
We have shown earlier the pair of view factors Fi → j and Fj → i are related to
each other by

AiFi → j � AjFj → i (12-11)

This relation is referred to as the reciprocity relation or the reciprocity rule,
and it enables us to determine the counterpart of a view factor from a knowl-
edge of the view factor itself and the areas of the two surfaces. When deter-
mining the pair of view factors Fi → j and Fj → i, it makes sense to evaluate first
the easier one directly and then the more difficult one by applying the reci-
procity relation.

2 The Summation Rule
The radiation analysis of a surface normally requires the consideration of the
radiation coming in or going out in all directions. Therefore, most radiation
problems encountered in practice involve enclosed spaces. When formulating
a radiation problem, we usually form an enclosure consisting of the surfaces
interacting radiatively. Even openings are treated as imaginary surfaces with
radiation properties equivalent to those of the opening.

The conservation of energy principle requires that the entire radiation leav-
ing any surface i of an enclosure be intercepted by the surfaces of 
the enclosure. Therefore, the sum of the view factors from surface i of an en-
closure to all surfaces of the enclosure, including to itself, must equal unity.
This is known as the summation rule for an enclosure and is expressed as
(Fig. 12–9)

Fi → j � 1 (12-12)

where N is the number of surfaces of the enclosure. For example, applying the
summation rule to surface 1 of a three-surface enclosure yields

F1 → j � F1 → 1 � F1 → 2 � F1 → 3 � 1

The summation rule can be applied to each surface of an enclosure by vary-
ing i from 1 to N. Therefore, the summation rule applied to each of the N sur-
faces of an enclosure gives N relations for the determination of the view
factors. Also, the reciprocity rule gives N(N 	 1) additional relations. Then
the total number of view factors that need to be evaluated directly for an
N-surface enclosure becomes

N2 	 [N � N(N 	 1)] � N(N 	 1)

For example, for a six-surface enclosure, we need to determine only 

 6(6 	 1) � 15 of the 62 � 36 view factors directly. The remaining

21 view factors can be determined from the 21 equations that are obtained by
applying the reciprocity and the summation rules.

1
2

1
2

1
2

1
2

�
3

j�1

�
N

j�1
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Surface i

FIGURE 12–9
Radiation leaving any surface i of
an enclosure must be intercepted
completely by the surfaces of the
enclosure. Therefore, the sum of

the view factors from surface i to
each one of the surfaces of the

enclosure must be unity.
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EXAMPLE 12–1 View Factors Associated with Two Concentric
Spheres

Determine the view factors associated with an enclosure formed by two spheres,
shown in Figure 12–10.

SOLUTION The view factors associated with two concentric spheres are to be
determined.
Assumptions The surfaces are diffuse emitters and reflectors.
Analysis The outer surface of the smaller sphere (surface 1) and inner surface
of the larger sphere (surface 2) form a two-surface enclosure. Therefore, N � 2
and this enclosure involves N 2 � 22 � 4 view factors, which are F11, F12, F21,
and F22. In this two-surface enclosure, we need to determine only

N(N 	 1) � 
 2(2 	 1) � 1

view factor directly. The remaining three view factors can be determined by the
application of the summation and reciprocity rules. But it turns out that we can
determine not only one but two view factors directly in this case by a simple
inspection:

F11 � 0, since no radiation leaving surface 1 strikes itself

F12 � 1, since all radiation leaving surface 1 strikes surface 2

Actually it would be sufficient to determine only one of these view factors by
inspection, since we could always determine the other one from the summation
rule applied to surface 1 as F11 � F12 � 1.

The view factor F21 is determined by applying the reciprocity relation to sur-
faces 1 and 2:

A1F12 � A2F21

which yields

F21 � F12 � 
 1 �

Finally, the view factor F22 is determined by applying the summation rule to sur-
face 2:

F21 � F22 � 1

and thus

F22 � 1 	 F21 � 1 	

Discussion Note that when the outer sphere is much larger than the inner
sphere (r2 � r1), F22 approaches one. This is expected, since the fraction of
radiation leaving the outer sphere that is intercepted by the inner sphere will be
negligible in that case. Also note that the two spheres considered above do not
need to be concentric. However, the radiation analysis will be most accurate for
the case of concentric spheres, since the radiation is most likely to be uniform
on the surfaces in that case.

�r1

r2�
2

�r1

r2�
24�r 2

1

4�r 2
2

A1

A2

1
2

1
2

r1
r2

2
1

FIGURE 12–10
The geometry considered
in Example 12–1.
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3 The Superposition Rule
Sometimes the view factor associated with a given geometry is not available
in standard tables and charts. In such cases, it is desirable to express the given
geometry as the sum or difference of some geometries with known view fac-
tors, and then to apply the superposition rule, which can be expressed as the
view factor from a surface i to a surface j is equal to the sum of the view fac-
tors from surface i to the parts of surface j. Note that the reverse of this is not
true. That is, the view factor from a surface j to a surface i is not equal to the
sum of the view factors from the parts of surface j to surface i.

Consider the geometry in Figure 12–11, which is infinitely long in the
direction perpendicular to the plane of the paper. The radiation that leaves
surface 1 and strikes the combined surfaces 2 and 3 is equal to the sum of the
radiation that strikes surfaces 2 and 3. Therefore, the view factor from surface
1 to the combined surfaces of 2 and 3 is

F1 → (2, 3) � F1 → 2 � F1 → 3 (12-13)

Suppose we need to find the view factor F1 → 3. A quick check of the view fac-
tor expressions and charts in this section will reveal that such a view factor
cannot be evaluated directly. However, the view factor F1 → 3 can be deter-
mined from Eq. 12–13 after determining both F1 → 2 and F1 → (2, 3) from the
chart in Figure 12–12. Therefore, it may be possible to determine some diffi-
cult view factors with relative ease by expressing one or both of the areas as
the sum or differences of areas and then applying the superposition rule.

To obtain a relation for the view factor F(2, 3) → 1, we multiply Eq. 
12–13 by A1,

A1 F1 → (2, 3) � A1 F1 → 2 � A1 F1 → 3

and apply the reciprocity relation to each term to get

(A2 � A3)F(2, 3) → 1 � A2 F2 → 1 � A3 F3 → 1

or

F(2, 3) → 1 � (12-14)

Areas that are expressed as the sum of more than two parts can be handled in
a similar manner.

A2 F2 → 1 � A3 F3 → 1

A2 � A3

CHAPTER 12
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= +

1

2

1

2

3

1

3

F1 → (2, 3) = F1 → 2 + F1 → 3

FIGURE 12–11
The view factor from a surface to a

composite surface is equal to the sum
of the view factors from the surface to

the parts of the composite surface.

r1 = 10 cm
1

2

r3 = 8 cm

r2 = 5 cm3

FIGURE 12–12
The cylindrical enclosure

considered in Example 12–2.

EXAMPLE 12–2 Fraction of Radiation Leaving
through an Opening

Determine the fraction of the radiation leaving the base of the cylindrical en-
closure shown in Figure 12–12 that escapes through a coaxial ring opening
at its top surface. The radius and the length of the enclosure are r1 � 10 cm
and L � 10 cm, while the inner and outer radii of the ring are r2 � 5 cm and
r3 � 8 cm, respectively.
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4 The Symmetry Rule
The determination of the view factors in a problem can be simplified further
if the geometry involved possesses some sort of symmetry. Therefore, it is
good practice to check for the presence of any symmetry in a problem before
attempting to determine the view factors directly. The presence of symmetry
can be determined by inspection, keeping the definition of the view factor in
mind. Identical surfaces that are oriented in an identical manner with respect
to another surface will intercept identical amounts of radiation leaving that
surface. Therefore, the symmetry rule can be expressed as two (or more) sur-
faces that possess symmetry about a third surface will have identical view fac-
tors from that surface (Fig. 12–13).

The symmetry rule can also be expressed as if the surfaces j and k are sym-
metric about the surface i then Fi → j � Fi → k. Using the reciprocity rule, we
can show that the relation Fj → i � Fk → i is also true in this case.
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SOLUTION The fraction of radiation leaving the base of a cylindrical enclosure
through a coaxial ring opening at its top surface is to be determined.
Assumptions The base surface is a diffuse emitter and reflector.
Analysis We are asked to determine the fraction of the radiation leaving the
base of the enclosure that escapes through an opening at the top surface.
Actually, what we are asked to determine is simply the view factor F1 → ring from
the base of the enclosure to the ring-shaped surface at the top.

