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Functions All Around Us

In nearly every physical phenomenon we observe that one quantity depends on
another. For example, your height depends on your age, the temperature depends on
the date, the cost of mailing a package depends on its weight (see Figure 1). We use
the term function to describe this dependence of one quantity on another. That is,
we say the following:

® Height is a function of age.

= Temperature is a function of date.

® Cost of mailing a package is a function of weight.

The U.S. Post Office uses a simple rule to determine the cost of mailing a package

based on its weight. But it’s not so easy to describe the rule that relates height to
age or temperature to date.
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Height is a function of age. Temperature is a function of date. Postage is a function of weight.

Can you think of other functions? Here are some more examples:

® The area of a circle i1s a function of its radius.
® The number of bacteria in a culture is a function of time.
= The weight of an astronaut is a function of her elevation.

= The price of a commodity is a function of the demand for that commodity.
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The area A of a circle depends on its radius r. The rule that describes this
dependence is given by the formula A = 72 The number N of bacteria in a culture
depends on the period of time ¢ the culture has been growing. The rule that connects
N and ¢ in this case is given by the formula N = 50 - 2. The weight w of an astro-
naut depends on her elevation /. Physicists use the rule w = woR?*/(R + h)?, where
wy 18 the astronaut’s weight at sea level and R is the radius of the earth. The price p
of a commodity (wheat, for instance) depends on the demand y for that commodity.

Even when a precise rule or formula describing a function is not available, we
can still describe the function by a graph. For example, when you turn on a hot
water faucet, the temperature of the water depends on how long the water has been
running. So we can say

In the Focus on Modeling, pages
2905-307. we learn how to find func-
tions that model real-life data.
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® Temperature of water from the faucet is a function of time.

Figure 2 shows a rough graph of the temperature 7 of the water as a function of the
time 7 that has elapsed since the faucet was turned on. The graph shows that the ini-
tial temperature of the water is close to room temperature. When the water from the
hot water tank reaches the faucet, the water’s temperature 7" increases quickly. In
the next phase, 7' is constant at the temperature of the water in the tank. When the
tank is drained, 7 decreases to the temperature of the cold water supply.
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Definition of Function

A function is a rule. In order to talk about a function, we need to give it a name. We
will use letters such as f, g, h, . . . to represent functions. For example, we can use
the letter f to represent a rule as follows:

“f7 is the rule “square the number”

When we write f(2), we mean “apply the rule f to the number 2.” Applying the
rule gives f(2) = 2° = 4. Similarly, f(3) = 3* = 9, f(4) = 4*> = 16, and in general
flx) = x°

Definition of Function

A function f is a rule that assigns to each element x in a set A exactly one ele-
ment, called f(x), in a set B.
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We usually consider functions for which the sets A and B are sets of real num-
bers. The symbol f(x) is read “f of x” or “f at x”” and is called the value of f at x, or
the image of x under f. The set A is called the domain of the function. The range
of fis the set of all possible values of f(x) as x varies throughout the domain, that is,

range of f = {f(x) | x € A}

The symbol that represents an arbitrary number in the domain of a function f is
called an independent variable. The symbol that represents a number in the range
of fis called a dependent variable. For instance, in the bacteria example, 7 is the
independent variable and N is the dependent variable.

It’s helpful to think of a function as a machine (see Figure 3). If x is in the
domain of the function f, then when x enters the machine, it is accepted as an input
and the machine produces an output f(x) according to the rule of the function. Thus,
we can think of the domain as the set of all possible inputs and the range as the set
of all possible outputs.

Figure 3 nl L

X e h — f(X)
Machine diagram of f input /L J\ output




» Another way to picture a function is by an arrow diagram as in Figure 4. Each
arrow connects an element of A to an element of B. The arrow indicates that f(x) is
associated with x, f(a) is associated with a, and so on.

A B
* fl)
* fla)
Figure 4 5
Arrow diagram of f f
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Example 1 The Squaring Function

The squaring function assigns to each real number x its square x°. It is defined by

fla) = x°

(a) Evaluate f(3), f(—2), and f(\/5).
(b) Find the domain and range of f.
(c) Draw a machine diagram for f.

Solution

(a) The values of f are found by substituting for x in f(x) = x°.

fB)=2=9  f-)=(2P=4  f5)=(5P=5

(b) The domain of fis the set R of all real numbers. The range of f consists of all
values of f(x), that is, all numbers of the form x~. Since x* = 0 for all real
numbers X, we can see that the range of fis {y | y = 0} = [0, ).

(¢) A machine diagram for this function is shown in Figure 5.
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x —EBN square M — x2

input =~ J = output

33— square J=—» 9

gl o

—) ——  square [=—> 4

/L J\

Figure 5
Machine diagram
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Evaluating a Function

In the definition of a function the independent variable x plays the role of a “place-
holder.” For example, the function f(x) = 3x* + x — 5 can be thought of as

fl)=3- 2+ -5
To evaluate fat a number, we substitute the number for the placeholder.

o

r‘\

Example 2 Evaluating a Function

Let f(x) = 3x* + x — 5. Bvaluate each function value.

@ f(=2)  ®f0)  © @) @ )

Solution

To evaluate f at a number, we substitute the number for x in the definition of f.
(@) f(=2)=3 (-2 +(-2)=5=5

(b) f0)=3-0°+0—5=—5

(c) fl4) =342 +4—5=47

@ ) =3-(p+i-5--1



Piecewise-Defined Functions

Sometimes a function 1s described by using different formulas on different parts of its
domain. One example 1s the absolute value function

X, x =0
x| =9 _

X, x <0,

whose graph is given in Figure 1.8. The right-hand side of the equation means that the
function equals x if x = 0, and equals —x if x < 0. Here are some other examples.

> <

v = |x|

y=x

I | | | | L 5
-3 -2 -1 O 1 2 3

FIGURE 1.8 The absolute value
function has domain (— 00, 00)

and range [0, 00).

A%



Example 3 A Piecewise Defined Function

A cell phone plan costs $39 a month. The plan includes 400 free minutes and
charges 20¢ for each additional minute of usage. The monthly charges are a func-
tion of the number of minutes used, given by

Cla) = {39 if 0 = x =400
39 + 0.2(x — 400) if x > 400

Find C(100), C(400), and C(480).

Solution

Remember that a function is a rule. Here is how we apply the rule for this function.
First we look at the value of the input x. If 0 < x = 400, then the value of C(x) is 39.
On the other hand, if x > 400, then the value of C(x) is 39 + 0.2(x — 400).

Since 100 = 400, we have C(100) = 39.

Since 400 = 400, we have C(400) = 39.

Since 480 > 400, we have C(480) = 39 + 0.2(480 — 400) = 55.

Thus, the plan charges $39 for 100 minutes, $39 for 400 minutes, and $55 for 480
minutes. O



Example 4 Evaluating a Function
If f(x) = 2x* + 3x — 1, evaluate the following.

(a) fla) (b) f(—a)

fla +h) — fla)
h :

(¢) fla + h) (d) h#0
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Solution

(a) fla) =2a" + 3a — 1
(b) f(—a) =2(—a)* +3(—a) =1 =2a* —3a — 1

(¢) fla+h)=2(a+ h?+3a+h—1
=2(a* + 2ah + h*) + 3(a + h) — 1
=2a> + 4ah + 2h* + 3a + 3h — 1

(d) Using the results from parts (¢) and (a), we have

fla +h)— fla)  (2a* + 4ah + 2h* + 3a + 3h — 1) — (2a* + 3a — 1)

h h

dah + 2h* + 3h
= - =40 + 2h + 3 |

£




e

ANV

Example 5 The Weight of an Astronaut (Eg,|

If an astronaut weighs 130 pounds on the surface of the earth, then her weight when
she is /2 miles above the earth is given by the function

3960 )2
3960 + £

w(h) = 130(

(a) What is her weight when she is 100 mi above the earth?
(b) Construct a table of values for the function w that gives her weight at heights
from O to 500 mi. What do you conclude from the table?

Solution
(a) We want the value of the function w when 2z =— 100: that is, we must calculate
w(100).
3960
3960 + 100

2
w(100) = 130( ) ~ 123.67

So at a height of 100 mi, she weighs about 124 1b.

(b) The table gives the astronaut’s weight, rounded to the nearest pound. at
100-mile increments. The values in the table are calculated as in part (a).

h wi(fh)

O 130
100 124
200 118
300 112
400 107
500 102

The table indicates that the higher the astronaut travels, the less she weighs. m



The Domain of a Function

Recall that the domain of a function is the set of all inputs for the function. The
domain of a function may be stated explicitly. For example, if we write

flyy=x% 0=x=5

then the domain is the set of all real numbers x for which 0 = x = 5. If the function
is given by an algebraic expression and the domain is not stated explicitly, then by
convention the domain is the set of all real numbers for which the expression is
defined as a real number. For example, the function

|
x—4

flx) =
is not defined at x = 4, so its domain is {x | x # 4}. The function
flx) =

is not defined for negative X, so its domain is {x | x = 0}.



The set D of all possible input values is called the domain of the function. The set of
all values of f(x) as x varies throughout D is called the range of the function. The range
may not include every element in the set Y. The domain and range of a function can be any
sets of objects, but often in calculus they are sets of real numbers interpreted as points of a
coordinate line. (In Chapters 13—16, we will encounter functions for which the elements of
the sets are points in the coordinate plane or in space.)

Often a function is given by a formula that describes how to calculate the output value
from the input variable. For instance, the equation 4 = 77 is a rule that calculates the
area 4 of a circle from its radius 7 (so r, interpreted as a length, can only be positive in this
formula). When we define a function y = f(x) with a formula and the domain is not
stated explicitly or restricted by context, the domain is assumed to be the largest set of real
x-values for which the formula gives real y-values, the so-called natural domain. If we
want to restrict the domain in some way, we must say so. The domain of v = x? is the en-
tire set of real numbers. To restrict the domain of the function to, say, positive values of x,
we would write “y = x%, x > 0.”

Changing the domain to which we apply a formula usually changes the range as well.
The range of y = x“ is [0, 00). The range of y = x*, x = 2, is the set of all numbers ob-
tained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1), the
range is {x*|x = 2} or {y|y = 4} or [4, ).

When the range of a function is a set of real numbers, the function is said to be real-

valued.

