UNIVERSITY OF SARGODHA

FACULITY OF AGRICULTURE

Plant Protection Measures

by

Dr. Muhammad Yasin

Department of Agronomy COA, UOS

DEPARTMENT OF AGRONOMY

Plant Protection

Weeds + Insects + Diseases

DEPARTMENT OF AGRONOMY

crop plants

Measures or Methods used for protection

Plant Protection

• **Definition**: Various measures adopted to control or reduce insects, disease or weeds pressure on

- 1. Cultural or Indirect Measures
- 2. Chemical Control or Direct Measures

DEPARTMENT OF AGRONOMY

Cultural or Indirect Measures

Healthy and clean seeds

- · Wheat seeds may carry fungal spores of loose smut spores.
- · Cotton seeds should be sundried before sowing to kill larvae of pink worm in seed shell.

Sowing time

- Wheat sown in 3 or 4 week of October is heavily infested with flag smut.
- · Cotton sowing in April or June remain safe from wilt or root rot compared to crop sown in May.
- Gram wilt can controlled by delayed sowing.

Cultural or Indirect Measures

Sowing method

- Sowing of rice through nursery can check borers and disease attack.
- · Optimal planting geometry of cotton facilitate air circulation and light penetration which check aphid, jassid and white fly.

Fertilizer and irrigation

· Timely application of fertilizer and irrigation create resistance against insect and disease attack in plants.

Cultural or Indirect Measures

Mixed sowing

- · Mixed sowing of wheat and gram can reduce the fungal attack of gram as wheat act as barrier for
- Sowing of moth in cotton can check cotton wilt or root rot.

Field sanitation or clean farming

· Fields should keep free from weeds and crop residues may act as alternative hosts for dieases and insects.

DEPARTMENT OF AGRONOMY

DEPARTMENT OF AGRONOMY

DEPARTMENT OF AGRONOMY

UNIVERSITY OF SARGODHA

Cultural or Indirect Measures

Resistance varieties

- Cotton varieties with rough and hairy leaves less attacked by sucking insects.
- · Stiff stem sugarcane (BL-19) is less affected by borer and wild boar / rats.

Removal of diseased plants

· Plants of sugarcane affected by smut and red rot, spikes of wheat with loose smut should be removed.

Harvesting

· Crop must harvest near soil. Stubbles of rice, sugarcane, maize and cotton should be ploughed

DEPARTMENT OF AGRONOMY

Cultural or Indirect Measures

Ratoon crop

· Ratooning of sugarcane avoided if sever attack of red rot or borer.

Burying and burning of stubbles

Crop rotation

 Crop rotation discourage accumulation of insect and diseases. When host plant not present in field parasite will starved to death.

DEPARTMENT OF AGRONOMY

Advantages of Cultural Measures

- · No need of pesticides, machinery and technical guidance.
- · Harmless.
- No damage to beneficial insects.
- Insects are controlled in pupa or larvae stage and hidden in stubbles.

Advantages of Chemical control

- · Quick and complete
- Economical
- Time saving
- · Less laborious

DEPARTMENT OF AGRONOMY

Classification of Insecticides

Classification of Insecticides

Chlorinated Hydrocarbons

- · Chlorine, hydrogen and carbon are constituents.
- In addition to these some have oxygen and
- · Mode of action: reaching insect stomach on chewing or swelling or by contact action.
- Corrode the skin, paralyse nervous system by interring blood.
- · Examples: DDT, BHC, Heptachlore, Endrin, Eldrin
- Suitable for grasshoppers, cutworms, army worms, toka etc.

Organophosphate

- · Phosphate is a principal constituent.
- · Suitable for sucking type of insects Aphids, Jassids, Whitefly, Mites etc.

Classification of Insecticides

· Group is sub-divided into:

A. Systemic Organophosphate:

- · Absorbed by leaves after spray, enter into vital fluid and reach everywhere in plant.
- Insects are killed when suck the sap or chew leaves parts.

DEPARTMENT OF AGRONOMY

UNIVERSITY OF SARGODHA

FACULITY OF AGRICULTURE

Classification of Insecticides

Examples of Systemic Organophosphate:

1. Dimethoate

Rogal, Perfekthain, Ciagon, Sistoet.

2. Methamidophos

Sundaphos, Master, Monitor, Timaron

3. Fenothoat

Cidel. Elsan

DEPARTMENT OF AGRONOMY

UNIVERSITY OF SARGODHA

FACULITY OF AGRICULTI

Classification of Insecticides

A. Examples of Systemic Organophosphate:

4. Endosulfan

Thiodan, Thioluxan.

5. Phosphamidan

Dimecran, Pilarwan

6. Diazinon

Diazinon, Basudin

DEPARTMENT OF AGRONOMY

UNIVERSITY OF SARGODHA

FACULITY OF AGRICULTURE

Classification of Insecticides

B. Non-Systemic Organophosphate:

- Absorbed by leaves or tissue after spray, but not translocated.
- Insects are killed when suck the sap or chew leaves parts.

Examples of Non-Systemic Organophosphate:

1. Monocrotophos

Nuvacron, Pillardin, Nokout, Monophos, Suncrotophos.

2. Milothian

Ematos

DEPARTMENT OF AGRONOMY

(Q)

NIVERSITY OF SARGODHA

ACULITY OF AGRICULTURE

Examples of Non-Systemic Organophosphate:

DEPARTMENT OF AGRONOMY

3. Methaacerephos

Nogas, Phostac.

LINIVERSITY OF SARGODHA

FACULITY OF AGRICULTURE

Classification of Insecticides

Carbamates

- Carbolic acid is a basic ingredient.
- · Absorbed through stem
- Suitable for Maize, rice, sugarcane borers.
- · Available in granules or dust form.
- Examples: Thimet, Padan, Furadan, Curator, Primos, Acalex, Seven dust and Linate dust.

NIVERSITY OF SARGODHA

FACULITY OF AGRICULTURE

Classification of Insecticides

Pyrethrouid

- Absorbed through leaves and kill through contact action.
- · Systemic, very rapid.

Examples of Pyrethrouid:

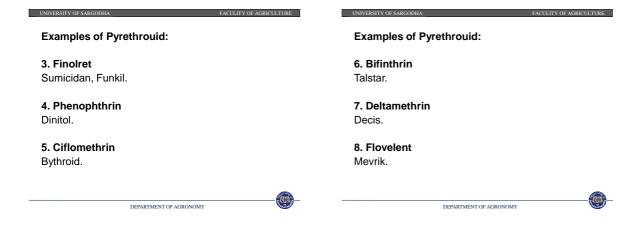
1. Cypermethrin

Arivo, Cymbush, Nurale, Shurpa.

2. Permethrin

Ambush, Permasect.

DEPARTMENT OF AGRONOMY



Dr. Muhammad Yasin (Department of Agronomy)