We do not have an analytical expression or chart for view factors between a
circular area and a coaxial ring, and so we cannot determine F1 → ring directly.
However, we do have a chart for view factors between two coaxial parallel disks,
and we can always express a ring in terms of disks.

Let the base surface of radius r1 � 10 cm be surface 1, the circular area of
r2 � 5 cm at the top be surface 2, and the circular area of r3 � 8 cm be sur-
face 3. Using the superposition rule, the view factor from surface 1 to surface 3
can be expressed as

F1 → 3 � F1 → 2 � F1 → ring

since surface 3 is the sum of surface 2 and the ring area. The view factors F1 → 2

and F1 → 3 are determined from the chart in Figure 12–7.

� 1 and � 0.5 → F1 → 2 � 0.11
(Fig. 12–7)

� 1 and � 0.8 → F1 → 3 � 0.28
(Fig. 12–7)

Therefore,

F1 → ring � F1 → 3 	 F1 → 2 � 0.28 	 0.11 � 0.17

which is the desired result. Note that F1 → 2 and F1 → 3 represent the fractions of
radiation leaving the base that strike the circular surfaces 2 and 3, respectively,
and their difference gives the fraction that strikes the ring area.

r3

L
�

8 cm
10 cm

L
r1

�
10 cm
10 cm

r2

L
�

5 cm
10 cm

L
r1

�
10 cm
10 cm

1

2
3

F1 → 2 = F1 → 3  

F2 → 1 = F3 → 1 ) (Also, 

FIGURE 12–13
Two surfaces that are symmetric about
a third surface will have the same
view factor from the third surface.
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EXAMPLE 12–3 View Factors Associated with a Tetragon

Determine the view factors from the base of the pyramid shown in Figure 12–14
to each of its four side surfaces. The base of the pyramid is a square, and its
side surfaces are isosceles triangles.

SOLUTION The view factors from the base of a pyramid to each of its four side
surfaces for the case of a square base are to be determined.
Assumptions The surfaces are diffuse emitters and reflectors.
Analysis The base of the pyramid (surface 1) and its four side surfaces (sur-
faces 2, 3, 4, and 5) form a five-surface enclosure. The first thing we notice
about this enclosure is its symmetry. The four side surfaces are symmetric
about the base surface. Then, from the symmetry rule, we have

F12 � F13 � F14 � F15

Also, the summation rule applied to surface 1 yields

F1j � F11 � F12 � F13 � F14 � F15 � 1

However, F11 � 0, since the base is a flat surface. Then the two relations
above yield

F12 � F13 � F14 � F15 � 0.25

Discussion Note that each of the four side surfaces of the pyramid receive
one-fourth of the entire radiation leaving the base surface, as expected. Also
note that the presence of symmetry greatly simplified the determination of the
view factors.

�
5

j �1

1

4

5

3

2

FIGURE 12–14
The pyramid considered

in Example 12–3.

EXAMPLE 12–4 View Factors Associated with a Triangular Duct

Determine the view factor from any one side to any other side of the infinitely
long triangular duct whose cross section is given in Figure 12–15.

SOLUTION The view factors associated with an infinitely long triangular duct
are to be determined.
Assumptions The surfaces are diffuse emitters and reflectors.
Analysis The widths of the sides of the triangular cross section of the duct are
L1, L2, and L3, and the surface areas corresponding to them are A1, A2, and A3,
respectively. Since the duct is infinitely long, the fraction of radiation leaving
any surface that escapes through the ends of the duct is negligible. Therefore,
the infinitely long duct can be considered to be a three-surface enclosure,
N � 3.

This enclosure involves N 2 � 32 � 9 view factors, and we need to determine

N(N 	 1) � 
 3(3 	 1) � 31
2

1
2

1

23
L3 L2

L1

FIGURE 12–15
The infinitely long triangular duct

considered in Example 12–4.
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View Factors between Infinitely Long Surfaces:
The Crossed-Strings Method
Many problems encountered in practice involve geometries of constant cross
section such as channels and ducts that are very long in one direction relative
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of these view factors directly. Fortunately, we can determine all three of them by
inspection to be

F11 � F22 � F33 � 0

since all three surfaces are flat. The remaining six view factors can be deter-
mined by the application of the summation and reciprocity rules.

Applying the summation rule to each of the three surfaces gives

F11 � F12 � F13 � 1

F21 � F22 � F23 � 1

F31 � F32 � F33 � 1

Noting that F11 � F22 � F33 � 0 and multiplying the first equation by A1, the
second by A2, and the third by A3 gives

A1F12 � A1F13 � A1

A2F21 � A2F23 � A2

A3F31 � A3F32 � A3

Finally, applying the three reciprocity relations A1F12 � A2F21, A1F13 � A3F31,
and A2F23 � A3F32 gives

A1F12 � A1F13 � A1

A1F12 � A2F23 � A2

A1F13 � A2F23 � A3

This is a set of three algebraic equations with three unknowns, which can be
solved to obtain

F12 � � 

F13 � �

F23 � � (12-15)

Discussion Note that we have replaced the areas of the side surfaces by their
corresponding widths for simplicity, since A � Ls and the length s can be fac-
tored out and canceled. We can generalize this result as the view factor from a
surface of a very long triangular duct to another surface is equal to the sum of
the widths of these two surfaces minus the width of the third surface, divided
by twice the width of the first surface.

L2 � L3 � L1

2L2

A2 � A3 	 A1

2A2

L1 � L3 � L2

2L1

A1 � A3 	 A2

2A1

L1 � L2 � L3

2L1

A1 � A2 	 A3

2A1
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to the other directions. Such geometries can conveniently be considered to be
two-dimensional, since any radiation interaction through their end surfaces
will be negligible. These geometries can subsequently be modeled as being
infinitely long, and the view factor between their surfaces can be determined
by the amazingly simple crossed-strings method developed by H. C. Hottel in
the 1950s. The surfaces of the geometry do not need to be flat; they can be
convex, concave, or any irregular shape.

To demonstrate this method, consider the geometry shown in Figure 12–16,
and let us try to find the view factor F1 → 2 between surfaces 1 and 2. The first
thing we do is identify the endpoints of the surfaces (the points A, B, C, and D)
and connect them to each other with tightly stretched strings, which are
indicated by dashed lines. Hottel has shown that the view factor F1 → 2 can be
expressed in terms of the lengths of these stretched strings, which are straight
lines, as

F1 → 2 � (12-16)

Note that L5 � L6 is the sum of the lengths of the crossed strings, and L3 � L4

is the sum of the lengths of the uncrossed strings attached to the endpoints.
Therefore, Hottel’s crossed-strings method can be expressed verbally as

Fi → j � (12-17)

The crossed-strings method is applicable even when the two surfaces consid-
ered share a common edge, as in a triangle. In such cases, the common edge
can be treated as an imaginary string of zero length. The method can also be
applied to surfaces that are partially blocked by other surfaces by allowing the
strings to bend around the blocking surfaces.

� (Crossed strings) 	 � (Uncrossed strings)
2 
 (String on surface i)

(L5 � L6) 	 (L3 � L4)
2L1
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L2

L1

L5

L3

A
B

D
C

L4

L6

1

2

FIGURE 12–16
Determination of the view factor

F1 → 2 by the application of
the crossed-strings method.

EXAMPLE 12–5 The Crossed-Strings Method for View Factors

Two infinitely long parallel plates of widths a � 12 cm and b � 5 cm are lo-
cated a distance c � 6 cm apart, as shown in Figure 12–17. (a) Determine the
view factor F1 → 2 from surface 1 to surface 2 by using the crossed-strings
method. (b) Derive the crossed-strings formula by forming triangles on the given
geometry and using Eq. 12–15 for view factors between the sides of triangles.