© 2002 Thomson / South-Western Slide 3-21



Example 6 Finding Domains of Functions
Find the domain of each function.
1 3
a) flx) = ———— b) g(x) = V9 — x? c) h(t) = —
(a) flx) X2 — x (b) g(x) (¢) A1) Jr+ 1
Solution
(a) The function is not defined when the denominator is 0. Since

flx) = 21 - 1

x> —x x(x—1)

we see that f(x) is not defined when x = 0 or x = 1. Thus, the domain of f'is
x| x+#0,x # 1}
The domain may also be written in interval notation as
(90.0) U (0. 1) U (1, )

(b) We can’t take the square root of a negative number, so we must have
9 — x? = 0. Using the methods of Section 1.6, we can solve this inequality to
find that —3 = x = 3. Thus, the domain of ¢ is

x| —3=x=3}=[-3,3]

(c) We can’t take the square root of a negative number, and we can’t divide by O,
so we must have r + 1 > 0O, thatis, r = —1. So the domain of £ is

[t|tr>—1} = (—1, =) o



The domains and ranges of many real-valued functions of a real variable are inter-
vals or combinations of intervals. The intervals may be open, closed, or half open, and may
be finite or infinite. The range of a function 1s not always easy to find.

A function f is like a machine that produces an output value f(x) in its range whenever
we feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give
an example of a function as a machine. For instance, the Vx key on a calculator gives an out-
put value (the square root) whenever you enter a nonnegative number x and press the Vx key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associ-
ates an element of the domain D with a unique or single element in the set Y. In Figure 1.2, the
arrows indicate that f(a) is associated with a, f(x) is associated with x, and so on. Notice that
a function can have the same value at two different input elements in the domain (as occurs
with f(a) in Figure 1.2), but each input element x is assigned a single output value f(x).

Ly [ e— [(X)

Input Output
(domain) (range)
. ) D = domain set Y = set containing
FIGURE 1.1 A diagram showing a the range

FIGURE 1.2 A function from a set D to a
set Y assigns a unique element of ¥ to each
element in D.

function as a kind of machine.



EXAMPLE 1 Let’s verify the natural domains and associated ranges of some simple
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range (»)

y = x? (—o0, 00) [0, o0)

v = 1/x (—00,0) U (0, 00) (—00,0) U (0, o)
y = Vx [0, 00) [0, c0)

y = V4 —x (—00, 4] [0, ©0)
y=VI1—x* [—1, 1] [0, 1]

Solution  The formula v = x? gives a real y-value for any real number x, so the domain
is (—oo, 00). The range of y = x? is [0, c©) because the square of any real number is
nonnegative and every nonnegative number y i1s the square of its own square root,
y = (\/;)2 for y = 0.

The formula y = 1/x gives a real y-value for every x except x = 0. For consistency
in the rules of arithmetic, we cannot divide any number by zero. The range of v = 1/x, the
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since
v = 1/(1/y). That is, for y # 0 the number x = 1/y is the input assigned to the output
value y.

The formula y = Vx gives a real y-value only if x = 0. The range of y = Vx is
[0, ©©) because every nonnegative number is some number’s square root (namely, it is the
square root of its own square).

In y = V4 — x, the quantity 4 — x cannot be negative. That 1s, 4 — x = 0, or
x = 4. The formula gives real y-values for all x = 4. The range of V4 — xis [0, c0), the
set of all nonnegative numbers.



m Exercises

1-4 ®m Express the rule in function notation. (For example, the

rule “square, then subtract 57 is expressed as the function

fla) = x> = 5
1. Multiply by 7, then add 2
2. Add 14, then divide by 7
3. Subtract 4, then square

4. Square, add 9, then take the square root
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11-12 = Complete the table.
11. f(x) = 2x°> + 1 12. g(x) = [2x — 3]

X fx) X g(x)

W o = O =
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13—20 ®m Evaluate the function at the indicated values.
13. f(x) = 2x + 1;
£(1). f(—2). £(2). fla). f(—a). fla + b)

14. f(x) = x* + 2x;

F(0). F(3). F(=3). fla). f(—x). £(=)
15. g(x) = i - i

9(2). g(—2). g(3). g(a). gla — 1). g(—1)

1
16. h(r) = r + PE

h(l), h(—1), h(2). h(%)’ h(x). h(l)

17. f(x) = 2x° + 3x — 4:
£(0), £(2), f(—2). f(N2), f(x + 1), f(—x)



18.

19.

20.

f(=2). £(0). £(3).



21-24 m Evaluate the piecewise defined function at the
indicated values.

=[5, 2
f(=2), f(=1). £f(0), f(1), fA(2)
S ifx =2
{Z,x — 3 ifx>2
f(=3). £(0). f(2), £(3). £(5)

22. flx) =

[P 2x ifx=—1
23. 1) = {x ifx > —1
f(—4). f(=3). f(—1). f(0). £(1)
(3x if x <O

24. fx) = {1x + 1 ifo0=x=2
[ (x — 2)7 ifx>2

f(=5). f(0), f(1), f(2), £(5)




25-28 m Use the function to evaluate the indicated expressions
and simplify.

25. flx) =x+1; f(x + 2), flx) + £f(2)
26. f(x) =3x — 1; f(2x), 2f(x)
27. flx) =x + 4 f(x?), (flx)?

28. f(x) = 6x — 18; f(%) f(;)

29-34 ® Find f(a), fla + h). and fla + h) — fla) ,

h
where i # 0.
29. f(x) =3x +2 30. f(x) =x"+ 1
|
31. f(x) = 32. f(x) =
fla) = 3 o) =

33. flx) =3 — Sx + 4x° 34. f(x) = x°



35-56 m Find the domain of the function.
35. flx) = 2x

37.
38.

39.

40.

41.
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36. f(x) = x>+ 1

42.

43.
4.
45.
46.
47.
48.

4
fl) = x° +xx — 6
flx) = yx =5
fl2) = {7 9
fle) =t — 1
glx) =7 = 3x
h(x) = 2x — 5
G(x) = x> =9




52. g(x) = Jyx? —2x— 8

48. G(x) = yx* — 9
| 3
2 + x 33. flx) = —
49. g(x)=\i3_ (x) Jx — 4
X 2
I 54. f ()C ) —
50. g(Y) = 55 oo
' 2x° +x — 1 x + 1)°
55. f(x) = U
51. g(x) = Ix? — 6x v2x — 1
X
52. g(x) = Jx? —2x— 8 6 flx) = J9 — 2
57. Production Cost The cost C in dollars of producing x

yards of a certain fabric is given by the function
C(x) = 1500 + 3x + 0.02x> + 0.0001x"

(a) Find C(10) and C(100).
(b) What do your answers in part (a) represent?
(¢) Find C(0). (This number represents the fixed costs.)



62. Pupil Size When the brightness x of a light source is
increased, the eye reacts by decreasing the radius R of the
pupil. The dependence of R on x is given by the function

13 + 7x°*
RM=J3 7x

1 + 4x°4

(a) Find R(1), R(10), and R(100).
(b) Make a table of values of R(x).

-




63.

64.

Relativity According to the Theory of Relativity, the
length L of an object is a function of its velocity v with
respect to an observer. For an object whose length at rest is
10 m, the function is given by

L(U)ZIO 1——2

where ¢ is the speed of light.
(a) Find L(0.5¢), L(0.75¢), and L(0.9¢).

(b) How does the length of an object change as its velocity

increases? , , .
Income Tax In a certain country, income tax 7 is

assessed according to the following function of income x:

0 if 0 = x = 10,000

T(x) = {0.08x if 10,000 < x = 20.000
1600 + 0.15x  if 20,000 < x
(a) Find 7(5,000), T(12,000), and 7(25.000).

(b) What do your answers in part (a) represent?



LY Grophs of Functions

Graphing Functions

VA
(x, f(x)) The Graph of a Function
| i If fis a function with domain A, then the graph of f'is the set of ordered pairs
1 1
1 1
| | flx) {(x, fx)) | x € A}
1 1 1
nray | | 1
f(”i E E In other words, the graph of f is the set of all points (x, y) such that y = f(x);
0 1 2 N g that is, the graph of fis the graph of the equation y = f(x).
Figure 1 The graph of a function f gives a picture of the behavior or “life history” of the
The height of the graph above the function. We can read the value of f(x) from the graph as being the height of the
point x is the value of f(x). graph above the point x (see Figure 1).

A function f of the form f(x) = mx + b is called a linear function because its
graph is the graph of the equation y = mx + b, which represents a line with slope
m and y-intercept b. A special case of a linear function occurs when the slope is
m = 0. The function f(x) = b, where b is a given number, is called a constant func-
tion because all its values are the same number, namely, b. Its graph is the horizon-
tal line y = b. Figure 2 shows the graphs of the constant function f(x) = 3 and the
linear function f(x) = 2x + 1.
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Figure 2 The constant function f(x) = 3 The linear function f(x) = 2x + 1

Example 1 Graphing Functions =

Sketch the graphs of the following functions.

/

(a) flx) = x> (b) glx) = x° (¢) hix) = Jx

Solution

We first make a table of values. Then we plot the points given by the table and join
them by a smooth curve to obtain the graph. The graphs are sketched in Figure 3.
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-1

(a) Even powers of x
5 3
JERN I
2 N/

LY.
an

Example 2 A Family of Power Functions =

(a) Graph the functions f{x) = x" for n = 2, 4, and 6 in the viewing rectangle
[-2,2| by |-1,3]

(b) Graph the functions flx) = x" for n = 1,3, and 5 in the viewing rectangle
[-2,2] by [-2,2]

(c) What conclusions can you draw from these graphs?

Solution

The graphs for parts (a) and (b) are shown in Figure 4,

(c) We see that the general shape of the graph of f(x) = x" depends on whether
is even or odd.
If nis even, the graph of f(x) = x" is similar to the parabola y = x*.
If nis odd, the graph of f{x) = x" is similar to that of y = x°. 0

Notice from Figure 4 that as n increases the graph of y = x" becomes flatter
near () and steeper when x > 1. When (0 <x </, the lower powers of x are the
“bigger” functions. But when x> 1, the higher powers of x are the dominant
functions.



1

Getting Information from the Graph
of a Function

The values of a function are represented by the height of its graph above the x-axis.
So. we can read off the values of a function from its graph.

WWip

Example 3 Find the Values of a Function from a Graph (Ei,,|

The function 7" graphed in Figure 5 gives the temperature between noon and
6 P.M. at a certain weather station.

(a) Find 7(1), 7(3), and 7(5).
(b) Which is larger, 7(2) or 7(4)?

T (°F) A
40
30 —
20 N\
10
Figure 5 0 1 2 3 4 5 6 «x
Temperature function Hours from noon

Solution

(a) 7(1) is the temperature at 1:00 p.m. It is represented by the height of the
graph above the x-axis at x = 1. Thus, 7(1) = 25. Similarly, 7(3) = 30 and
7(5) = 10.

