
CS3162 Introduction to Computer Graphics
Helena Wong, 2000

1

4. Two Dimensional Transformations

In many applications, changes in orientations, size, and shape are accomplished with geometric transformations
that alter the coordinate descriptions of objects.

Basic geometric transformations are:
Translation
Rotation
Scaling

Other transformations:
Reflection
Shear

4.1 Basic Transformations

Translation

We translate a 2D point by adding translation distances, tx and ty, to the original coordinate position
(x,y):

x' = x + tx, y' = y + ty

Alternatively, translation can also be specified by the following transformation matrix:

100
t10
t01

y

x

Then we can rewrite the formula as:

1
'y
'x

=

100
t10
t01

y

x

1
y
x

For example, to translate a triangle with vertices at original coordinates (10,20), (10,10), (20,10) by
tx=5, ty=10, we compute as followings:

Translation of vertex (10,20):

1
'y
'x

=

100
1010
501

1
20
10

=

++
++
++

1*120*010*0
1*1020*110*0
1*520*010*1

=

1
30
15

Translation of vertex (10,10):

1
'y
'x

=

100
1010
501

1
10
10

=

++
++
++

1*110*010*0
1*1010*110*0
1*510*010*1

=

1
20
15

CS3162 Introduction to Computer Graphics
Helena Wong, 2000

2

Translation of vertex (20,10):

1
'y
'x

=

100
1010
501

1
10
20

=

++
++
++

1*110*020*0
1*1010*120*0
1*510*020*1

=

1
20
25

The resultant coordinates of the triangle vertices are (15,30), (15,20), and (25,20) respectively.

Exercise: translate a triangle with vertices at original coordinates (10,25), (5,10), (20,10) by tx=15,
ty=5. Roughly plot the original and resultant triangles.

Rotation About the Origin

To rotate an object about the origin (0,0), we specify the rotation angle ?. Positive and negative values
for the rotation angle define counterclockwise and clockwise rotations respectively. The followings is
the computation of this rotation for a point:

x' = x cos ? - y sin ?
y' = x sin ? + y cos ?

Alternatively, this rotation can also be specified by the following transformation matrix:

θθ
θ−θ

100
0cossin
0sincos

Then we can rewrite the formula as:

1
'y
'x

=

θθ
θ−θ

100
0cossin
0sincos

1
y
x

For example, to rotate a triange about the origin with vertices at original coordinates (10,20), (10,10),
(20,10) by 30 degrees, we compute as followings:

θθ
θ−θ

100
0cossin
0sincos

=

 −

100
030cos30sin
030sin30cos

=

 −

100
0866.05.0
05.0866.0

Rotation of vertex (10,20):

1
'y
'x

=

 −

100
0866.05.0
05.0866.0

1
20
10

=

++
++

+−+

1*120*010*0
1*020*866.010*5.0

1*020*)5.0(10*866.0
=

−

1
32.22
34.1

CS3162 Introduction to Computer Graphics
Helena Wong, 2000

3

Rotation of vertex (10,10):

1
'y
'x

=

 −

100
0866.05.0
05.0866.0

1
10
10

=

++
++

+−+

1*110*010*0
1*010*866.010*5.0

1*010*)5.0(10*866.0
=

1
66.13
66.3

Rotation of vertex (20,10):

1
'y
'x

=

 −

100
0866.05.0
05.0866.0

1
10
20

=

++
++

+−+

1*110*020*0
1*010*866.020*5.0

1*010*)5.0(20*866.0
=

1
66.18
32.12

The resultant coordinates of the triangle vertices are (-1.34,22.32), (3.6,13.66), and (12.32,18.66)
respectively.

Exercise: Rotate a triange with vertices at original coordinates (10,20), (5,10), (20,10) by 45
degrees. Roughly plot the original and resultant triangles.