SOLUTION The view factors between two infinitely long parallel plates are to
be determined using the crossed-strings method, and the formula for the view
factor is to be derived.
Assumptions The surfaces are diffuse emitters and reflectors.
Analysis (a) First we label the endpoints of both surfaces and draw straight
dashed lines between the endpoints, as shown in Figure 12–17. Then we iden-
tify the crossed and uncrossed strings and apply the crossed-strings method
(Eq. 12–17) to determine the view factor F1 → 2:

F1 → 2 �
� (Crossed strings) 	 � (Uncrossed strings)

2 
 (String on surface 1)
�

(L5 � L6) 	 (L3 � L4)
2L1

C D

b = L2 = 5 cm

c = 6 cm

a = L1 = 12 cm

A B

L3

L5
L6

L4

1

2

FIGURE 12–17
The two infinitely long parallel

plates considered in Example 12–5.
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12–3 RADIATION HEAT TRANSFER:
BLACK SURFACES

So far, we have considered the nature of radiation, the radiation properties of
materials, and the view factors, and we are now in a position to consider the
rate of heat transfer between surfaces by radiation. The analysis of radiation
exchange between surfaces, in general, is complicated because of reflection: a
radiation beam leaving a surface may be reflected several times, with partial
reflection occurring at each surface, before it is completely absorbed. The
analysis is simplified greatly when the surfaces involved can be approximated

�
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where

L1 � a � 12 cm L4 � � 9.22 cm

L2 � b � 5 cm L5 � � 7.81 cm

L3 � c � 6 cm L6 � � 13.42 cm

Substituting,

F1 → 2 � � 0.250

(b) The geometry is infinitely long in the direction perpendicular to the plane of
the paper, and thus the two plates (surfaces 1 and 2) and the two openings
(imaginary surfaces 3 and 4) form a four-surface enclosure. Then applying the
summation rule to surface 1 yields

F11 � F12 � F13 � F14 � 1

But F11 � 0 since it is a flat surface. Therefore,

F12 � 1 	 F13 	 F14

where the view factors F13 and F14 can be determined by considering the trian-
gles ABC and ABD, respectively, and applying Eq. 12–15 for view factors be-
tween the sides of triangles. We obtain

F13 � , F14 �

Substituting,

F12 � 1 	

�

which is the desired result. This is also a miniproof of the crossed-strings
method for the case of two infinitely long plain parallel surfaces.

(L5 � L6) � (L3 � L4)
2L1

L1 � L3 	 L6

2L1
	

L1 � L4 	 L5

2L1

L1 � L4 	 L5

2L1

L1 � L3 	 L6

2L1

[(7.81 � 13.42) 	 (6 � 9.22)] cm
2 
 12 cm

�122 � 62

�52 � 62

�72 � 62
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as blackbodies because of the absence of reflection. In this section, we con-
sider radiation exchange between black surfaces only; we will extend the
analysis to reflecting surfaces in the next section.

Consider two black surfaces of arbitrary shape maintained at uniform tem-
peratures T1 and T2, as shown in Figure 12–18. Recognizing that radiation
leaves a black surface at a rate of Eb � �T 4 per unit surface area and that the
view factor F1 → 2 represents the fraction of radiation leaving surface 1 that
strikes surface 2, the net rate of radiation heat transfer from surface 1 to sur-
face 2 can be expressed as

Q
·

1 → 2 �

� A1 Eb1 F1 → 2 	 A2 Eb2 F2 → 1 (W) (12-18)

Applying the reciprocity relation A1F1 → 2 � A2F2 → 1 yields

Q
·

1 → 2 � A1 F1 → 2 � (W) (12-19)

which is the desired relation. A negative value for Q
·

1 → 2 indicates that net ra-
diation heat transfer is from surface 2 to surface 1.

Now consider an enclosure consisting of N black surfaces maintained at
specified temperatures. The net radiation heat transfer from any surface i of
this enclosure is determined by adding up the net radiation heat transfers from
surface i to each of the surfaces of the enclosure:

Q
·

i � Q
·

i → j � Ai Fi → j� (W) (12-20)

Again a negative value for Q
·

indicates that net radiation heat transfer is to
surface i (i.e., surface i gains radiation energy instead of losing). Also, the net
heat transfer from a surface to itself is zero, regardless of the shape of the
surface.

(T 4
i 	 T 4

j )�
N

j � 1
�

N

j � 1

(T 4
1 	 T 4

2 )

� Radiation leaving
the entire surface 1

that strikes surface 2
� 	 � Radiation leaving

the entire surface 2
that strikes surface 1

�

CHAPTER 12
621

T1
A1

T2
A2

Q12
·

2
1

FIGURE 12–18
Two general black surfaces maintained

at uniform temperatures T1 and T2.

EXAMPLE 12–6 Radiation Heat Transfer in a Black Furnace

Consider the 5-m 
 5-m 
 5-m cubical furnace shown in Figure 12–19, whose
surfaces closely approximate black surfaces. The base, top, and side surfaces
of the furnace are maintained at uniform temperatures of 800 K, 1500 K, and
500 K, respectively. Determine (a) the net rate of radiation heat transfer be-
tween the base and the side surfaces, (b) the net rate of radiation heat transfer
between the base and the top surface, and (c) the net radiation heat transfer
from the base surface.

SOLUTION The surfaces of a cubical furnace are black and are maintained at
uniform temperatures. The net rate of radiation heat transfer between the base
and side surfaces, between the base and the top surface, from the base surface
are to be determined.
Assumptions The surfaces are black and isothermal.

1

T2 = 1500 K

T3 = 500 K

T1 = 800 K

3

2

FIGURE 12–19
The cubical furnace of black surfaces

considered in Example 12–6.
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Analysis (a) Considering that the geometry involves six surfaces, we may be
tempted at first to treat the furnace as a six-surface enclosure. However, the
four side surfaces possess the same properties, and thus we can treat them as
a single side surface in radiation analysis. We consider the base surface to be
surface 1, the top surface to be surface 2, and the side surfaces to be surface
3. Then the problem reduces to determining Q

·
1 → 3, Q

·
1 → 2, and Q

·
1.

The net rate of radiation heat transfer Q
·

1 → 3 from surface 1 to surface 3 can
be determined from Eq. 12–19, since both surfaces involved are black, by re-
placing the subscript 2 by 3:

Q
·

1 → 3 � A1F1 → 3�

But first we need to evaluate the view factor F1 → 3. After checking the view fac-
tor charts and tables, we realize that we cannot determine this view factor di-
rectly. However, we can determine the view factor F1 → 2 directly from Figure
12–5 to be F1 → 2 � 0.2, and we know that F1 → 1 � 0 since surface 1 is a
plane. Then applying the summation rule to surface 1 yields

F1 → 1 � F1 → 2 � F1 → 3 � 1

or

F1 → 3 � 1 	 F1 → 1 	 F1 → 2 � 1 	 0 	 0.2 � 0.8

Substituting,

Q
·

1 → 3 � (25 m2)(0.8)(5.67 
 10	8 W/m2 · K4)[(800 K)4 	 (500 K)4]

� 394 � 103 W � 394 kW

(b) The net rate of radiation heat transfer Q
·

1 → 2 from surface 1 to surface 2 is
determined in a similar manner from Eq. 12–19 to be

Q
·

1 → 2 � A1F1 → 2�

� (25 m2)(0.2)(5.67 
 10	8 W/m2 · K4)[(800 K)4 	 (1500 K)4]

� �1319 � 103 W � �1319 kW

The negative sign indicates that net radiation heat transfer is from surface 2 to
surface 1.

(c) The net radiation heat transfer from the base surface Q
·

1 is determined from
Eq. 12–20 by replacing the subscript i by 1 and taking N � 3:

Q
·

1 � Q
·

1 → j � Q
·

1 → 1 � Q
·

1 → 2 � Q
·

1 → 3

� 0 � (	1319 kW) � (394 kW)

� �925 kW

Again the negative sign indicates that net radiation heat transfer is to surface 1.
That is, the base of the furnace is gaining net radiation at a rate of about
925 kW.

�
3

j � 1

(T 4
1 	 T 4

2 )

(T 4
1 	 T 4

3 )
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12–4 RADIATION HEAT TRANSFER:
DIFFUSE, GRAY SURFACES

The analysis of radiation transfer in enclosures consisting of black surfaces is
relatively easy, as we have seen above, but most enclosures encountered in
practice involve nonblack surfaces, which allow multiple reflections to occur.
Radiation analysis of such enclosures becomes very complicated unless some
simplifying assumptions are made.

To make a simple radiation analysis possible, it is common to assume the
surfaces of an enclosure to be opaque, diffuse, and gray. That is, the surfaces
are nontransparent, they are diffuse emitters and diffuse reflectors, and their
radiation properties are independent of wavelength. Also, each surface of the
enclosure is isothermal, and both the incoming and outgoing radiation are uni-
form over each surface. But first we review the concept of radiosity discussed
in Chap. 11.