(b) Since the graph is higher at x = 2 than at x = 4. it follows that 7(2) is larger
than 77(4). -




The graph of a function helps us picture the domain and range of the function on
the x-axis and y-axis as shown in Figure 6.

Range

Figure 6 0
Domain and range of f

Domain A

© 2002 Thomson / South-Western slide 3-40



Example 4 Finding the Domain and Range from a Graph

—_—

(a) Use a graphing calculator to draw the graph of f(x) = V4 — x°.
(b) Find the domain and range of f.

Solution

(a) The graph is shown in Figure 7.

Range = |0, 2]

Figure 7 | Domain = —2,2]
Graph of flx) = y4 — x*

(b) From the graph in Figure 7 we see that the domain is | =2, 2| and the range is
0, 2].



Graphing Piecewise Defined Functions

A piecewise defined function is defined by different formulas on different parts of
its domain. As you might expect, the graph of such a function consists of separate
pieces.

Example 5 Graph of a Piecewise Defined Function

Sketch the graph of the function

X ifx=<1
=100 it >1
Solution

If x < I, then f(x) = x?, so the part of the graph to the left of x = 1 coincides with
the graph of y = x?, which we sketched in Figure 3. If x > 1, then f(x) = 2x + 1,



so the part of the graph to the right of x = 1 coincides with the line y = 2x + 1,
which we graphed in Figure 2. This enables us to sketch the graph in Figure 8.

The solid dot at (1, 1) indicates that this point is included in the graph; the open
dot at (1, 3) indicates that this point is excluded from the graph.

Y4
f(x) =2x + 1
.
= o o]
Figure 8 e 1—-/
© o ifr<l 0 | X
fo) =1 . oo
2+ 1 ifx>1 O
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Example 6 Graph of the Absolute Value Function

Sketch the graph of the absolute value function f(x) = |x|.

Solution

Recall that

x = {7

—X

ifx =20
ifx<<O

Using the same method as in Example 2, we note that the graph of f coincides with
the line y = x to the right of the y-axis and coincides with the line y = —x to the

left of the y-axis (see Figure 9).

Y

Figure 9 ' ' 0

Graph of f(x) = | x| |
The greatest integer function is defined by
[x]] = greatest integer less than or equal to x
For example, [2]] = 2, [2.3] = 2. [[1.999] = 1, [0.002] = 0, [—3.5] = —4,

[—0.5] = —1.



|| T |

Example 7 Graph of the Greatest Integer Function
Sketch the graph of f(x) = [x].

Solution

The table shows the values of f for some values of x. Note that f(x) is constant
between consecutive integers so the graph between integers is a horizontal

line segment as shown in Figure 10.

x

-1l =x<
0=x<
1l =x <
2 =x <

—2=x< —1

W= O

YA
| .
[BY]
—+ e—o0
1+ )
—2
— I ; o o ; I >
1 0 1 X
0
@ -
1
2 oo -+
Figure 10
The greatest integer function, y = [ x] -

The greatest integer function is an example of a step function. The next exam-
ple gives a real-world example of a step function.



Equations That Define Functions

Any equation in the variables x and y defines a relationship between these variables.
For example, the equation

y—x=0

defines a relationship between y and x. Does this equation define y as a function
of x? To find out, we solve for y and get

y=x

We see that the equation defines a rule, or function, that gives one value of y for
each value of x. We can express this rule in function notation as

fl) = x°

But not every equation defines y as a function of x, as the following example shows.



Example 10 Equations That Define Functions
Does the equation define y as a function of x?

(a) y — x* = (b) x* +y> =4 /yx2:2

Solution

(a) Solving for y in terms of x gives

y—x>=2

=Y

y=x>+2 Addx’ (a)

The last equation is a rule that gives one value of y for each value of x, so it
defines y as a function of x. We can write the function as f(x) = x* + 2.

(b) We try to solve for y in terms of x: v

YA

2 2 _ XY=
+y2=4 —
ce (N
y: =4 — x*? Subtract x° \ qj )
|

y = *y4 —x° Take square roots

(b)

The last equation gives two values of y for a given value of x. Thus, the equa-
tion does not define v as a function of x. |



The following table shows the graphs of some functions that you will see fre-

quently in this book.

SOME FUNCTIONS AND THEIR GRAPHS

Linear functions
flx) = mx + b

VA

2}

flx) =05 flx) = mx + b
Power functions A y YA y
|/ J
(1 B
flx) = x flx) = x° Fl) = flx) = x°
Root functions
Flx) = VUx Y4 )’P YA yL_-
Fx) = Flx) = Y Sy = Yx Jlx) =
Reciprocal functions A v
-f(A‘-) ) 1/“\7)r | L J T L
j e ‘ ~
flx) =+ f) =5
Absolute value function y Greatest integer function y
Fo = | x| £ =[x ] .
1 S
| ~ " )
flx) = [x]| flo) =[xl




m Exercises

1-22 ® Sketch the graph of the function by first making a
of values.

1 f(x) =2 2. flx) = =3

3. flx) =2x—4 4. f(x) =6 — 3x
5. fx) = —x+3, —3=x=3
6.f(x)=x;3, 0=x=5

7. f) = —x° 8. f() = x* — 4
9. glx) = x> —8 10. g(x) = 4x* — x
11. g(x) = JVx + 4 12. g(x) = V—x

13. Fl) = - 14. Flx) = —

) X ) x + 4
15. H(x) = |2x] 16. H(x) = |x + 1|
17. G(x) = |x| + x 18. G(x) = |x| — x
19. f(x) = [2x — 2| 20. flx) = ‘;C—‘

2 x|
21. g(x) = 22. g(x) = —=

pstern
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E% 27-36 ® A function fis given.
(a) Use a graphing calculator to draw the graph of f.
(b) Find the domain and range of f from the graph.

27. flx) =x—1 28. flx) =2(x + 1)
29. f(x) =4 30. f(x) = —x*

31. flx) =4 —x° 32. f(x) =x>+ 4

33. f(x) =16 — x? 34. f(x) = =25 — x?
35. flx) =yx — 1 36. flx) = x + 2
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37-50 m Sketch the graph of the piecewise defined function.

O it <2
37. f(«’f)_{l it x =2 2x+3 ifx<—1

| - | 42. flr) = 3—x ifx=-—-1
8. =1, =
e e (—1 ifx< -1
43. f(x) =11 f—1=x=1
39,f(x):l3 ifx <2 -1 ifx> 1
x—1 ifx=2
(—1 ifx<—1
o 1=x ifx<—2 M fly)=jx if-1=x=1
. f(x)_ls ifx = -2 1 ifx> 1

X ifx =0 a2 ifx=—1
4 f(x)_lx-Fl if x >0 4. 1 x* ifx> -1



1 —x? ifx=<2

6. fl3) = |

X ifx > 2
e ()_{0 if [x]| =2
- i) = 3 if x| >2
L [x x| =1
BO=17 i) > 1
(4 ifx <=2
49. flx) =1 x° if 2=x=2
L —x+6 ifx>2

[ —X tx=0
50. flx) =79 —x* If0<x=3
X — 3  ifx>3
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59-70 ® Determine whether the equation defines y as a func-
tion of x. (See Example 10.)

59. x2 + 2y = 60. 3x + 7y = 21
61. x =y’ 62. x>+ (y— 1) =4
63. x +y° =09 64. x*+y=09

65. x2y +y =1 66. \x +y =12

67. 2|x| +y= 68. 2x+ |v| =0

69. x = y° 70. x = y*
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Increasing and Decreasing Functions;
Average Rate of Change

Increasing and Decreasing Functions

It is very useful to know where the graph of a function rises and where it falls. The
graph shown in Figure 1 rises, falls, then rises again as we move from left to right:
It rises from A to B, falls from B to C, and rises again from C to D. The function fis
said to be increasing when its graph rises and decreasing when its graph falls.

YA fis decreasing. D

fis increasing.

Figure 1 .
fis increasing on [a, b] and [c, d]. 0 4
fis decreasing on [b, c].

X

|
|
|
|
|
d

We have the following definition.




Definition of Increasing and Decreasing Functions

fis increasing on an interval [ if f(x,) < f(x,) whenever x; < X, in I

fis decreasing on an interval I if f(x,) > f(x,) whenever x; < x, in I.

YA

f/
|

| if(lz)
)

] ] >

O  x x «x

f 18 increasing f 18 decreasing
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Example 1 Intervals on which a Function Increases
and Decreases

The graph in Figure 2 gives the weight W of a person at age x. Determine the inter-
vals on which the function W is increasing and on which it is decreasing.

W (Ib) A

200 f\

150

100

50 /
rigure 2 0 /10 20 30 40 50 60 70 80 X,E
Weight as a function of age Y1)

Solution

The function is increasing on [0, 25| and |35, 40]. It is decreasing on [40, 50]. The
function is constant (neither increasing nor decreasing) on [25, 30] and [50, 80].
This means that the person gained weight until age 25, then gained weight again
between ages 35 and 40. He lost weight between ages 40 and 50. O




Example 2 Using a Graph to Find Intervals where A
a Function Increases and Decreases =1

(a) Sketch the graph of the function f(x) = x%>.
(b) Find the domain and range of the function.

(¢) Find the intervals on which fincreases and decreases.

Solution

(a) We use a graphing calculator to sketch the graph in Figure 3.
(b) From the graph we observe that the domain of fis R and the range is [0, o).

(¢) From the graph we see that f is decreasing on (—oo, O] and increasing on
[0, ).

10

Figure 3 —20 20
Graph of f(x) = x*? —1 [



m Exercises

a S5—-12 ® A function fis given.

(a) Use a graphing device to draw the graph of f.

(b) State approximately the intervals on which f'is increasing
and on which fis decreasing.

5. flx) = x*3 6. flx) =4 —x**
7. flx) = x* — 5x 8. flx) =x° — 4x
9. flx) =2x° —3x* — 12x

10. f(x) = x* — 16x°

11. f(x) =x" +2x* —x — 2

12. f(x) =x* —4x° + 2x* +4x — 3



— Transformations of Functions
Even and Odd Functions

Let f be a function.
fis even if f(—x) = f(x) for all x in the domain of f.
fis odd if f(—x) = —f(x) for all x in the domain of f

VA

The graph of an even function is The gragh of.an odd function is o
symmetric with respect to the y-axis. symmetric with respect to the origin.
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Example 9 Even and Odd Functions -
Determine whether the functions are even, odd, or neither even nor odd.
(a) flx) =x> +x (b) g(x) =1 — x*
(¢c) h(x) =2x — x*

Solution
(a) fl—x) = (=x)° + (—=x)
—x°> —x = —(x> + x)
= —flx)

Therefore, fis an odd function.