Scaling With Respect to the Origin

We scale a 2D object with respect to the origin by setting the scaling factors sx and sy, which are
multiplied to the original vertex coordinate positions (x,y):

x' = x * sx, y' = y * sy

Alternatively, this scaling can also be specified by the following transformation matrix:

100
0s0
00s

y

x

Then we can rewrite the formula as:

1
'y
'x

=

100
0s0
00s

y

x

1
y
x

For example, to scale a triange with respect to the origin, with vertices at original coordinates (10,20),
(10,10), (20,10) by sx=2, sy=1.5, we compute as followings:

Scaling of vertex (10,20):

1
'y
'x

=

100
05.10
002

1
20
10

=

++
++

++

1*120*010*0
1*020*5.110*0

1*020*010*2
=

1
30
20

CS3162 Introduction to Computer Graphics
Helena Wong, 2000

4

Scaling of vertex (10,10):

1
'y
'x

=

100
05.10
002

1
10
10

=

++
++

++

1*110*010*0
1*010*5.110*0

1*010*010*2
=

1
15
20

Scaling of vertex (20,10):

1
'y
'x

=

100
05.10
002

1
10
20

=

++
++

++

1*110*020*0
1*010*5.120*0

1*010*020*2
=

1
15
40

The resultant coordinates of the triangle vertices are (20,30), (20,15), and (40,15) respectively.

Exercise: Scale a triange with vertices at original coordinates (10,25), (5,10), (20,10) by sx=1.5,
sy=2, with respect to the origin. Roughly plot the original and resultant triangles.

4.2 Concatenation Properties of Composite Matrix

I. Matrix multiplication is associative:

A·B·C = (A·B) ·C = A·(B·C)

Therefore, we can evaluate matrix products using these associative grouping.
For example, we have a triangle, we want to rotate it with the matrix B, then we translate it with
matrix A.
Then, for a vertex of that triangle represented as C, we compute its transformation as:

C'=A·(B·C)

But we can also change the computation method as:

C' = (A·B)·C

The advantage of computing it using C' = (A·B)·C instead of C'=A·(B·C) is that, for computing
the 3 vertices of the triangle, C1, C2, C3, the computation time is shortened:

Using C'=A·(B·C):
1. compute B · C1 and put the result into I1

2. compute A · I1 and put the result into C1
'

3. compute B · C2 and put the result into I2

4. compute A · I2 and put the result into C2
'

5. compute B · C3 and put the result into I3

6. compute A · I3 and put the result into C3
'

Using C' = (A·B)·C:
1. compute A · B and put the result into M
2. compute M · C1 and put the result into C1

'

3. compute M · C2 and put the result into C2
'

4. compute M · C3 and put the result into C3
'

CS3162 Introduction to Computer Graphics
Helena Wong, 2000

5

Example: Rotate a triangle with vertices (10,20), (10,10), (20,10) about the origin by 30 degrees
and then translate it by tx=5, ty=10,

We compute the rotation matrix:

B =

 −

100
030cos30sin
030sin30cos

=

 −

100
0866.05.0
05.0866.0

And we compute the translation matrix:

A=

100
1010
501

Then, we compute M=A·B

M=

100
1010
501

·

 −

100
0866.05.0
05.0866.0

M=

++++−++
++++−++
++++−++

1*10*00*00*1866.0*05.0*00*15.0*0866.0*0
1*100*10*00*10866.0*15.0*00*105.0*1866.0*0
1*50*00*10*5866.0*05.0*10*55.0*0866.0*1

M=

 −

100
10866.05.0
55.0866.0

Then, we compute the transformations of the 3 vertices:
Transformation of vertex (10,20):

1
'y
'x

=

 −

100
10866.05.0
55.0866.0

1
20
10

=

++
++

+−+

1*120*010*0
1*1020*866.010*5.0
1*520*)5.0(10*866.0

=

1
32.32

66.3

Transformation of vertex (10,10):