Radiosity
Surfaces emit radiation as well as reflect it, and thus the radiation leaving a
surface consists of emitted and reflected parts. The calculation of radiation
heat transfer between surfaces involves the total radiation energy streaming
away from a surface, with no regard for its origin. The total radiation energy
leaving a surface per unit time and per unit area is the radiosity and is
denoted by J (Fig. 12–20).

For a surface i that is gray and opaque (i � �i and �i � �i � 1), the
radiosity can be expressed as

Ji �

� iEbi � �iGi

� iEbi � (1 	 i)Gi (W/m2) (12-21)

where Ebi � �Ti
4 is the blackbody emissive power of surface i and Gi is

irradiation (i.e., the radiation energy incident on surface i per unit time per
unit area).

For a surface that can be approximated as a blackbody (i � 1), the radios-
ity relation reduces to

Ji � Ebi � �Ti
4 (blackbody) (12-22)

That is, the radiosity of a blackbody is equal to its emissive power. This is
expected, since a blackbody does not reflect any radiation, and thus radiation
coming from a blackbody is due to emission only.

Net Radiation Heat Transfer to or from a Surface
During a radiation interaction, a surface loses energy by emitting radiation and
gains energy by absorbing radiation emitted by other surfaces. A surface ex-
periences a net gain or a net loss of energy, depending on which quantity is
larger. The net rate of radiation heat transfer from a surface i of surface area Ai

is denoted by Q
·

i and is expressed as

�Radiation emitted
by surface i � � �Radiation reflected

by surface i �

�
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Surface

Incident
radiation

Reflected
radiation

Emitted
radiation

Radiosity, J

G

εEb
ρG

FIGURE 12–20
Radiosity represents the sum of the

radiation energy emitted and
reflected by a surface.
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Q
·

i �

� Ai(Ji 	 Gi) (W) (12-23)

Solving for Gi from Eq. 12–21 and substituting into Eq. 12–23 yields

Q
·

i � Ai (Ebi 	 Ji) (W) (12-24)

In an electrical analogy to Ohm’s law, this equation can be rearranged as

Q
·

i � (W) (12-25)

where

Ri � (12-26)

is the surface resistance to radiation. The quantity Ebi 	 Ji corresponds to a
potential difference and the net rate of radiation heat transfer corresponds to
current in the electrical analogy, as illustrated in Figure 12–21.

The direction of the net radiation heat transfer depends on the relative mag-
nitudes of Ji (the radiosity) and Ebi (the emissive power of a blackbody at the
temperature of the surface). It will be from the surface if Ebi � Ji and to the
surface if Ji � Ebi. A negative value for Q

·
i indicates that heat transfer is to

the surface. All of this radiation energy gained must be removed from the
other side of the surface through some mechanism if the surface temperature
is to remain constant.

The surface resistance to radiation for a blackbody is zero since i � 1 and
Ji � Ebi. The net rate of radiation heat transfer in this case is determined
directly from Eq. 12–23.

Some surfaces encountered in numerous practical heat transfer applications
are modeled as being adiabatic since their back sides are well insulated and
the net heat transfer through them is zero. When the convection effects on the
front (heat transfer) side of such a surface is negligible and steady-state con-
ditions are reached, the surface must lose as much radiation energy as it gains,
and thus Q

·
i � 0. In such cases, the surface is said to reradiate all the radiation

energy it receives, and such a surface is called a reradiating surface. Setting
Q
·

i � 0 in Eq. 12–25 yields

Ji � Ebi � �Ti
4 (W/m2) (12-27)

Therefore, the temperature of a reradiating surface under steady conditions
can easily be determined from the equation above once its radiosity is known.
Note that the temperature of a reradiating surface is independent of its emis-
sivity. In radiation analysis, the surface resistance of a reradiating surface is
disregarded since there is no net heat transfer through it. (This is like the fact
that there is no need to consider a resistance in an electrical network if no cur-
rent is flowing through it.)

1 	 i

Aii

Ebi 	 Ji

Ri

�Ji 	
Ji 	 iEbi

1 	 i
� �

Aii

1 	 i

�Radiation leaving
entire surface i � 	 �Radiation incident

on entire surface i�
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.
Qi

Ri = ——–
1 – εi 
Ai εi 

Ji
Ebi 

Surface
i

FIGURE 12–21
Electrical analogy of surface
resistance to radiation.
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Net Radiation Heat Transfer
between Any Two Surfaces
Consider two diffuse, gray, and opaque surfaces of arbitrary shape maintained
at uniform temperatures, as shown in Figure 12–22. Recognizing that the radi-
osity J represents the rate of radiation leaving a surface per unit surface area
and that the view factor Fi → j represents the fraction of radiation leaving sur-
face i that strikes surface j, the net rate of radiation heat transfer from surface
i to surface j can be expressed as

Q
·

i → j � (12-28)

� Ai Ji Fi → j 	 Aj Jj Fj → i (W)

Applying the reciprocity relation Ai Fi → j � Aj Fj → i yields

Q
·

i → j � Ai Fi → j (Ji 	 Jj) (W) (12-29)

Again in analogy to Ohm’s law, this equation can be rearranged as

Q
·

i → j � (W) (12-30)

where

Ri → j � (12-31)

is the space resistance to radiation. Again the quantity Ji 	 Jj corresponds to
a potential difference, and the net rate of heat transfer between two surfaces
corresponds to current in the electrical analogy, as illustrated in Figure 12–22.

The direction of the net radiation heat transfer between two surfaces de-
pends on the relative magnitudes of Ji and Jj. A positive value for Q

·
i → j indi-

cates that net heat transfer is from surface i to surface j. A negative value
indicates the opposite.

In an N-surface enclosure, the conservation of energy principle requires that
the net heat transfer from surface i be equal to the sum of the net heat transfers
from surface i to each of the N surfaces of the enclosure. That is,

Q
·

i � Q
·

i → j � Ai Fi → j (Ji 	 Jj) � (W) (12-32)

The network representation of net radiation heat transfer from surface i to the
remaining surfaces of an N-surface enclosure is given in Figure 12–23. Note
that Q

·
i → i (the net rate of heat transfer from a surface to itself) is zero regard-

less of the shape of the surface. Combining Eqs. 12–25 and 12–32 gives

� (W) (12-33)
Ji 	 Jj

Ri → j
�

N

j � 1

Ebi 	 Ji

Ri

Ji 	 Jj

Ri → j
�

N

j � 1
�

N

j � 1
�

N

j � 1

1
Ai Fi → j

Ji 	 Jj

Ri → j

� Radiation leaving
the entire surface i

that strikes surface j� 	 � Radiation leaving
the entire surface j

that strikes surface i�
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Qij

Rj

Rij

Jj

Ri

Ji

Ai Fij

Ebi 

Ebj 

Surface i

Surface j

= ——1

FIGURE 12–22
Electrical analogy of

space resistance to radiation.

.
Qi

R i1

R i2

R
i(N – 1)R

iN

Ji

JN

J 1

J 2

J
N – 1

Ebi 

Surface i

Ri

FIGURE 12–23
Network representation of net

radiation heat transfer from surface i
to the remaining surfaces of an

N-surface enclosure.
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which has the electrical analogy interpretation that the net radiation flow from
a surface through its surface resistance is equal to the sum of the radiation
flows from that surface to all other surfaces through the corresponding space
resistances.

Methods of Solving Radiation Problems
In the radiation analysis of an enclosure, either the temperature or the net rate
of heat transfer must be given for each of the surfaces to obtain a unique solu-
tion for the unknown surface temperatures and heat transfer rates. There are
two methods commonly used to solve radiation problems. In the first method,
Eqs. 12–32 (for surfaces with specified heat transfer rates) and 12–33 (for sur-
faces with specified temperatures) are simplified and rearranged as

Surfaces with specified
net heat transfer rate Q

·
i

Q
·

i � Ai Fi → j(Ji 	 Jj) (12-34)

Surfaces with specified
temperature Ti �Ti

4 � Ji � Fi → j(Ji 	 Jj) (12-35)

Note that Q
·

i � 0 for insulated (or reradiating) surfaces, and �Ti
4 � Ji for

black surfaces since i � 1 in that case. Also, the term corresponding to j � i
will drop out from either relation since Ji 	 Jj � Ji 	 Ji � 0 in that case.