(b) g(—x) =1 — (—x)*

|
—

|
S

|
=
Ra¥

So g is even.
(¢) h(—x) = 2(—x) — (—x)* = —2x — x~

Since A(—x) # h(x) and A(—x) # —h(x), we conclude that / is neither even
nor odd. o



m Exercises

61-68 ® Determine whether the function fis even, odd,
or neither. If fis even or odd, use symmetry to sketch its
graph.

61. f(x) =x"7 62. f(x) =x""
63. f(x) =x* + x 64. f(x) = x* — 4x°
65. flx) =x° —x 66. f(x) =3x" +2x* + 1

67. fx) =1 — Jx 68. flx) = x + i



m Combining Functions
Algebra of Functions

Let f and g be functions with domains A and B. Then the functions f + ¢,
f—g, fg, and f/g are defined as follows.

(f + g)x) = flx) + glx) Domain A N B
(f — 9)x) = flx) — g(x) Domain A N B
(fg)(x) = flx)gx) Domain A N B
f ) (x) .
—|(x) = —— Domainix €A NB|glx) #0
(g () g(x) { | g(x) |
T'he surmm of Ff and g is defined bw
(F + g)x) — F(x) + og(x)

IT'he mame of the mew function 1s

S+ g So this + sign stands for the
opceration of additionn OoOf fitrrcfrorr.s.

The + sign on the right side. howewver,
stands for addition of the rreerrebrers ()

arved ol )



Combinations of Functions and Their Domains
Let f(x) = < i 5 and g(x) = Jx.

(a) Find the functions f + g, f — ¢g. fg, and f/gr and their domains.

(b) Find (f + ¢)(4). (f — g)(4). (fg)(4). and (f/g)(4).

Example 1

Solution

(a) The domain of fis {x | x # 2} and the domain of ¢ is {x | x = 0}. The intersec
tion of the domains of f and ¢ is

x| x=0and x #2} = [0,2) U (2, =)

Thus, we have
1

(f + g)x) = flx) + gx) = P + \/; Domain {x | x = O and x # 2}
(f — g)x) = flx) — glx) = . i 5 \/} Domain {x | x = O and x # 2}
(fg)x) = flx)gx) = x\i}z Domain {x | x = O and x # 2}
P\ ) S
(g)(x) g(x) x—2) \/} Domain {x | x = O and x # 2}

Note that in the domain of f/g we exclude 0 because ¢g(0) = 0.
(b) Each of these values exist because x = 4 is in the domain of each function.

(F + 9)4) = f(4) + g(4) = 725 +F =3
1 3
(f = 9)4) = f(4) — g4) = ——— —E = =
o) = @) = (325) va = 1
FAYiC) 1 1
(g)(4) g4)  (4-—2)Ja4 4

The graph of the function f + ¢ can be obtained from the graphs of f and g by
graphical addition. This means that we add corresponding v-coordinates, as illus-

trated in the next example.

To divide fractions, invert the denomi
nator and multiply:

=2

\ .'\’

x - 2)
N

r—2 X
B 1
(x—=2)\x
\
a y =gly)
y=fl)
.
Figure 1



Example 2 Using Graphical Addition

The graphs of f and g are shown in Figure 1. Use graphical addition to graph the

function f + ¢.

Solution

We obtain the graph of f + ¢ by “eraphically adding’’ the value of f(x) to g(x) as

shown in Figure 2. This is implemented by copying the line segment PQ on top of

PR to obtain the point S on the graph of f + ¢.

V4

y=I(f+gx)

Figure 2

Graphical addition

y = g(x)
S/
R::‘_‘__ f(x)
F g(x) PV
y = f(x)
Q .f_‘__/\
| trw X
P x



Composition of Functions

Now let’s consider a very important way of combining two functions to get
a new function. Suppose f(x) = Jx and g(x) = x* + 1. We may define a func-
tion /1 as

h(x) = flg(x) = flx* + 1) = Vx> + 1

The function £ is made up of the functions f and ¢ in an interesting way: Given a
number x, we first apply to it the function g, then apply f to the result. In this case,
f is the rule “take the square root,” g is the rule “square, then add 1,” and £ is the
rule “square, then add 1, then take the square root.” In other words, we get the rule
h by applying the rule g and then the rule f.

In general, given any two functions f and g, we start with a number x in the
domain of ¢ and find its image ¢(x). If this number ¢(x) is in the domain of f, we
can then calculate the value of f(g(x)). The result is a new function A(x) = f(g(x))
obtained by substituting ¢ into f. It is called the composition (or composite) of

f and ¢g and is denoted by f o g (“f composed with g”).
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Composition of Functions

Given two functions f and g, the composite function f ° g (also called the
composition of f and g) is defined by

(fog)x) = flg(x))

The domain of f o ¢ is the set of all x in the domain of g such that g(x) is in the
domain of f. In other words, (f © ¢)(x) is defined whenever both g (x) and f(g(x)) are

defined. We can picture f o g using a machine diagram (Figure 3) or an arrow dia-
gram (Figure 4).

Figure 3 \r—L \(—L
The f o g machine is composed T g g(x) 2 i = flg)
of the g machine (first) and then input /L—J\ u output
the f machine.

fog

T N

Figure 4
Arrow diagram for fe g



Example 3 Finding the Composition of Functions

Let f(x) = x?and g(x) = x — 3.

(a) Find the functions f ¢ g and g ° f and their domains.
(b) Find (f°g)(5) and (g © f)(7).

Solution
(a) We have
(feg)x) = flg(x)) Definition of fe g
= flx — 3) Definition of g
= (x — 3)? Definition of f
and
(g ° f)x) = g(f(x) Definition of g o f
= g(x?) Definition of f
=x>—3 Definition of g

The domains of both feog and g ° f are R.
(b) We have

(fog)(5) = flg(5) = f2) = 2% =4

(g ° N(7) = g(f(7)) = g(49) = 49 — 3 = 46

In Example 3, f1s the rule “square”
and ¢ is the rule “subtract 3.” The func-
tion f o¢ first subtracts 3 and then
squares; the function ¢ © f first squares
and then subtracts 3

You can see from Example 3 that, in general, f e g # g ° f. Remember that the

notation f ¢ g means that the function g is applied first and then f is applied second.
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I'he graphs of f and g of Example 4, as
well as feg, ge f, fof,and g °g, are
shown below. These graphs indicate
that the operation of composition can
produce functions quite different from
the original functions.

T s

NV

C
Example 4 Finding the Composition of Functions =

If £(x) = Jx and g(x) = V2 — x, find the following functions and their domains.
(@) fog (b) geof (€ feof (d) geg

Solution

(a) (f ° g)(x) = f(g(x)) Definition of f e g
- f( 2 — x) Definition of g

= 2 —x Definition of f

The domain of fogis{x |2 —x=0}={x|x =2} =(-=,2]
(b) (g ° f)x) = g(flx) Definition of g o f

= g(\/;) Definition of

=\2- \/; Definition of g



For \/x to be defined, we must have x = 0. For \2 — \/x to be defined, we
must have 2 — \/x = (), that s, \/x = 2,0rx = 4. Thus, we have 0 = x =4, s0
the domain of ¢ © f is the closed interval |0, 4].

of |
\ « (fo f)lx) = fiflx))  Definition of fof

= f(\/x) Definition of f

=X Definition of

fof =
/ The domain of f fis [0, ).
o (d) (g °g)x) = glglx)) Definition of g g

= g(@ - x) Definition of g
=y2 - \/‘2 — X Definition of g

% o g This expression is defined when both 2 — x = 0 and 2 — 2 —x=0. The

/ first inequality means x < 2, and the second is equivalent to 2 — x =< 2, or
| — 2—x=4 o0orx= -2 Thus, -2 = x = 2, so the domain of g ° ¢ is

[-2,2]. O

It is possible to take the composition of three or more functions. For instance,
the composite function f o g o h is found by first applying A, then g, and then



f as tollows:

(f o g e n)x) = flg(hx)))

Example 5 A Composition of Three Functions (c_m|
Find fog o hif flx) = x/(x + 1), g(x) = x'°, and h(x) = x + 3.
Solution
(fegeh)(x) = flg(hx))) Definition of fegeh
= flg(x + 3)) Definition of h
= f((x + 3)'9 Definition of g
= (X+3)10 Definiti ff
= (x i 3)10 11 etinition o u

So far we have used composition to build complicated functions from simpler
ones. But in calculus it is useful to be able to “decompose’ a complicated function
into simpler ones, as shown in the following example.



Example 6 Recognizing a Composition of Functions
Given F(x) = yx + 9, find functions f and ¢ such that F = fog.

Solution

Since the formula for F says to first add 9 and then take the fourth root, we let

gb)=x+9 and  flx) =

Then

(feg)lx) = flglx)  Definition of £ g
= flx +9) Definition of g

=Jx+9 Definition of f

= Fly



m Exercises

1-6 m Find f + g, f — g. fg. and f/g and their domains.

1. f(x) = x-%, gk) =x + 2

)
2. fix) =x> 4+ 2x%, glx) =3x>—1
3. fix) =J1 + x%, gkx) =1 —x
4. f(x) = V9 — x7, glx) = Vx* — 1
2 2
5. flx) = =, glx) =
flx) . g(x 4
1 X
6. flx) = Cglx) = |
) = o 90 = T
7—10 ®m Find the domain of the function.
7. f(x) = JYx +J1 — x 8. gx) = JVx + 1 — i
Ix + 3
9. n(x) = (x — 3) /4 10. k(x) = =

x — 1



17-22 ® Use f(x) = 3x — 5 and g(x) = 2 — x? to evaluate the
expression.

17. (a) f(g(0)) (b) g(£(0))

18. (a) f(f(4)) (b) g(g(3))

19. (a) (fog)(—2) (b) (g° f)(—2)

20. (a) (feo f)(—1) (b) (g°9)(2)

21. (a) (fog)(x) (b) (g° f)x)

22. (a) (fo f)(x) (b) (g °g)x)
45-50 ® Express the function in the form f e g.
45. F(x) = (x — 9)° 46. F(x) = Jx + 1
47. G(x) = x;i . 48. Glx) =~ i 3

49. H(x) = |1 — x| 50. H(x) = 1 + Jx



29-40 ® Find the functions feg,g° f, fo f, and g © g and their
domains.

29. flx) =2 +3, gl)=4x—1 35 flx) =|x[, glx)=2x+3
30. f(x) = 6x — 5, g(x)=§ 36. fx)=x—4, glx)=|x+4
3 fly) = 2% gl =x+ 1 37. flx) = L glx) =2x — 1
_ x+ 1

32 flx) =x* +2, glx) = |
B fl) =~ gl = 20+4 8. ) = gle) =7~
34. f(x) = xQ, g(x) = \flllm 39. f(X) - ‘};v g(x) - @;

2

40. () == gly) = —
X X —2
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41—-44 ®m Find fo g ° A.

