{N} \times m^{2/3} \times i^{1/2}$$
$$= \mathbf{M} \times m^{2/3} \times i^{1/2}$$

- \square M = 1/N and is known as Manning's constant.
- \square Now the Discharge, Q = Area x Velocity

= A x M x m^{2/3} x i ^{1/2}

Problem-6

A cement lined rectangular channel 6m wide carries water at the rate of 30m³/s. Find the value of Manning's constant, if the slope required to maintain a depth of 1.5m is 1/625.

Solution:

Given:

$$b = 6m$$
, $Q = 30m^3/s$, $d = 1.5m$ and $i = 1/625$

Let N = Value of Manning' s constant

We know that the area of flow,

 $A = b.d = 6 x 1.5 = 9m^2$

and Wetted Perimeter = P = 1.5 + 6 + 1.5 = 9m

Hydraulic mean depth = m = $\frac{A}{P} = \frac{9}{9} = 1m$

We know that discharge through the channel (Q),

$$Q = A \times \frac{1}{N} \times m^{2/3} \times i^{1/2}$$

$$30 = 9 \times \frac{1}{N} \times (1)^{2/3} \times \left(\frac{1}{625}\right)^{1/2} \implies N = 0.012$$

Notes Compiled By: Engr. Abdul Bal

A channel which gives maximum discharge for a given cross sectional area and bed slope is called a channel of most economical cross-section.

It can also be defined as:

- It gives maximum discharge for a given cross sectional area and bed slope
- □ It has minimum wetted perimeter
- It required lesser excavation for design amount of the discharge

Channels of Most Economical Cross- Sections

- □ The most economical section of a rectangular channel is one which has hydraulic radius equal to half the depth of flow.
- The most economical section of a trapezoidal channel is one which has hydraulic mean depth equal to half the depth of flow.
- The most economical section of a triangular channel is one which has its sloping sides at an angle of 45 degree with the vertical.
- □ The discharge through a channel of rectangular section is maximum when its breadth is twice the depth.

Channels of Most Economical Cross- Sections

- The discharge through a channel of trapezoidal section is maximum when the sloping side is equal to half the width at the top.
- The discharge through a channel of circular section is maximum when the depth of water is equal to 0.95 times the diameter of the circular channel.
- The velocity through a channel of circular section is maximum when the depth of water is equal to 0.81 times the diameter of circular channel.