The equations above give N linear algebraic equations for the determination
of the N unknown radiosities for an N-surface enclosure. Once the radiosities
J1, J2, . . . , JN are available, the unknown heat transfer rates can be determined
from Eq. 12–34 while the unknown surface temperatures can be determined
from Eq. 12–35. The temperatures of insulated or reradiating surfaces can be
determined from �Ti

4 � Ji. A positive value for Q
·

i indicates net radiation heat
transfer from surface i to other surfaces in the enclosure while a negative value
indicates net radiation heat transfer to the surface.

The systematic approach described above for solving radiation heat transfer
problems is very suitable for use with today’s popular equation solvers such
as EES, Mathcad, and Matlab, especially when there are a large number of
surfaces, and is known as the direct method (formerly, the matrix method,
since it resulted in matrices and the solution required a knowledge of linear
algebra). The second method described below, called the network method, is
based on the electrical network analogy.

The network method was first introduced by A. K. Oppenheim in the 1950s
and found widespread acceptance because of its simplicity and emphasis on
the physics of the problem. The application of the method is straightforward:
draw a surface resistance associated with each surface of an enclosure and
connect them with space resistances. Then solve the radiation problem by
treating it as an electrical network problem where the radiation heat transfer
replaces the current and radiosity replaces the potential.

The network method is not practical for enclosures with more than three or
four surfaces, however, because of the increased complexity of the network.
Next we apply the method to solve radiation problems in two- and three-
surface enclosures.

�
N

j � 1

1 	 i

i

�
N

j � 1
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Radiation Heat Transfer in Two-Surface Enclosures
Consider an enclosure consisting of two opaque surfaces at specified temper-
atures T1 and T2, as shown in Fig. 12–24, and try to determine the net rate of
radiation heat transfer between the two surfaces with the network method.
Surfaces 1 and 2 have emissivities 1 and 2 and surface areas A1 and A2 and
are maintained at uniform temperatures T1 and T2, respectively. There are only
two surfaces in the enclosure, and thus we can write

Q
·

12 � Q
·

1 � 	Q
·

2

That is, the net rate of radiation heat transfer from surface 1 to surface 2 must
equal the net rate of radiation heat transfer from surface 1 and the net rate of
radiation heat transfer to surface 2.

The radiation network of this two-surface enclosure consists of two surface
resistances and one space resistance, as shown in Figure 12–24. In an electri-
cal network, the electric current flowing through these resistances connected
in series would be determined by dividing the potential difference between
points A and B by the total resistance between the same two points. The net
rate of radiation transfer is determined in the same manner and is expressed as

Q
·

12 � � Q
·

1 � 	Q
·

2

or

Q
·

12 � (W) (12-36)

This important result is applicable to any two gray, diffuse, opaque surfaces
that form an enclosure. The view factor F12 depends on the geometry
and must be determined first. Simplified forms of Eq. 12–36 for some famil-
iar arrangements that form a two-surface enclosure are given in Table 12–3.
Note that F12 � 1 for all of these special cases.

�(T 4
1 	 T 4

2 )
1 	 1

A1 1
�

1
A1 F12

�
1 	 2

A2 2

Eb1 	 Eb2

R1 � R12 � R2
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.
Q12ε1 

A1

1 – ε1
A1ε1

R1 = ——– 1
A1F12

R12 = ——–
1 – ε2
A2ε2

R2 = ——–

J1 J2

T1

ε2 
A2
T2

.
Q1

.
Q12

.
Q2Eb1 Eb2

21

FIGURE 12–24
Schematic of a two-surface
enclosure and the radiation
network associated with it.

EXAMPLE 12–7 Radiation Heat Transfer between Parallel Plates

Two very large parallel plates are maintained at uniform temperatures T1 �
800 K and T2 � 500 K and have emissivities 1 � 0.2 and 2 � 0.7, respec-
tively, as shown in Figure 12–25. Determine the net rate of radiation heat trans-
fer between the two surfaces per unit surface area of the plates.

SOLUTION Two large parallel plates are maintained at uniform temperatures.
The net rate of radiation heat transfer between the plates is to be determined.
Assumptions Both surfaces are opaque, diffuse, and gray.
Analysis The net rate of radiation heat transfer between the two plates per unit
area is readily determined from Eq. 12–38 to be

.
Q12

ε1 = 0.2
T1 = 800 K

ε2 = 0.7
T2 = 500 K

1

2

FIGURE 12–25
The two parallel plates

considered in Example 12–7.
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TABLE 12–3

A2, T2, ε2

A1, T1, ε1

A1, T1, ε1

A1 = A2 = A

A2, T2, ε2

r1

r1

r2

r2

A1
A2

F12 = 1

F12 = 1

Q12 = A1σε1(T 1 – T2) 
—– ≈ 0

A1
A2

F12 = 1

—– =
r1
r2
—–

A1
2

2

A2

F12 = 1

—– =
r1
r2

—–

Small object in a large cavity

(12-37)

Infinitely large parallel plates

Infinitely long concentric cylinders

Concentric spheres

4 4
.

Q

Q12 =
 Aσ(T 1 – T2) (12-38)4 4.
———————
1   — +ε1

1      — – 1ε2

Q12 =
 A1σ(T 1 – T2) (12-39)4 4.
—————————
1   — +ε1

1 – ε2––—ε2

r1
r2

—–

Q12 =
 A1σ(T 1 – T2) (12-40)4 4.
—————————
1   — +ε1

1 – ε2––—ε2

r1
r2

—–

q· 12 �

� 3625 W/m2

Discussion Note that heat at a net rate of 3625 W is transferred from plate 1
to plate 2 by radiation per unit surface area of either plate.

Q
·

12

A
�

�(T 4
1 	 T 4

2 )
1
1

�
1
2

	 1
�

(5.67 
 10�8 W/m2 ·  K4)[(800 K)4 	 (500 K)4]
1

0.2
�

1
0.7

	 1
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Radiation Heat Transfer
in Three-Surface Enclosures
We now consider an enclosure consisting of three opaque, diffuse, gray sur-
faces, as shown in Figure 12–26. Surfaces 1, 2, and 3 have surface areas
A1, A2, and A3; emissivities 1, 2, and 3; and uniform temperatures T1, T2, and
T3, respectively. The radiation network of this geometry is constructed by fol-
lowing the standard procedure: draw a surface resistance associated with each
of the three surfaces and connect these surface resistances with space resis-
tances, as shown in the figure. Relations for the surface and space resistances
are given by Eqs. 12–26 and 12–31. The three endpoint potentials Eb1, Eb2,
and Eb3 are considered known, since the surface temperatures are specified.
Then all we need to find are the radiosities J1, J2, and J3. The three equations
for the determination of these three unknowns are obtained from the require-
ment that the algebraic sum of the currents (net radiation heat transfer) at
each node must equal zero. That is,

� 0

� 0

� 0 (12-41)

Once the radiosities J1, J2, and J3 are available, the net rate of radiation heat
transfers at each surface can be determined from Eq. 12–32.

The set of equations above simplify further if one or more surfaces are “spe-
cial” in some way. For example, Ji � Ebi � �Ti

4 for a black or reradiating sur-
face. Also, Q

·
i � 0 for a reradiating surface. Finally, when the net rate of

radiation heat transfer Q
·

i is specified at surface i instead of the temperature,
the term (Ebi 	 Ji)/Ri should be replaced by the specified Q

·
i.

J1 	 J3

R13
�

J2 	 J3

R23
�

Eb3 	 J3

R3

J1 	 J2

R12
�

Eb2 	 J2

R2
�

J3 	 J2

R23

Eb1 	 J1

R1
�

J2 	 J1

R12
�

J3 	 J1

R13
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FIGURE 12–26
Schematic of a three-surface enclosure and the radiation network associated with it.
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1 – ε1
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R1 = ——–

1
A1F12

R12 = ——–

1
A2F23

R23 = ——–
1

A1F13
R13 = ——–

1 – ε2
A2ε2

R2 = ——–

1 – ε3
A3ε3

R3 = ——–

J1
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.
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.
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EXAMPLE 12–8 Radiation Heat Transfer in a Cylindrical Furnace

Consider a cylindrical furnace with r0 � H � 1 m, as shown in Figure 12–27.
The top (surface 1) and the base (surface 2) of the furnace has emissivities
1 � 0.8 and 2 � 0.4, respectively, and are maintained at uniform tempera-
tures T1 � 700 K and T2 � 500 K. The side surface closely approximates a
blackbody and is maintained at a temperature of T3 � 400 K. Determine the
net rate of radiation heat transfer at each surface during steady operation and
explain how these surfaces can be maintained at specified temperatures.