41. f(x) =x — 1, gk)=vx, hlx)=x—1
42. f(x) = é gx) = x>, hx) =x>+2

43. f(x) =x*+ 1, gx)=x—175. hlx) =x

© 2002 Thomson / South-Western



One-to-One Functions and Their Inverses

Let’s compare the functions f and g whose arrow diagrams are shown in Figure 1.
Note that f never takes on the same value twice (any two numbers in A have differ-
ent images), whereas g does take on the same value twice (both 2 and 3 have the
same image, 4). In symbols, g(2) = ¢(3) but f(x) # f(x») whenever x; # x». Func-
tions that have this latter property are called one-to-one.

A B A B

 —  —
f g
Figure 1 f is one-to-one ¢g is not one-to-one
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Definition of a One-to-One Function

A function within domain A is called a one-to-one function if no two ele-
ments of A have the same image, that is,

flx1) # flxo) whenever x| # x,

An equivalent way of writing the condition for a one-to-one function is this:

VA Iff(xl) = f(XQ),thﬁn X1 = Xo.
y = o) If a horizontal line intersects the graph of f at more than one point, then we see
; from Figure 2 that there are numbers x, # x, such that f(x,) = f(x,). This means
l\ that f is not one-to-one. Therefore, we have the following geometric method for
Jtx)  flxa) determining whether a function is one-to-one.
|
|

/

|
|
i
|
i
0| N Horizontal Line Test
Figure 2 A function is one-to-one if and only if no horizontal line intersects its graph
This function is not one-to-one because more than once.

flx) = flxy).



Example 1 Deciding whether a Function Is One-to-One

Is the function f(x) = x> one-to-one?

Solution 1

If x; # x,, then x7 # x3 (two different numbers cannot have the same cube).
Therefore, f(x) = x° is one-to-one.

VA Solution 2
/ From Figure 3 we see that no horizontal line intersects the graph of f{x) = x” more
/ than once. Therefore, by the Horizontal Line Test, f is one-to-one. 0

—_——

Notice that the function f of Example 1 is increasing and is also one-to-one. In
fact, it can be proved that every increasing function and every decreasing function
IS one-to-one.

— Y




Example 2 Deciding whether a Function Is One-to-One

Is the function g(x) = x* one-to-one?

Solution 1

This function is not one-to-one because, for instance,
g(l) =1 and g(—l) =1
and so 1 and —1 have the same image.

Solution 2

From Figure 4 we see that there are horizontal lines that intersect the graph of
g more than once. Therefore, by the Horizontal Line Test, g iS not one-to-one. [

Although the function g in Example 2 is not one-to-one, it is possible to restrict
its domain so that the resulting function is one-to-one. In fact, if we define

then £ is one-to-one, as you can see from Figure 5 and the Horizontal Line Test.
TTWEN



Figure 4 :
| 5 Figure 5
g(x) = x~ is not one-to-one. | ) -
h(x) = x~ (x = 0) is one-to-one.
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Example 3 Showing That a Function Is One-to-One

Show that the function f(x) = 3x + 4 is one-to-one.

Solution

Suppose there are numbers x; and x, such that f(x,) = f(x,). Then
3x, +4=3x,+4 Suppose f(x) = f(x,)
3x, = 3x, Subtract 4

X1 = X»o Divide by 5

Theretore, f is one-to-one.
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Definition of the Inverse of a Function

Let f be a one-to-one function with domain A and range B. Then its inverse
function f ' has domain B and range A and is defined by

Flh)=x o fl)=y
for any y in B.

This definition says that if f takes x into y, then f~' takes y back into x. (If f
were not one-to-one, then f~!' would not be defined uniquely.) The arrow diagram
in Figure 6 indicates that f ~' reverses the effect of f. From the definition we have

domain of f~' = range of f

range of f ' = domain of f
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@ Don’t mistake the —1 in f~' for
an exponent.

|
fx)
The reciprocal 1/f(x) is written as

(Flx) ™"

f~1'  does not mean

Figure 6

1-Western
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Example 4 Finding y ! for Specific Values
If f(1) = 5., f(3) = 7, and f(8) = —10, find £~ '(5), £~ '(7), and £~ '(—10).

Solution

From the definition of f ! we have

715 =1 because f(1) =5
f (7)) =23 because f(3) =7
f~Y(—10) =38 because f(8) = —10
Figure 7 shows how f ! reverses the effect of fin this case
A B A B

) B

. - -~ -
Figure 7 f £

By definition the inverse function f ' undoes what f does: If we start with x, apply
f. and then apply f ', we arrive back at x, where we started. Similarly, f undoes what
f ! does. In general, any function that reverses the effect of f in this way must be the
inverse of f. These observations are expressed precisely as follows.



Property of Inverse Functions

Let f be a one-to-one function with domain A and range B. The inverse func-
tion f ' satisfies the following cancellation properties.

f7(f(x)) =x  foreveryxinA
f(f '(x)) =x  foreveryxinB

Conversely, any function f ' satisfying these equations is the inverse of f.

These properties indicate that f is the inverse function of f~', so we say that
fand f~! are inverses of each other.
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Example 5 Verifying That Two Functions Are Inverses

Show that f(x) = x* and g(x) = x'* are inverses of each other.

Solution

Note that the domain and range of both f and ¢g is R. We have
gl 10)) = gl = () = x
flg(a)) = Fa) = (@) = x

VY

e
m%ml

So, by the Property of Inverse Functions, f and ¢ are inverses of each other. These
equations simply say that the cube function and the cube root function, when com-

posed, cancel each other.

Now let’s examine how we compute inverse functions. We first observe from the

definition of f ! that

=10 e ) =x

So, if y = f(x) and if we are able to solve this equation for x in terms of y, then we
must have x = f~'(y). If we then interchange x and y, we have y = f~'(x), which is

the desired equation.



How to Find the Inverse of a One-to-One Function

1. Write y = f(x).
2. Solve this equation for x in terms of y (if possible).

3. Interchange x and y. The resulting equation is y = f~'(x).

Note that Steps 2 and 3 can be reversed. In other words, we can interchange x
and v first and then solve for y in terms of x.
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Example 6 Finding the Inverse of a Function

Find the inverse of the function f(x) = 3x — 2.
Solution
First we write v = f(x).

vy = 3x — 2

Then we solve this equation for x:

3x = v + 2 Add 2
y + 2
XZT Divide by &

Finally, we interchange x and y:

X + 2
Y= 3

x + 2
3

v ZUUZ 1nOomson 7 >outn-vvestern dliae 3-8

Therefore. the inverse function is f~ '(x) =



Example 7 Finding the Inverse of a Function

x> — 3
-

m%ml

Find the inverse of the function f(x) =

Solution

We first write y = (x> — 3)/2 and solve for x.

x> —3
y = > Equation defining function
2y =x> —3 Multiply by 2
x> =2y + 3 Add 3

x= 2y + 3)°  Take fifth roots

Then we interchange x and y to get y = (2x + 3)'. Therefore, the inverse function
is f71(x) = (2x + 3)'5.
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Figure 10

[n Example 8 note how f ' reverses
the effect of f. The function f is the
rule “subtract 2, then take the square
root,” whereas f '
then add 2.”

is the rule “square,

Example 8 Finding the Inverse of a Function

(a) Sketch the graph of flx) = yx — 2.
(b) Use the graph of f to sketch the graph of £,
(¢) Find an equation for .

Solution

(a) Using the transformations from Section 3.4, we sketch the graph of
y = X — 2 by plotting the graph of the function y = \/E (Example 1(c) in
Section 3.2) and moving it to the right 2 units.

(b) The graph of f~' is obtained from the graph of f in part (a) by reflecting it in
the line y = x, as shown in Figure 10.

(c) Solve y = yx — 2 for x, noting that y = 0.
Ww—2=y
x—2=y? Square each side

x=vy'+2, y=0 Add2

Interchange x and y:
y=x*+2 x=0
Thus ') =x*+2, x=0

This expression shows that the graph of /' is the right half of the parabola
y = x? + 2 and, from the graph shown in Figure 10, this seems reasonable. m



Exorcizes

7-16 ®m Dectermine whether the function is one-to-one.

7.
9.
11.
13.
14.

15.

16.

flx) =3x + 1 8. flx) = —2x+5
g(x) = \x 10. g(x) = |x|
h(x) = x* — 2x 12. h(x) = x° + 8
flx) = x* +5
fx)y=x*"+5 0=x=2
) =<5 19, If flx) = 5 — 2. find £~'(3).
N :
o) = é 20. If g(x) = x* + 4x withx = —2, find g~ '(5).

17-20 ® Assume [is a one-to-one function.

17.

18.

(a) If f(2) = 7. find £~ (7).

(b) If £ '(3) = —1, find f(—1).
(a) If £(5) = 18, find £~ '(18).
(b) If £ 1(4) = 2, find f(2).
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21-30 = Use the Property of Inverse Functions to show that f

and g are inverses of each other.

21. f(x) =x+3, glx)=x—13

22. f(x) =2x. gx) =%

23. f(x) =2x —5; glx) = al —; >
3 —Xx
24. f(x) = 1 glx) =3 — 4x
1 1
25. f(.X) = __’ g(x) e —
X X
26. f(x) = x°, glx) = Ix
27. flx) =x*—4, x=0;
g(X) =\,"‘J)C+4., x= —4
28. flx) =x*+ 15 glx)=(x— 1"
1 |
29.f(x)—x_1 ¥ #* 1
|
gx)=—+1, x#0
X
0=x=2

30. f(x) = V4 — x2,

31-50 ® Find the inverse function of f.

31.
33.

35.

37.

39.

41.

43.

45.
47.
48.

fly)=2x+1
flx) =dx + 7
)=
1

o = x+2

T+ 3
fla) = S—2x
flx) = y2 + 5x
fl)=4-x% x=0
fla) =4+
f(X) =1+ \f'l—-l-x

32, flt) =6 x

34. flx) =3 - 5x

36. f(x) = Lz x>0
X

8. fl) = x+2

40. f(x) =5 — 4’

2. fli)=x>+x x=—1

4. flx) =\2x — 1

46. flx) = (2 = x7)



m Polynomial Functions and Their Graphs
Polynomial Functions

A polynomial function of degree n is a function of the form

P(x) =a,x" + a,_x" '+ - +ax+ ap

where 7 is a nonnegative integer and a,, # 0. The numbers a,, a,, a-, . . ., a,
are called the coefficients of the polynomial. The number ay is the constant
coefficient or constant term. The number ¢, the coefficient of the highest
power, is the leading coefficient, and the term a,x" is the leading term.
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We often refer to polynomial functions simply as polynomials. The following poly-
nomial has degree 35, leading coefficient 3, and constant term —6.