1
'y
'x

=

 −

100
10866.05.0
55.0866.0

1
10
10

=

++
++

+−+

1*110*010*0
1*1010*866.010*5.0
1*510*)5.0(10*866.0

=

1
66.23

66.8

CS3162 Introduction to Computer Graphics
Helena Wong, 2000

6

Transformation of vertex (20,10):

1
'y
'x

=

 −

100
10866.05.0
55.0866.0

1
10
20

=

++
++

+−+

1*110*020*0
1*1010*866.020*5.0
1*510*)5.0(20*866.0

=

1
66.28
32.17

The resultant coordinates of the triangle vertices are (3.66,32.32), (8.66,23.66), and (17.32,28.66)
respectively.

II. Matrix multiplication may not be commutative:

A·B may not equal to B·A

This means that if we want to translate and rotate an object, we must be careful about the order in
which the composite matrix is evaluated. Using the previous example, if you compute C' =
(A·B)·C, you are rotating the triangle with B first, then translate it with A, but if you compute C' =
(B·A)·C, you are translating it with A first, then rotate it with B. The result is different.

Exercise: Translate a triangle with vertices (10,20), (10,10), (20,10) by tx=5, ty=10 and then rotate it
about the origin by 30 degrees. Compare the result with the one obtained previously:
(3.66,32.32), (8.66,23.66), and (17.32,28.66) by plotting the original triangle together
with these 2 results.

4.3 Composite Transformation Matrix

Translations

By common sense, if we translate a shape with 2 successive translation vectors: (tx1, ty1) and (tx2, ty2),
it is equal to a single translation of (tx1+ tx2, ty1+ ty2).
This additive property can be demonstrated by composite transformation matrix:

100
t10
t01

1y

1x

·

100
t10
t01

2y

2x

=

++++++
++++++
++++++

1*1t*0t*00*11*00*00*10*01*0
1*tt*1t*00*t1*10*00*t0*11*0
1*tt*0t*10*t1*00*10*t0*01*1

2u2x

1y2y2x1y1y

1x2y2x1x1x

=

+
+

100
tt10
tt01

2y1y

2x1x

This demonstrates that 2 successive translations are additive.

CS3162 Introduction to Computer Graphics
Helena Wong, 2000

7

Rotations

By common sense, if we rotate a shape with 2 successive rotation angles: ? and a, about the origin, it
is equal to rotating the shape once by an angle ? + a about the origin.
Similarly, this additive property can be demonstrated by composite transformation matrix:

θθ
θ−θ

100
0cossin
0sincos

·

αα
α−α

100
0cossin
0sincos

=

+++α+α−+α+α
+θ+θ+αθ+α−θ+αθ+αθ

+θ−+θ+αθ−+α−θ+αθ−+αθ

1*10*00*00*1cos*0)sin(*00*1sin*0cos*0
1*00*cos0*sin0*0cos*cos)sin(*sin0*0sin*coscossin

1*00*)sin(0*cos0*0cos*)sin()sin(*cos0*0sin*)sin(coscos

=

αθ+αθ−αθ+αθ
αθ+αθ−αθ−αθ

100
0coscossinsinsincoscossin
0)cossinsin(cossinsincoscos

=

α+θα+θ
α+θ−α+θ

100
0)cos()sin(
0)sin()cos(

This demonstrates that 2 successive rotations are additive.

Scalings With Respect to the Origin

By common sense, if we scale a shape with 2 successive scaling factor: (sx1, sy1) and (sx2, sy2), with
respect to the origin, it is equal to a single scaling of (sx1* sx2, sy1* sy2) with respect to the origin.
This multiplicative property can be demonstrated by composite transformation matrix:

100
0s0
00s

1y

1x

·

100
0s0
00s

2y

2x

=

++++++
++++++
++++++

1*10*00*00*1s*00*00*10*0s*0
1*00*s0*00*0s*s0*00*00*ss*0
1*00*00*s0*0s*00*s0*00*0s*s

2y2x

1y2y1y1y2x

1x2y1x2x1x

=

100
0s*s0
00s*s

2y1y

2x1x

This demonstrates that 2 successive scalings with respect to the origin are multiplicative.