SOLUTION The surfaces of a cylindrical furnace are maintained at uniform
temperatures. The net rate of radiation heat transfer at each surface during
steady operation is to be determined.

Assumptions 1 Steady operating conditions exist. 2 The surfaces are opaque,
diffuse, and gray. 3 Convection heat transfer is not considered.

Analysis We will solve this problem systematically using the direct method to
demonstrate its use. The cylindrical furnace can be considered to be a three-
surface enclosure with surface areas of

A1 � A2 � �ro
2 � �(1 m)2 � 3.14 m2

A3 � 2�roH � 2�(1 m)(1 m) � 6.28 m2

The view factor from the base to the top surface is, from Figure 12–7, F12 �
0.38. Then the view factor from the base to the side surface is determined by
applying the summation rule to be

F11 � F12 � F13 � 1 → F13 � 1 	 F11 	 F12 � 1 	 0 	 0.38 � 0.62

since the base surface is flat and thus F11 � 0. Noting that the top and bottom
surfaces are symmetric about the side surface, F21 � F12 � 0.38 and F23 �
F13 � 0.62. The view factor F31 is determined from the reciprocity relation,

A1F13 � A3F31 → F31 � F13(A1/A3) � (0.62)(0.314/0.628) � 0.31

Also, F32 � F31 � 0.31 because of symmetry. Now that all the view factors are
available, we apply Eq. 12–35 to each surface to determine the radiosities:

Top surface (i � 1): � [F1 → 2 (J1 	 J2) � F1 → 3 (J1 	 J3)]

Bottom surface (i � 2): � [F2 → 1 (J2 	 J1) � F2 → 3 (J2 	 J3)]

Side surface (i � 3): � � 0 (since surface 3 is black and thus 3 � 1)

Substituting the known quantities,

(5.67 
 10	8 W/m2 · K4)(700 K)4 � J1 � [0.38(J1 	 J2) � 0.68(J1 	 J3)]

(5.67 
 10	8 W/m2 · K4)(500 K)4 � J2 � [0.28(J2 	 J1) � 0.68(J2 	 J3)]

(5.67 
 10	8 W/m2 · K4)(400 K)4 � J3

1 	 0.4
0.4

1 	 0.8
0.8

T 4
3 � J3

T 4
2 � J2 �

1 	 2
2

T 4
1 � J1 �

1 	 1
1

T1 = 700 K
ε1 = 0.8

T2 = 500 K
ε2 = 0.4

ro

Black
T3 = 400 K

H

2

3

1

FIGURE 12–27
The cylindrical furnace
considered in Example 12–8.
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Solving the equations above for J1, J2, and J3 gives

J1 � 11,418 W/m2, J2 � 4562 W/m2, and J3 � 1452 W/m2

Then the net rates of radiation heat transfer at the three surfaces are deter-
mined from Eq. 12–34 to be

Q
·

1 � A1[F1 → 2 (J1 	 J2) � F1 → 3 (J1 	 J3)]

� (3.14 m2)[0.38(11,418 	 4562) � 0.62(11,418 	 1452)] W/m2

� 27.6 � 103 W � 27.6 kW

Q
·

2 � A2[F2 → 1 (J2 	 J1) � F2 → 3 (J2 	 J3)]

� (3.12 m2)[0.38(4562 	 11,418) � 0.62(4562 	 1452)] W/m2

� �2.13 � 103 W � �2.13 kW

Q
·

3 � A3[F3 → 1 (J3 	 J1) � F3 → 2 (J3 	 J2)]

� (6.28 m2)[0.31(1452 	 11,418) � 0.31(1452 	 4562)] W/m2

� �25.5 � 103 W � �25.5 kW

Note that the direction of net radiation heat transfer is from the top surface to
the base and side surfaces, and the algebraic sum of these three quantities
must be equal to zero. That is,

Q
·

1 � Q
·

2 � Q
·

3 � 27.6 � (	2.13) � (	25.5) � 0

Discussion To maintain the surfaces at the specified temperatures, we must
supply heat to the top surface continuously at a rate of 27.6 kW while removing
2.13 kW from the base and 25.5 kW from the side surfaces.

The direct method presented here is straightforward, and it does not require
the evaluation of radiation resistances. Also, it can be applied to enclosures
with any number of surfaces in the same manner.

FIGURE 12–28
The triangular furnace
considered in Example 12–9.

J1
R12

R13 R23

R1

T1 = 600 K

T2 = 1000 K
Black

ε1 = 0.7

(J3 = Eb3)

J2 = Eb2
.

Q1 . .
Q2 = – Q1

.
Q3 = 0

Eb1

1

2

3
Insulated

EXAMPLE 12–9 Radiation Heat Transfer in a Triangular Furnace

A furnace is shaped like a long equilateral triangular duct, as shown in Figure
12–28. The width of each side is 1 m. The base surface has an emissivity of
0.7 and is maintained at a uniform temperature of 600 K. The heated left-side
surface closely approximates a blackbody at 1000 K. The right-side surface is
well insulated. Determine the rate at which heat must be supplied to the heated
side externally per unit length of the duct in order to maintain these operating
conditions.
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SOLUTION Two of the surfaces of a long equilateral triangular furnace are
maintained at uniform temperatures while the third surface is insulated. The ex-
ternal rate of heat transfer to the heated side per unit length of the duct during
steady operation is to be determined.
Assumptions 1 Steady operating conditions exist. 2 The surfaces are opaque,
diffuse, and gray. 3 Convection heat transfer is not considered.
Analysis The furnace can be considered to be a three-surface enclosure with a
radiation network as shown in the figure, since the duct is very long and thus
the end effects are negligible. We observe that the view factor from any surface
to any other surface in the enclosure is 0.5 because of symmetry. Surface 3 is
a reradiating surface since the net rate of heat transfer at that surface is zero.
Then we must have Q

·
1 � 	Q

·
2, since the entire heat lost by surface 1 must

be gained by surface 2. The radiation network in this case is a simple series–
parallel connection, and we can determine Q

·
1 directly from

Q
·

1 �

where

A1 � A2 � A3 � wL � 1 m 
 1 m � 1 m2 (per unit length of the duct)

F12 � F13 � F23 � 0.5 (symmetry)

Eb1 � �T1
4 � (5.67 
 10	8 W/m2 · K4)(600 K)4 � 7348 W/m2

Eb2 � �T2
4 � (5.67 
 10	8 W/m2 · K4)(1000 K)4 � 56,700 W/m2

Substituting,

Q
·

1 �

� 28.0 � 103 � 28.0 kW

Therefore, heat at a rate of 28 kW must be supplied to the heated surface per
unit length of the duct to maintain steady operation in the furnace.

(56,700 	 7348) W/m2

1 	 0.7
0.7 
 1 m2 � �(0.5 
 1 m2) �

1
1/(0.5 
 1 m2) � 1/(0.5 
 1 m2)	

�1

Eb1 	 Eb2

R1 � � 1
R12

�
1

R13 � R23
�

�1
�

Eb1 	 Eb2

1 	 1

A1 1
� �A1 F12 � 1

1/A1 F13 � 1/A2 F23
�

�1

EXAMPLE 12–10 Heat Transfer through a Tubular Solar Collector

A solar collector consists of a horizontal aluminum tube having an outer diam-
eter of 2 in. enclosed in a concentric thin glass tube of 4-in. diameter, as shown
in Figure 12–29. Water is heated as it flows through the tube, and the space
between the aluminum and the glass tubes is filled with air at 1 atm pressure.
The pump circulating the water fails during a clear day, and the water tempera-
ture in the tube starts rising. The aluminum tube absorbs solar radiation at a
rate of 30 Btu/h per foot length, and the temperature of the ambient air outside
is 70°F. The emissivities of the tube and the glass cover are 0.95 and 0.9,
respectively. Taking the effective sky temperature to be 50°F, determine the

Water

70°F

Aluminum tube
ε = 0.95

Glass cover
ε = 0.9

Solar
energy

4 in.