Leading Degree
coefficient 3

Constant coefficient —6

3x> +6xt =20+ xP+Tx—6
Leading term 3x°

Coefficients 3, 6, —2,1, 7, and —6

Here are some more examples of polynomials.

P(x) =3 Degree O
Qx) =4x — 7 Degree 1
R(x) = x* +x Degree 2

S(x) = 2x° — 6x* — 10 Degree 3

If a polynomial consists of just a single term, then it is called a monomial. For
example, P(x) = x” and Q(x) = —6x° are monomials.



m Dividing Polynomials

Long Division of Polynomials

Dividing polynomials is much like the familiar process of dividing numbers. When
we divide 38 by 7, the quotient is 5 and the remainder is 3. We write

Dividend
Kemainder
3 _..3
7 7

Divisor

Quotient

To divide polynomials, we use long division.

WWiy
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Example 1 Long Division of Polynomials I
[(O=D)]
Divide 6x2 — 26x + 12 by x — 4.

Solution

The dividend is 6x° — 26x + 12 and the divisor is x — 4. We begin by arranging
them as follows:

X —4)6x2 — 26x + 12

Next we divide the leading term in the dividend by the leading term in the divisor to
get the first term of the quotient: 6x2/x = 6x. Then we multiply the divisor by 6x
and subtract the result from the dividend.

Sx=

(_‘ 6xX Divide leading terms: = Ox
x 7 4)6x2 — 26x + 12 8
6x° — 24x Multiply: Gx(x — 4) = GxZ — 24x
—2x + 12 Subtract and “bring down” 12

We repeat the process using the last line —2x + 12 as the dividend.

/636?2 Divide leading terms: - —2

X — 4)6x2 — 26x + 12 :
6x> — 24x
—2x + 12
—2x + 8 Multiply: —2(x — 4) = —2x + &
4 Subtract

The division process ends when the last line is of lesser degree than the divisor. The
last line then contains the remainder, and the top line contains the guotienr. The
result of the division can be interpreted in either of two ways.

6Xx2 — 26x + 12 4
= 6x — 2 + —
x — 4 x x— 4
> _ _ _
or Ox 26x + 12 = (x 4)(ox 2) + 4 P emainder
Dividend Divisor Quotient



Division Algorithm

If P(x) and D(x) are polynomials, with D(x) # 0, then there exist unique
polynomials Q(x) and R(x); where R(x) is either O or of degree less than the

degree of D(x), such that

P(x) = D(x) - O(x) + R(x)
Remainder

Dividend Divisor Quotient

The polynomials P(x) and D(x) are called the dividend and divisor, respec-
tively, Q(x) is the quotient, and R(x) is the remainder.
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Example 2 Long Division of Polynomials =
Let P(x) = 8x* + 6x% — 3x + 1 and D(x) = 2x* — x + 2. Find polynomials Q(x)

and R(x) such that P(x) = D(x) - Q(x) + R(x).

Solution

We use long division after first inserting the term Ox- into the dividend to ensure
that the columns line up correctly.

ﬁ“ﬁl—x}?h

2Xx2 — x +2)8x* + 0x? + 6x% — 3x + 1

\),8)(4 — 4x° + 8x? Multiply divisor by 4x

4x3 — 2x% — 3x Subtract

4x7 — 2x% + 4x Multiply divisor by 2x
—7x + 1 Subtract

The process is complete at this point because —7x + 1 is of lesser degree than the
divisor 2x* — x + 2. From the long division table we see that Q(x) = 4x* + 2x
and R(x) = —7x + 1, so

8x* +6x —3x+ 1 =(2x7 — x+ 2)4dx* + 2x) + (=7x + 1) o



Synthetic Division

Synthetic division is a quick method of dividing polynomials; it can be used when
the divisor is of the form x — c¢. In synthetic division we write only the essential
part of the long division table. Compare these long division and synthetic division
tables, in which we divide 2x° — 7x* + 5 by x — 3:

Long Division Synthetic Division
Quotient
2x2 —x—3 3 2 —7 0 5
X —3)2x> —7x2+0x + 5
2x> — 6x° 6 —3 —9
—x? + 0x B BEE Es =a
—x* + 3x -
—3x + 5 . Remainder
3y 4+ 0 Quotient
—4

Remainder

Note that in synthetic division we abbreviate 2x° — 7x> + 5 by writing only the
coefficients: 2 —7 0 5, and instead of x — 3, we simply write 3. (Writing
3 instead of —3 allows us to add instead of subtract, but this changes the sign of all
the numbers that appear in the gold boxes.)

The next example shows how synthetic division 18 performed.



N

Example 3 Synthetic Division — ]
[(C=D)]

Use synthetic division to divide 2x° — 7x2 + 5 by x — 3.
Solution

We begin by writing the appropriate coefficients to represent the divisor and the
dividend.

Divisor x — 3 3 2 —7 o) 5 Dividend
2x> — 7xZ 4+ Ox + 5

We bring down the 2, multiply 3 - 2 = 6, and write the result in the middle row.
Then we add:

3 | 2 —7 0 5
6 Multiply: & - 2 =&
7‘.
— 1 Add: —7 + 6 = —1

We repeat this process of multiplying and then adding until the table is complete.

3| 2 —7 o 5

6 —3 Multiply: 3(—1) = —3

2 -3 Add: O + (—3) = —3



6 -3 -9 Multiply: 3(=2) = 9
7
L2 -1 —3J/—4 Add:5 + (—9) = —4
A Remainder
2xé—x—3 —4

From the last line of the synthetic division table, we see that the quotient is
2x* — x — 3 and the remainder is —4. Thus

2% = Tx*+5=(x—-3)(2x*—x—3)— 4 O
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The Remainder and Factor Theorems

The next theorem shows how synthetic division can be used to evaluate polyno-
mials easily.

Remainder Theorem

If the polynomial P(x) is divided by x — ¢, then the remainder is the
value P(c).

m Proof If the divisor in the Division Algorithm is of the form x — ¢ for some
real number ¢, then the remainder must be a constant (since the degree of the
remainder is less than the degree of the divisor). If we call this constant r, then

P(x)=(x—c) - Qlx) +r

Setting x = c in this equation, we get P(c) = (¢ —¢) - Qx) + r=0+r=r,
that is. P(c) is the remainder r. | o



A -7 -

Example 4 Using the Remainder Theorem to Find
the Value of a Polynomial

Let P(x) = 3x° + 5x* — 4x° + 7x + 3.

(a) Find the quotient and remainder when P(x) is divided by x + 2.
(b) Use the Remainder Theorem to find P(—2).

Solution

(a) Since x + 2 = x — (—2), the synthetic division table for this problem takes the
following form.

2 | 3 5 =4 0 7 3

—6 2 4 -8 2 Remainder is B, s0
3 -1 -2 4 -1 5 F(=2) =5

The quotient is 3x* — x* — 2x? + 4x — 1 and the remainder is 5.
(b) By the Remainder Theorem, P(—2) is the remainder when P(x) is divided

by x — (=2) = x + 2. From part (a) the remainder is 5, so P(—2) = 5. O

The next theorem says that zeros of polynomials correspond to factors; we used
this fact in Section 4.1 to graph polynomials.



Factor Theorem

c is a zero of P if and only if x — c is a factor of P(x).

m Proof If P(x) factors as P(x) = (x — ¢) - Q(x), then

Plc)=(c—¢) - Qc)=0-0c) =0

Conversely, if P(c) = 0, then by the Remainder Theorem

Px)=(x—¢)- Q) + 0= (x—¢) - Qx)

so x — ¢ is a factor of P(x).
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Example 5 Factoring a Polynomial Using the Factor Theorem

Let P(x) = x° — 7x + 6. Show that P(1) = 0, and use this fact to factor P(x) com-
pletely.

Solution

Substituting, we see that P(1) = 1° — 7 - 1 + 6 = 0. By the Factor Theorem, this
means that x — 1 is a factor of P(x). Using synthetic or long division (shown in the
margin), we see that

Plx) =x>—7x+ 6
=x—1)(x*+x—06) See margin

=(x—1)(x—2)x + 3) Factor quadratic x* + x — G O

X2 +x — 6
x— 1)x3> 4+ 0x2 —7x + 6

1|1 0 -7 6 o
x2 — 7x
| 1 —6 x2 — x

I 1 -6 0 e

ison / South-Western
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Example 6 Finding a Polynomial with Specified Zeros

Find a polynomial of degree 4 that has zeros —3, 0, 1, and 5.

Solution

By the Factor Theorem, x — (=3), x — 0, x — 1, and x — 5 must all be factors of
the desired polynomial, so let

Px) = (x +3)x = 0)(x = I)(x =5) =x* —3x7 — 13x% + 15x

Since P(x) is of degree 4 it is a solution of the problem. Any other solution of the
problem must be a constant multiple of P(x), since only multiplication by a con-
stant does not change the degree. O

The polynomial P of Example 6 is graphed in Figure 1. Note that the zeros of P

correspond to the x-intercepts of the graph.

VA

10

Figure 1
P(x) = (x + 3)x(x — 1)(x — 5)
has zeros —3., 0, 1. and 5.




m Exercises

1-4 ® Two polynomials P and D are given.

(a) Divide P(x) by D(x).

(b) Express P in the form P(x) = D(x) + Q(x) + R(x).
1. Plx) =3x*+5x—4, Dx)=x+3

N=x'+d*—6x+1, Dx)=x—-1

.

)=x'—x’+4x+2, Dx)=x>+3
=0+t =4 —x -3, Dlx)=x"-2
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5-14 ® Find the quotient and remainder using long division.

W2 e L3 L2 A
5 X 6x — 8 6 X X 2x + 6
x—4 x— 2
, Ax’+ 20 - 2x =3 g ¥ T3 +dxr+3
' 2x + 1 ' 3x + 6
o x>+ 6x + 3 10 3x* —5x° —20x — 5
T x2—2x+2 ' x2+x+3
.3_|_ .2_|_ . .2_._|_
1. Ox 22)( 22x 15 Ox : X+ 5
2x-+ 5 3x° — Tx
6_|_4_|_2_|_1 25_ —’1_1
13.x X X 14, X Tx 3

x?+1 4x> — 6x + 8
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15-28 ® Find the quotient and remainder using synthetic
division.