CS3162 Introduction to Computer Graphics
Helena Wong, 2000

8

General Pivot-Point Rotation

Rotation about an arbitrary pivot point is not as simple as rotation about the origin. The procedure of
rotation about an arbitrary pivot point is:

1. Translate the object so that the pivot-point position is moved to the origin.
2. Rotate the object about the origin.
3. Translate the object so that the pivot point is returned to its original position.

The corresponding composite transformation matrix is:

100
y10
x01

r

r

θθ
θ−θ

100
0cossin
0sincos

−
−

100
y10
x01

r

r

=

θθ
θ−θ

100
ycossin
xsincos

r

r

−
−

100
y10
x01

r

r

=

+θ−θ−θθ
+θ+θ−θ−θ

100
ycosysinxcossin
xsinycosxsincos

rrr

rrr

General Fixed-Point Scaling

Scaling with respect to an arbitrary fixed point is not as simple as scaling with respect to the origin.
The procedure of scaling with respect to an arbitrary fixed point is:

1. Translate the object so that the fixed point coincides with the origin.
2. Scale the object with respect to the origin.
3. Use the inverse translation of step 1 to return the object to its original position.

CS3162 Introduction to Computer Graphics
Helena Wong, 2000

9

The corresponding composite transformation matrix is:

100
y10
x01

f

f

100
0s0
00s

y

x

−
−

100
y10
x01

f

f

 =

−
−

100
)s1(ys0
)s1(x0s

yfy

xfx

General Scaling Direction

Scaling along an arbitrary direction is not as simple as scaling along the x-y axis. The procedure of
scaling along and normal to an arbitrary direction (s1 and s2), with respect to the origin, is:

1. Rotate the object so that the directions for s1 and s2 coincide with the x and y axes respectively.
2. Scale the object with respect to the origin using (s1, s2).
3. Use an opposite rotation to return points to their original orientation.

The corresponding composite transformation matrix is:

θ−θ−
θ−−θ−

100
0)cos()sin(
0)sin()cos(

100
0s0
00s

2

1

θθ
θ−θ

100
0cossin
0sincos

4.4 Other Transformations

Reflection

Reflection about the x axis:

1
'y
'x

=

−

100
010
001

1
y
x

ie. x'=x; y'=-y

Reflection about the y axis:

1
'y
'x

=

−

100
010
001

1
y
x

ie. x'=-x; y'=y

CS3162 Introduction to Computer Graphics
Helena Wong, 2000

10

Flipping both x and y coordinates of a point relative to the origin:

1
'y
'x

=

−

−

100
010
001

1
y
x

ie. x'=-x; y'=-y

Reflection about the diagonal line y=x:

1
'y
'x

=

100
001
010

1
y
x

ie. x'=y; y'=x

Reflection about the diagonal line y=-x:

1
'y
'x

=

−

−

100
001
010

1
y
x

ie. x'=-y; y'=-x

Shear

X-direction shear, with a shearing parameter shx, relative
to the x-axis:

1
'y
'x

=

100
010
0sh1 x

1
y
x

ie. x'=x+y*shx; y'=-x

Exercise: Think of a y-direction shear, with a shearing parameter shy, relative to the y-axis.

4.5 Transformation Between 2 Cartesian Systems

For modelling and design applications, individual objects may be defined in their own local Cartesian
References. The local coordinates must then be transformed to position the objects within the overall
scene coordinate system.

Suppose we want to transform object descriptions from the xy system to the x'y' system:

The composite transformation is:

θ−θ−
θ−−θ−

100
y)cos()sin(
x)sin()cos(

r

r

−
−

100
y10
x01

0

0

