Position 4-Vector and 4-Velocity

We start our search for correct equations of motion by considering with a velocity $V = (V_x, V_y, V_z)$. The points We start our search to the motion of a particle moving with a velocity $V = (V_x, V_y, V_z)$. The position the motion of a particle at any instant t can be described by a point position the motion of a particle moving (x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₁, x₂, x₃) of this particle at any instant t can be described by a point P(x₂, x₃, x₃) of this particle at any instant t can be described by a point P(x₂, x₃, x₃) of this particle at any instant t can be described by a point P(x₂, x₃, x₃) of this particle at any instant t can be described by a point P(x₂, x₃, x₃) of this particle at any instant t can be described by a point P(x₂, x₃, x₃, x₃) of this particle at any instant t can be described by a point P(x₂, x₃, x₃, x₃) of this particle at any instant t can be described by a point P(x₂, x₃, x₃, x₃, x₃) of this particle at any instant t can be described by a point P(x₃, x₃, (x_1, x_2, x_3) of this particle at any instance $(x_1$ x_3 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_3 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 , x_4 = ict) in a trame of fellowing x_4 and x_4 = ict) in a trame of fellowing x_4 = ict) in a transition of the fellowing x_4 = ict) in a transition of fellowing x_4 = ict) in a transition of the fellowing x_4 = ict) in a transition of the fellowing x_4 = ict) in a transition of the fellowing x_4 = ict) in a transition of the fellowing x_4 = i The vector drawn from the original the vector. In this case, the coordinates x₁, x₂, particle is called its position 4-vector. In this case, the coordinates x₁, x₂, x₃, x₄, x₅, x particle is called its position x_4 of the particle are also the components of this 4-vector. The position 4 x_{μ} of the particle are usually denoted by x_{μ} . The rate of change of position 4 vector is therefore usually expect to its proper time will also be a 4-vector x_{μ} of the particle with respect to its proper time will also be a 4-vector. vector x_{μ} of the parties because the proper time is an invariant quantity. This is called 4-velocity and is denoted by V_{μ} :

$$V_{\mu} = \frac{\mathrm{d}x_{\mu}}{\mathrm{d}\tau}.\tag{3.1}$$

Problem

Can we obtain a velocity 4-vector by differentiating x_{μ} with respect to t?

4-velocity Components

Equation (3.1) may be written as

$$V_{\mu} = \frac{\mathrm{d}x_{\mu}}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}\tau} = \frac{1}{\sqrt{1 - V^2/c^2}} \frac{\mathrm{d}x_{\mu}}{\mathrm{d}t} = \gamma(V) \frac{\mathrm{d}x_{\mu}}{\mathrm{d}t}.$$

Let us write explicitly the components of the 4-velocity V_{μ} . We have

$$V_1 = \gamma(V) \frac{dx_1}{dt} = \gamma(V) V_x. \tag{3.2a}$$

Similarly,

$$V_2 = \gamma(V) V_y \tag{3.2b}$$

$$V_3 = \gamma(V) V_2 \tag{3.2c}$$

$$V_4 = \gamma(V) \frac{dx_4}{dt} = ic \gamma(V). \tag{3.2c}$$

We may therefore write

V = (V,

70

/- For V/c + 0. velocity redu of the 4-velo

 V_{μ}

This is a c also shows S same way

for veloci veloc

> Here V v is the the tra

V2, V betwe

whe

$$V_{B} = (V_{1}, V_{2}, V_{3}, V_{4}) = \gamma(V) (V, ic) = \frac{1}{\sqrt{1 - V^{2}/c^{2}}} (V, ic).$$
 (3.2e)

For $V/c \to 0$, the function $\gamma(V) \to 1$, and the first three components of the 4velocity reduce to the components of the Newtonian 3-velocity. The magnitude of the 4-velocity is given by

$$V_{\mu} V_{\mu} = V_{1}^{2} + V_{2}^{2} + V_{3}^{2} + V_{4}^{2} = \gamma(V) (V_{x}^{2} + V_{y}^{2} + V_{z}^{2}) - c^{2} \gamma^{2}(V)$$

$$= \gamma^{2}(V) (V^{2} - c^{2}) = \frac{1}{1 - V^{2}/c^{2}} (V^{2} - c^{2}) = -c^{2} \gamma^{2}(V)$$
(3.3)

This is a constant quantity as the magnitude of every 4-vector must be. This also shows that the 4-velocity is a time-like vector.

Since V_{μ} is a 4-vector, its components V_1 , V_2 , V_3 , V_4 transform in the same way as x1, x2, x2, x4, i.e., as x, y, z, ict. Hence the transformation equations

same way as
$$x_1, x_2, x_3, x_4$$
, i.e., as x, y, z , ict. Hence the transformation equations for velocity are given by

 $V_1' = \gamma(v) (V_1 + i \frac{v}{c} V_d)$

(3.4a)

$$V_2' = V_2$$
 (3.4b)

$$V_3' = V_3 \tag{3.4c}$$

$$V'_{4} = \gamma(v) (V_{4} - i \frac{v}{c} V_{1}).$$
 (3.4d)

Here V and V' are the speeds of the particle in the two frames of reference, v is the relative speed of the two frames and $\gamma(v) = 1/\sqrt{1-v^2/c^2}$. To find the transformation laws for V, V, V, we substitute the expressions for V, V25 V5 from equations (3.2) in equations (3.4) and use similar relations between V'_1, V'_2, V'_3 and V'_4, V'_7, V'_1. We then obtain

$$V'_* = A (V_* - v) \tag{3.5a}$$

$$V'_* \approx \gamma(V) V_v/\gamma(V') = A V_v/\gamma(v)$$
 (3.5b)

$$V'_{s} = \gamma(V) V_{s}/\gamma(V') = A V_{s}/\gamma(v), \qquad (3.5c)$$

where
$$A = \gamma(v) \gamma(V)/\gamma(V')$$
. (3.5d)

Relativistic mechanics

Ch. 31

Now substituting the expressions for V_1 , V_4 and V'_4 from equations (3.2d) in equation (3.2d) in equation (3.2d) in equation (3.4d), we get

$$1 = \gamma(v) \gamma(V) (1 - \frac{v}{c^2} V_x) / \gamma(V').$$

Using equation (3.5d), this can be written as

$$1 = A \left(1 - \frac{v}{c^2} V_x\right). \tag{3.6}$$

Substituting the expression for A from equation (3.6) in equations (3.5) c), we get

$$V_x' = \frac{V_x - v}{1 + \frac{v}{c^2} V_x}$$
 (3.74)

$$V_y' = \frac{V_y}{\gamma \left(1 + \frac{v}{c^2} V_x\right)}$$
 (3.7b)

$$V_z' = \frac{V_z}{\gamma \left(1 + \frac{v}{c^2} V_x\right)},$$

where, as already pointed out, γ stands for $\gamma(v)$.

The last three equations

The last three equations give the transformation law for components of 3-velocity.

4Man