15. =—2%

16 x> —5x+ 4
x—3 x— 1
3x2 + S5x 4x? — 3
17. - 18.
X —06 x+5
10. x> +2x7 +2x + 1 0. 3,x‘—1%,r2—9,r+1
x + 2 x — 5
2 — 8x + 2 T — x? + x? — x + 2
21.)6 8x 22.x X X X
x + 3 x — 2
5+ 3x°% — P — Ox2 4+ 27x — 2
23.)6 3):. 6 24.x Ox 7x 7
x — 1 x — 3
2x7 + 3x7 — 2x + 1
5. X 3x lx
X — 3
6x% + 10x® + 5x2 + x + 1
26. -
)C—'—?
3 — 2
27.)( 7

x — 3

4_1
28..)6 6

x + 2



29-41 ® Use synthetic division and the Remainder Theorem to
evaluate P(c).

29. P(x) =4x> + 12x +5, ¢ = —1

30. Px) =2x>+9%x + 1, c=5
31. Px) =x" +3x*—Tx+ 6, ¢c=2
32. Px) =x>—x*+x+5, c¢c=-1
33. Px) =x>+2x> =7, ¢c= -2

(x)
(x)
(x)
(x)
34. P(x) = 2x* — 21x2 + 9x — 200, ¢ = 11
(x) =
(x) =
(x)

35. P(x) = 5x*+30x° —40x> +36x + 14, ¢ = —7
36. Plx 6x° + 10x° +x+1, ¢c= -2
37. Px) =x" —3x>—1, ¢c=23



38. P(x) = —2x° + 7x° + 40x* — 7x? + 10x + 112,

39. Px) =3x  +4x>—2x+ 1, ¢=3%
40. P(x) =x>—x+ 1, c=1
41. P(x) =x" + 2x* —3x— 8, ¢=0.1

43—-46 ®m Use the Factor Theorem to show that x — ¢ is a factoi
of P(x) for the given value(s) of c.

I
W
“U

) =x"—3x"+3x—1, c=1
44. P(x) X7+ 2 —3x— 10, ¢=2
45. P(x) =2x° + x>+ 6x — 5, c=7%
46. P(x) = x* + 3x° — 16x> — 27x + 63, ¢ =3, -3
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Exponential Functions

Exponential Functions

The exponential function with base a is defined for all real numbers x by

Flx) = a*

where a = 0 and a # 1.

We assume a # 1 because the function f(x) = 1" = 1 is just a constant function.
Here are some examples of exponential functions:

Flx) =2 g(x) =3 h(x) = 10"
Base 2 Base 3 Base 10

Example 1 Evaluating Exponential Functions

Let f(x) = 3" and evaluate the following:
@ f2)  ® fA—=3) (© flm) (@ fN2)
Solution

We use a calculator to obtain the values of f.

Calculator keystrokes Output
(@) f(2) =3 = [3][~[2][ EnTER | (9]
(b) f(—3%) =327 =0.4807  [3][~|[<|[=][2][F][3][>][ enver | [0.4807498]
(¢) f(mr) = 37 = 31.544 [ 3][~][77]| EnTER | 31.5442807|

(
(d) f(V2) = 3v2 = 4.7288 [3[~IN][2][ enTER | 4.7288043]




Graphs of Exponential Functions

The exponential function
f(x) =a* (a>0,a #1)

has domain R and range (0, o). The graph of f has one of these shapes.

VA YA
(0, 1)
(0, 1)
> >
0 X 0 X
flx)=a* fora >1 flx)y=a'for0<a <1
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Example 3 Identifying Graphs of Exponential Functions

Find the exponential function f(x) = a* whose graph is given.

(a) VA (b)
T 2,25)

i . N B
_10 | :- —I3I IO o 3 \

Solution

(a) Since f(2) = a* = 25, we see that the base is a = 5. So f(x) = 5"

(b) Since f(3) = a® = &, we see that the base is @ = 1. So f(x) = (2] .



1S

ANWI

Example 4 Transformations of Exponential Functions =1
Use the graph of f(x) = 2* to sketch the graph of each function.
(a) glx) =1+ 2* (b) h(x) = —2* (¢) k(x) = 2!

Solution

(a) To obtain the graph of g(x) = 1 + 2%, we start with the graph of f(x) = 2" and
shift it upward 1 unit. Notice from Figure 3(a) that the line vy = 1 is now a
horizontal asymptote.

(b) Again we start with the graph of f(x) = 2%, but here we reflect in the x-axis to
get the graph of A(x) = —2* shown in Figure 3(b).

(¢c) This time we start with the graph of f(x) = 2% and shift it to the right by 1 unit,
to get the graph of k(x) = 2*~! shown in Figure 3(c).

y=1+2°%

Horizontal
asymptote




Example 5 Comparing Exponential
and Power Functions

Compare the rates of growth of the exponential function f(x) = 2* and the
power function ¢(x) = x? by drawing the graphs of both functions in the
following viewing rectangles.

(a) [0,3]by [0,8] () [0,6]by[0,25]  (c) [0,20] by [0, 1000]

Solution
(a) Figure 4(a) shows that the graph of g(x) = x* catches up with, and becomes
higher than, the graph of f(x) = 2" atx = 2.

(b) The larger viewing rectangle in Figure 4(b) shows that the graph of
f(x) = 2% overtakes that of g(x) = x* when x = 4.

(¢) Figure 4(c) gives a more global view and shows that, when x is large,
f(x) = 2" is much larger than g(x) = x*.

1000

(c)

Figure 4 m



Y

The Natural Exponential Function

The natural exponential function is the exponential function

with base e. It is often referred to as the exponential function.

l
/ | . Since 2 < e < 3, the graph of the natural exponential function lies between the
0 . graphs of y = 2% and v = 3%, as shown in Figure 5.
Scientific calculators have a special key for the function f(x) = e¢*. We use this
key in the next example.

=Y

Finnura R

Example 6 Evaluating the Exponential Function
Evaluate each expression correct to five decimal places.

(a) 63 (b) 28_0'53 (C) 6'4'8

Solution

We use the |e*| key on a calculator to evaluate the exponential function.

(a) e’ =~ 20.08554
(b) 2¢ Y% = 1.17721
(c) e*® = 121.51042 o
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Example 7 Transformations of the Exponential Function $|
[(d=D)]

Sketch the graph of each function.
(@) flx) =e™" (b) g(x) = 3¢

Solution
(a) We start with the graph of y = ¢ and reflect in the y-axis to obtain the graph
of y = e " as in Figure 6.

(b) We calculate several values, plot the resulting points, then connect the points
with a smooth curve. The graph is shown in Figure 7.

X f(x) — 360.5x y Jli

23 0.67 :

-2 1.10 !

—1 1.82 : 0.5x
0 3.00 :
1 4.95 .
2 8.15 o
3 13.45 ) A

Figure 7



Y

Figure 6
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m Exercises

1-6 ® Sketch the graph of the function by making a table of
values. Use a calculator if necessary.

1. f(x) =2%  7-8 m Graph both functions on one set of axes.
. glx) = 8 7.yv=4" and y=T7"

_ (1" X X

=) 8y =) wma y=(

S i L W N
: —
2 2 = =5 =
[
—
[—
—
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19-32 ®m Graph the function, not by plotting points, but by
starting from the graphs in Figures 2 and 5. State the domain,
range, and asymptote.

19. f(x) = —3° 20. f(x) = 107
21. g(x) = 2% — 3 22. g(x) = 2%
23. hix) = 4+ (3)° 24. h(x) = 6 — 3
25. f(x) = 103 26. flx) = —(3)°
27. f(x) = —e* 28. y =1 — ¢*
29. y = ¢ — 1 30. f(x) = —e

31. f(x) =e" " 32. y=¢"""+ 4



BEEEY ooorithmic Functions

Definition of the Logarithmic Function

Let a be a positive number with a # 1. The logarithmic function with base
a, denoted by log,, is defined by

log, x=y & a'=x

In words, this says that

log, x is the exponent to which the base a must be raised to give x.

When we use the definition of logarithms to switch back and forth between the
logarithmic form log, x = v and the exponential form a’ = x, it’s helpful to
- notice that, in both forms, the base is the same:

Logarithmic form Exponential form
Exponent Exponent
log, x =v a’ = x

Base Base



Example 1

Logarithmic and Exponential Forms

(G%B)I

The logarithmic and exponential forms are equivalent equations—it one is true,
then so is the other. So, we can switch from one form to the other as in the follow-

ing illustrations.

Logarithmic form Exponential form

log'?100,000 5 5 10° = 100,000

log,8 = 3 23 =

logz(—gl;) = -3 273 =1

logss = r 5"=5

O

Properties of Logarithms
Property Reason
1. log,1 =0 We must raise a to the power O to get 1.

We must raise a to the power 1 to get a.

2. log,a =1

3. log,a* =x We must raise a to the power x to get a”.

4. ¢'°%* = log, x is the power to which a must be raised to get x.



Example 2 Evaluating Logarithms =D

(a) log,o1000 = 3 because 10° = 1000

(b) log,32 =5 because 2° = 32

(¢) log;,0.1 = —1 because 107" = 0.1

(d) loge4 =3 because 162 =4 o

In Section 3.7 we saw that a function f and its inverse function f ' satisfy the
equations

f~'(f(x)) =x  for x in the domain of f

f(f7'(x)) =x  for x in the domain of f~'

When applied to f(x) = a* and f~'(x) = log, x, these equations become

loga’)=x x€R ~ oo X
10% 4
10° 3
loeg,, x __ 10” 2
a °tat = x x>0 10 1
1 O
10! —1
10~ —2
© 2002 Thomson / South-Western 10:3 —3
10 ¢ —4




Example 3 Applying Properties of Logarithms
We illustrate the properties of logarithms when the base is 3.

logs1 =0 Property 1 logs5 =1 Property 2

logs5® = 8 Property 3 5loesl2 = 12 Property 4
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Example 4 Graphing a Logarithmic Function o
by Plotting Points =

Sketch the graph of f(x) = log, x.

Solution

To make a table of values, we choose the x-values to be powers of 2 so that we can
easily find their logarithms. We plot these points and connect them with a smooth
curve as in Figure 3.

YA
X log,x 1
2* 4
2° 3
27 2
2 | >
1 0 X
27! —1
272 —2
27 —3
27 —4 .

Figure 3




Example 5 Reflecting Graphs of Logarithmic Functions

Sketch the graph of each function.
(@) g(x) = —logax  (b) A(x) = log, (—x)

Solution
(a) We start with the graph of f(x) = log, x and reflect in the x-axis to get the
graph of g(x) = —log, x in Figure 5(a).

(b) We start with the graph of f(x) = log, x and reflect in the y-axis to get the
graph of i(x) = log, (—x) in Figure 5(b).

gure 5



Common Logarithms

We now study logarithms with base 10.

