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V= (Y, Vy V, V) = 1(V) (V. ic) = ———— (V,io).  (32¢)
P f‘(‘ l_vz/cz
v, Far Ve~ 0, the function (V) = 1, and the first three components of the 4-
velocity reduce to the com ponents of the Newtonian 3-velocity. The magnitude
of the 4-velocity is given by
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This i a constant quantity as the magmmdc of every d-vector must be, This
also shows that the 4-velocity is a time-like vector,
Since V, 1s a dvector, its components V,, V,, V,, V, transform in the
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Here Voand V7 are the speeds of the particle in the two frames of reference,
v i the relative speed of the two frames and 77(v) = 1/ /1 -~/ To find
the transformation laws for V.V, V,, we substitute the expressions for V,,
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Vv, = TV V1Y) = AV /) (3.5b)
V', = 1(V)VJSTIV') = AV 109, (359

where A = 7(v) T(V)/T(V'). (3.5d)
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