2 in.

FIGURE 12–29
Schematic for Example 12–10.
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temperature of the aluminum tube when steady operating conditions are
established (i.e., when the rate of heat loss from the tube equals the amount of
solar energy gained by the tube).

SOLUTION The circulating pump of a solar collector that consists of a hori-
zontal tube and its glass cover fails. The equilibrium temperature of the tube is
to be determined.

Assumptions 1 Steady operating conditions exist. 2 The tube and its cover are
isothermal. 3 Air is an ideal gas. 4 The surfaces are opaque, diffuse, and gray
for infrared radiation. 5 The glass cover is transparent to solar radiation.

Properties The properties of air should be evaluated at the average tempera-
ture. But we do not know the exit temperature of the air in the duct, and thus
we cannot determine the bulk fluid and glass cover temperatures at this point,
and thus we cannot evaluate the average temperatures. Therefore, we will as-
sume the glass temperature to be 110°F, and use properties at an anticipated
average temperature of (70 � 110)/2 � 90°F (Table A-15E),

k � 0.01505 Btu/h � ft � °F Pr � 0.7275

� � 0.6310 ft2/h � 1.753 
 10	4 ft2/s � �

Analysis This problem was solved in Chapter 9 by disregarding radiation heat
transfer. Now we will repeat the solution by considering natural convection and
radiation occurring simultaneously.

We have a horizontal cylindrical enclosure filled with air at 1 atm pressure.
The problem involves heat transfer from the aluminum tube to the glass cover
and from the outer surface of the glass cover to the surrounding ambient air.
When steady operation is reached, these two heat transfer rates must equal the
rate of heat gain. That is,

Q
·

tube-glass � Q
·

glass-ambient � Q
·

solar gain � 30 Btu/h (per foot of tube)

The heat transfer surface area of the glass cover is

Ao � Aglass � (�Do L) � �(4/12 ft)(1 ft) � 1.047 ft2 (per foot of tube)

To determine the Rayleigh number, we need to know the surface temperature of
the glass, which is not available. Therefore, it is clear that the solution will re-
quire a trial-and-error approach. Assuming the glass cover temperature to be
110°F, the Rayleigh number, the Nusselt number, the convection heat transfer
coefficient, and the rate of natural convection heat transfer from the glass cover
to the ambient air are determined to be

Ra � Pr

� (0.7275) � 2.054 
 106

Nu � �

� 17.89


0.6 �
0.387(2.054 
 106)1/6

[1 � (0.559/0.7275)9/16]8/27�2
0.6 �
0.387 Ra1/6

Do

[1 � (0.559/Pr)9/16]8/27�2

(32.2 ft/s2)[1/(550 R)](110 	 70 R)(4/12 ft)3

(1.753 
 10	4 ft2/s)2

g�(To 	 T�) D3
o

�2Do

1
Tave

�
1

550 R
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ho � Nu � (17.89) � 0.8075 Btu/h � ft2 � °F

Q
·

o, conv � ho Ao(To 	 T�) � (0.8075 Btu/h � ft2 � °F)(1.047 ft2)(110 	 70)°F

� 33.8 Btu/h

Also,

Q
·

o, rad � o �Ao( 	 )

� (0.9)(0.1714 
 10	8 Btu/h � ft2 � R4)(1.047 ft2)[(570 R)4 	 (510 R)4]

� 61.2 Btu/h

Then the total rate of heat loss from the glass cover becomes

Q
·

o, total � Q
·

o, conv � Q
·

o, rad � 33.8 � 61.2 � 95.0 Btu/h

which is much larger than 30 Btu/h. Therefore, the assumed temperature of
110°F for the glass cover is high. Repeating the calculations with lower tem-
peratures (including the evaluation of properties), the glass cover temperature
corresponding to 30 Btu/h is determined to be 78°F (it would be 106°F if radi-
ation were ignored).

The temperature of the aluminum tube is determined in a similar manner
using the natural convection and radiation relations for two horizontal concen-
tric cylinders. The characteristic length in this case is the distance between the
two cylinders, which is

Lc � (Do 	 Di)/2 � (4 	 2)/2 � 1 in. � 1/12 ft

Also,

Ai � Atube � (�Di L) � �(2 /12 ft)(1 ft) � 0.5236 ft2 (per foot of tube)

We start the calculations by assuming the tube temperature to be 122°F, and
thus an average temperature of (78 � 122)/2 � 100°F � 640 R. Using prop-
erties at 100°F,

RaL � Pr

� (0.726) � 3.249 
 104

The effective thermal conductivity is

Fcyc �

� � 0.1466

keff � 0.386k (FcycRaL)1/4

� 0.386(0.01529 Btu/h � ft � °F) (0.1466 
 3.249 
 104)1/4

� 0.04032 Btu/h � ft � °F

� 0.726
0.861 � 0.726�

� Pr
0.861 � Pr�

1/4

[ln(4/2)]4

(1/12 ft)3 [(2/12 ft)	3/5 � (4/12 ft)	3/5]5

[ln(Do /Di)]4

L3
c (D�3/5

i � D�3/5
o )5

(32.2 ft/s2)[1/(640 R)](122 	 78 R)(1/12 ft)3

(1.809 
 10	4 ft2/s)2

g�(Ti 	 To)L3
c

�2

T 4
skyT 4

o

0.01505 Btu/h ·  ft ·  °F
4/12 ft

k
Do
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12–5 RADIATION SHIELDS
AND THE RADIATION EFFECT

Radiation heat transfer between two surfaces can be reduced greatly by in-
serting a thin, high-reflectivity (low-emissivity) sheet of material between the
two surfaces. Such highly reflective thin plates or shells are called radiation
shields. Multilayer radiation shields constructed of about 20 sheets per cm
thickness separated by evacuated space are commonly used in cryogenic and
space applications. Radiation shields are also used in temperature measure-
ments of fluids to reduce the error caused by the radiation effect when the
temperature sensor is exposed to surfaces that are much hotter or colder than
the fluid itself. The role of the radiation shield is to reduce the rate of radiation
heat transfer by placing additional resistances in the path of radiation heat
flow. The lower the emissivity of the shield, the higher the resistance.

Radiation heat transfer between two large parallel plates of emissivi-
ties 1 and 2 maintained at uniform temperatures T1 and T2 is given by
Eq. 12–38:

�
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Then the rate of heat transfer between the cylinders by convection becomes

Q
·

i, conv � (Ti 	 To)

� (122 	 78)°F � 16.1 Btu/h

Also,

Q
·

i, rad �

�

� 25.1 Btu/h

Then the total rate of heat loss from the glass cover becomes

Q
·

i, total � Q
·

i, conv � Q
·

i, rad � 16.1 � 25.1 � 41.1 Btu/h

which is larger than 30 Btu/h. Therefore, the assumed temperature of 122°F for
the tube is high. By trying other values, the tube temperature corresponding
to 30 Btu/h is determined to be 112°F (it would be 180°F if radiation were
ignored). Therefore, the tube will reach an equilibrium temperature of 112°F
when the pump fails.
Discussion It is clear from the results obtained that radiation should always be
considered in systems that are heated or cooled by natural convection, unless
the surfaces involved are polished and thus have very low emissivities.

(0.1714 
 10	8 Btu/h ·  ft2 ·  R4)(0.5236 ft2)[(582 R)4 	 (538 R)4]

1
0.95

�
1 	 0.9

0.9
 �2 in.