Common Logarithm

The logarithm with base 10 is called the common logarithm and is denoted
by omitting the base:

log x = log,px

From the definition of logarithms we can easily find that

log 10 =1 and log 100 = 2
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Example 7 Evaluating Common Logarithms

Use a calculator to find appropriate values of f(x) = log x and use the values to
sketch the graph.

Solution

We make a table of values, using a calculator to evaluate the function at those val-

ues of x that are not powers of 10. We plot those points and connect them by a
smooth curve as in Figure 8.

X log x VA
0.01 -2
0.1 —1
0.5 —0.301
| 0 .
4 0.602 X
5 0.699
10 |
15 1.176
Figure 8




Natural Logarithm

The logarithm with base ¢ is called the natural logarithm and is denoted
by In:

In x = log,.x

The natural logarithmic function v = In x is the inverse function of the exponen-
tial function v = e*. Both functions are graphed in Figure 9. By the definition of
inverse functions we have

Inx=vyv < e’ =ux

1 X
Figure 9 1
Graph of the natural logarithmic 7 |
function y =X
If we substitute a = e and write “In” for *“log.” in the properties of logarithms

mentioned earlier, we obtain the following properties of natural logarithms.



Properties of Natural Logarithms

Property Reason

1. In1 =0 We must raise e to the power O to get 1.

2. Ine=1 We must raise e to the power 1 to get e.

3. Ine* =x We must raise e to the power x to get e™.

4. ¢ =x In x is the power to which ¢ must be raised to get x.

Example 10 Finding the Domain of a Logarithmic Function

Find the domain of the function f(x) = In(4 — x?).

Solution

As with any logarithmic function, In x is defined when x > 0.
Thus, the domain of f is

fx[4—x2>0}={x[x*> <4} ={x| x| <2]

=x|—2<x<2}=(-2,2)



1-6 ® Express the equation in exponential form.

AN U T o

(a) logs25 =2

(a) loglo().l = —1

(a) logg2 = 5
(a) log;81 =4
(a) In5 =«x

(a) Inx +1)=2

(b) logs1 =0
(b) logs 512 = 3
(b) loga(5) = —3
(b) logs4 = 3
(b) Iny =35

(b) In(x — 1) =4

7-12 m Express the equation in logarithmic form.

7.
8.
9.
10.
11.
12.

(a) 5° =125

(a) 10° = 1000
(a) 87" =4

(a) 4772 =0.125
(a) et =2

(a) e =05

(b) 10~ * = 0.000
(b) 812 =9

(b) 277 =g

(b) 7° = 343

(b) e’ =y

(b) " =1

§7-62 1 Find the domain of the function,

30, i = logylr + 3
38, flr] = logs§ - 2
9. glr) = logifr” - |
60, ¢l1) = Infy - '

Slide 3-132



13—-22 W PFvaluate the expression.

13. (a) logs3

14.
15.
16.
17.
18.
19.
20.
21.
22.

(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)
(a)

logs 5
loge 36
log, 32
10g3cﬁ)
logs 125
Hlog,37

In 77

e
logs 0.25

log, 2

(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)
(b)

logs 1
log, 64
loge 81
logs 87
logio\/10
log4o 7

310g38

1010g5

In e*

log,4 (%)

(c)
(c)
(c)

(c)
(c)
(c)
(c)

(c)

log; 3~
logo 9
log, 7'
loge 1
logs0.2
logo J3
In \/5

1010g87

In(1/e)
log, 8



23-30 ® Use the definition of the logarithmic function tc
find x.

23. (a) logr x =5 (b) log, 16 = x
24. (a) logsx =4 (b) log,,0.1 = x
25. (a) logz243 =«x (b) log;x =3
26. (a) log,2 =x (b) log,x = 2
27. (a) log,px =2 (b) logsx = 2
28. (a) log, 1000 = 3 (b) log, 25 =2
29. (a) log, 16 = 4 (b) log,8 =3
30. (a) log, 6 =+ (b) log,3 =1

le 3-134



ﬂ Laws of Logarithms
Laws of Logarithms

Let a be a positive number, with a # 1. Let A, B, and C be any real numbers
withA >0 and B > 0.

Law Description

1. log,(AB) = log,A + log,B The logarithm of a product of numbers
is the sum of the logarithms of the

numbers.

A
2. loga(—) = log,A — log, B The logarithm of a quotient of numbers

= is the difference of the logarithms of the
numbers.

3. log,(A“) = Clog,A The logarithm of a power of a number
is the exponent times the logarithm of
the number.



Example 1 Using the Laws of Logarithms
to Evaluate Expressions

Evaluate each expression.

(a) log,2 + log, 32 (b) log, 80 — log-, 35 (¢) —%— log 8

Solution
(a) logs2 + log, 32 = log4(2 - 32)  law’
= log, 64 = 3 Because 64 = 4°
(b) log, 80 — log, 5 = logz(%g) Law 2
= log, 16 = 4 Because 16 = 27
(¢) —3log8 = log 81/ Law 3
= log(%) Property of negative exponents

~ —(0.301 Calculator



Example 2 Expanding Logarithmic Expressions

Use the Laws of Logarithms to expand each expression.

(a) log,(6x)

Solution

(a) log,(6x) = log, 6 + log, x

(b) logs(x”y®) = logs x” + logs y°
= 3 logsx + 6 logsy

(c) 1n(%) = In(ab) — InJc

—Ina+Inb—Inc?

=Ilna+Inb—+lInc

(b) logs(x’y°)

Law 1
Law 1

Law S

Law 2

Law 1

Law 5

(C) ]1’1(%

ab

|



Example 2 Expanding Logarithmic Expressions

Use the Laws of Logarithms to expand each expression.

(a) log,(6x)

Solution

(a) log,(6x) = log, 6 + log, x

(b) logs(x’y®) = logs x”* + logs y°
= 3 logsx + 6 logsy

(©) ln(%) = In(ab) — In Je

—Ilng+1Inb—Inc?”

=lna+Inb—<lInc

(b) logs(x’y°)

Law 1

Law 1

Law 5

Law 2

Law 1

Law 5

(C) 11’1(%

ab

|



Example 3 Combining Logarithmic Expressions

Combine 3 log x + & log(x + 1) into a single logarithm.

Solution
3log x + 1 log(x + 1) = log x* + log(x + 1)'"2  Law?3

= log(x3(x + 1)) Law 1

Example 4 Combining Logarithmic Expressions

Combine 3 Ins + +Int — 4 In(t> + 1) into a single logarithm.

Solution
3Ins+3lnt—4In(t>+1)=1ns’ + Int"? — In(r> + 1)
= In(s3"?) — In(¢> + 1)

:“‘(< = )

2+ 1)

Law 5

Law 1

Law 2



WARNING  Although the Laws of Logarithms tell us how to compute the log-
arithm of a product or a quotient, there is no corresponding rule for the logarithm
of a sum or a difference. For instance,

log,lx + 3] 5 log, x + log, y

In fact, we know that the right side is equal to log,(xy). Also, don’t improperly sim-
plity quotients or powers of logarithms, For instance,

Sg g log(g) and  (log, 1)’ = 3log,x

Logarithmic functions are used to model a variety of situations involving human
behavior, One such behavior is how quickly we forget things we have learned. For
example, if you learn algebra at a certain performance level (say 90% on a test) and
then don’t use algebra for a while, how much will you retain after a week, a month,
or a year? Hermann Ebbinghaus (1850-1909) studied this phenomenon and formu-
lated the law described 1n the next example.




Change of Base Formula

log, x

1 —
O8p X log, b

In particular, if we put x = a, then log, a = 1 and this formula becomes

1

log,a = ——

5 log, b
Example 6 Evaluating Logarithms with the Change s
of Base Formula =

Use the Change of Base Formula and common or natural logarithms to evaluate
each logarithm, correct to five decimal places.

(a) logsg 5 (b) logo 20

Solution

(a) We use the Change of Base Formula with b = 8 and a = 10:

1 5
logg 5 = ——2102 773908
loglo S

(b) We use the Change of Base Formula with » = 9 and a = e:

In 20
1 20 = ——— = 1.36342
O8o In O



36

NaY
‘an

Example 7 Using the Change of Base Formula
to Graph a Logarithmic Function

Use a graphing calculator to graph f(x) = logg x.

Solution

Calculators don’t have a key for loge, so we use the Change of Base Formula
to write

In x

p— 1 = —-
f(x) 086 X 6
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m Exercises

1-12 ® Evaluate the expression.

1. logs \;?5 2. log, 112 — log, 7
3. log2 + log 5 4. log 0.1
5. log, 192 — log, 3 6. log;»9 + log;, 16

7. log, 6 — log, 15 + log, 20
8. log; 100 — log; 18 — log; 30
9. log,16'" 10. log,8*

gzoﬂ)

11. log(log 10" 12. In(ln ¢°

333333



13-38 ® Use the Laws of Logarithms to expand the
expression.

13. log, (2] 14. log;(5y)
. X
15. log(x(x = 1)) 16. log5(5)
17. log 6" 18. Infyz)
19. log,(AB) 20. logg 417

21. log{x | 22. log,lxy)"”



23.

25.

27.

29.

31.

33.

35.

37.

logs Jx2 + 1

In \‘;"IIE
X3y

1 =
(1)

x(x? + 1
logz( x(x ) )

\,f'xz — 1
" (”’””\/E )

z

24.

26.

28.

30.

32.

34.

36.

38.

log \x V¥ vz

10"

log(x(x2 1)+ 2)

|



Example 2 Solving an Exponential Equation

Solve the equation 8¢>* = 20.

Solution

We first divide by 8 in order to isolate the exponential term on one side
of the equation.

8e™ = 20 Given equation
e = %0 Divide by &
Ine* =1n25  Take In of each side
2x = In 2.5 Froperty of In
X = 1n22.5 Divide by 2

~ ().458 Calculator

P
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Example 3 Solving an Exponential Equation =
Algebraically and Graphically =0

Solve the equation e® ** = 4 algebraically and graphically.

Solution 1: Algebraic

Since the base of the exponential term is e, we use natural logarithms to solve this
equation.

e’ =4 Given equation
In(e®>™*") = In 4 Take In of each side
3 —2x=1n4 Property of In

2x 3 —In4
x =3(3 — In4) = 0.807

You should check that this answer satisfies the original equation.

Solution 2: Graphical

We graph the equations y = ¢>~ > and y = 4 in the same viewing rectangle as in
Figure 1. The solutions occur where the graphs intersect. Zooming in on the point
of intersection of the two graphs, we see that x = 0.81.

5