4 in.�

�Ai (T 4
i 	 T 4

o )

1
i

�
1 	 o

o
 �Di

Do
�

2�(0.04032 Btu/h ·  ft °F)
ln(4/2)

2�keff

ln(Do /Di)

cen58933_ch12.qxd  9/9/2002  9:49 AM  Page 635



Q
·

12, no shield �

Now consider a radiation shield placed between these two plates, as shown in
Figure 12–30. Let the emissivities of the shield facing plates 1 and 2 be 3, 1

and 3, 2, respectively. Note that the emissivity of different surfaces of the
shield may be different. The radiation network of this geometry is constructed,
as usual, by drawing a surface resistance associated with each surface and
connecting these surface resistances with space resistances, as shown in the
figure. The resistances are connected in series, and thus the rate of radiation
heat transfer is

Q
·

12, one shield � (12-42)

Noting that F13 � F23 � 1 and A1 � A2 � A3 � A for infinite parallel plates,
Eq. 12–42 simplifies to

Q
·

12, one shield � (12-43)

where the terms in the second set of parentheses in the denominator represent
the additional resistance to radiation introduced by the shield. The appearance
of the equation above suggests that parallel plates involving multiple radiation
shields can be handled by adding a group of terms like those in the second set
of parentheses to the denominator for each radiation shield. Then the radiation
heat transfer through large parallel plates separated by N radiation shields
becomes

Q
·

12, N shields �

(12-44)

A�(T 4
1 	 T 4

2 )

� 1
1

�
1
2

	 1� � � 1
3, 1

�
1

3, 2
	 1� � ·  ·  · � � 1

N, 1
�

1
N, 2

	 1�

A�(T 4
1 	 T 4

2 )

� 1
1

�
1
2

	 1� � � 1
3, 1

�
1

3, 2
	 1�

Eb1 	 Eb2

1 	 1

A1 1
�

1
A1 F12

�
1 	 3, 1

A3 3, 1
�

1 	 3, 2

A3 3, 2
�

1
A3 F32

�
1 	 2

A2 2

A�(T 4
1 	 T 4

2 )
1
1

�
1
2

	 1
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FIGURE 12–30
The radiation shield placed between
two parallel plates and the radiation

network associated with it.
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If the emissivities of all surfaces are equal, Eq. 12–44 reduces to

Q
·

12, N shields � Q
·

12, no shield (12-45)

Therefore, when all emissivities are equal, 1 shield reduces the rate of radia-
tion heat transfer to one-half, 9 shields reduce it to one-tenth, and 19 shields
reduce it to one-twentieth (or 5 percent) of what it was when there were no
shields.

The equilibrium temperature of the radiation shield T3 in Figure 12–30 can
be determined by expressing Eq. 12–43 for Q

·
13 or Q

·
23 (which involves T3)

after evaluating Q
·

12 from Eq. 12–43 and noting that Q
·

12 � Q
·

13 � Q
·

23 when
steady conditions are reached.

Radiation shields used to reduce the rate of radiation heat transfer between
concentric cylinders and spheres can be handled in a similar manner. In case
of one shield, Eq. 12–42 can be used by taking F13 � F23 � 1 for both cases
and by replacing the A’s by the proper area relations.

Radiation Effect on Temperature Measurements
A temperature measuring device indicates the temperature of its sensor, which
is supposed to be, but is not necessarily, the temperature of the medium that
the sensor is in. When a thermometer (or any other temperature measuring de-
vice such as a thermocouple) is placed in a medium, heat transfer takes place
between the sensor of the thermometer and the medium by convection until
the sensor reaches the temperature of the medium. But when the sensor is sur-
rounded by surfaces that are at a different temperature than the fluid, radiation
exchange will take place between the sensor and the surrounding surfaces.
When the heat transfers by convection and radiation balance each other, the
sensor will indicate a temperature that falls between the fluid and surface tem-
peratures. Below we develop a procedure to account for the radiation effect
and to determine the actual fluid temperature.

Consider a thermometer that is used to measure the temperature of a
fluid flowing through a large channel whose walls are at a lower temperature
than the fluid (Fig. 12–31). Equilibrium will be established and the reading of
the thermometer will stabilize when heat gain by convection, as measured
by the sensor, equals heat loss by radiation (or vice versa). That is, on a unit-
area basis,

q· conv, to sensor � q· rad, from sensor

h(Tf 	 Tth) � th�

or

Tf � Tth � (K) (12-46)
th �(T 4

th 	 T 4
w)

h

(T 4
th 	 T 4

w)

A�(T 4
1 	 T 4

2 )

(N � 1)�1
 �

1
 	 1�

�
1

N � 1
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.
qconv

.
qradTf

Tw

Tw

Tth

FIGURE 12–31
A thermometer used to measure the
temperature of a fluid in a channel.
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where

Tf � actual temperature of the fluid, K

Tth � temperature value measured by the thermometer, K

Tw � temperature of the surrounding surfaces, K

h � convection heat transfer coefficient, W/m2 · K

 � emissivity of the sensor of the thermometer

The last term in Eq. 12–46 is due to the radiation effect and represents the
radiation correction. Note that the radiation correction term is most signifi-
cant when the convection heat transfer coefficient is small and the emissivity
of the surface of the sensor is large. Therefore, the sensor should be coated
with a material of high reflectivity (low emissivity) to reduce the radiation
effect.

Placing the sensor in a radiation shield without interfering with the fluid
flow also reduces the radiation effect. The sensors of temperature measure-
ment devices used outdoors must be protected from direct sunlight since the
radiation effect in that case is sure to reach unacceptable levels.

The radiation effect is also a significant factor in human comfort in heating
and air-conditioning applications. A person who feels fine in a room at a spec-
ified temperature may feel chilly in another room at the same temperature as
a result of the radiation effect if the walls of the second room are at a consid-
erably lower temperature. For example, most people will feel comfortable in
a room at 22°C if the walls of the room are also roughly at that temperature.
When the wall temperature drops to 5°C for some reason, the interior tem-
perature of the room must be raised to at least 27°C to maintain the same level
of comfort. Therefore, well-insulated buildings conserve energy not only by
reducing the heat loss or heat gain, but also by allowing the thermostats to be
set at a lower temperature in winter and at a higher temperature in summer
without compromising the comfort level.

638
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EXAMPLE 12–11 Radiation Shields

A thin aluminum sheet with an emissivity of 0.1 on both sides is placed be-
tween two very large parallel plates that are maintained at uniform temperatures
T1 � 800 K and T2 � 500 K and have emissivities 1 � 0.2 and 2 � 0.7, re-
spectively, as shown in Fig. 12–32. Determine the net rate of radiation heat
transfer between the two plates per unit surface area of the plates and compare
the result to that without the shield.

SOLUTION A thin aluminum sheet is placed between two large parallel plates
maintained at uniform temperatures. The net rates of radiation heat transfer be-
tween the two plates with and without the radiation shield are to be determined.

Assumptions The surfaces are opaque, diffuse, and gray.

Analysis The net rate of radiation heat transfer between these two plates with-
out the shield was determined in Example 12–7 to be 3625 W/m2. Heat trans-
fer in the presence of one shield is determined from Eq. 12–43 to be

1 3 2

ε1 = 0.2

ε3 = 0.1

T1 = 800 K

ε2 = 0.7

T2 = 500 K

.
q12

FIGURE 12–32
Schematic for Example 12–11.
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12–6 RADIATION EXCHANGE WITH
EMITTING AND ABSORBING GASES

So far we considered radiation heat transfer between surfaces separated by a
medium that does not emit, absorb, or scatter radiation—a nonparticipating
medium that is completely transparent to thermal radiation. A vacuum satis-
fies this condition perfectly, and air at ordinary temperatures and pressures

�

CHAPTER 12
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q· 12, one shield �

�

� 806 W/m2

Discussion Note that the rate of radiation heat transfer reduces to about one-
fourth of what it was as a result of placing a radiation shield between the two
parallel plates.

(5.67 
 10�8 W/m2 ·  K4)[(800 K)4 	 (500 K)4]

� 1
0.2

�
1

0.7
	 1� � � 1

0.1
�

1
0.1

	 1�

Q
·

12, one shield

A
�

�(T 4
1 	 T 4

2 )

� 1
1

�
1
2

	 1� � � 1
3, 1

�
1

3, 2
	 1�

EXAMPLE 12–12 Radiation Effect on Temperature Measurements

A thermocouple used to measure the temperature of hot air flowing in a duct
whose walls are maintained at Tw � 400 K shows a temperature reading of
Tth � 650 K (Fig. 12–33). Assuming the emissivity of the thermocouple
junction to be  � 0.6 and the convection heat transfer coefficient to be h �
80 W/m2 · °C, determine the actual temperature of the air.

SOLUTION The temperature of air in a duct is measured. The radiation effect
on the temperature measurement is to be quantified, and the actual air
temperature is to be determined.
Assumptions The surfaces are opaque, diffuse, and gray.
Analysis The walls of the duct are at a considerably lower temperature than
the air in it, and thus we expect the thermocouple to show a reading lower than
the actual air temperature as a result of the radiation effect. The actual air tem-
perature is determined from Eq. 12–46 to be

Tf � Tth �

� (650 K) �

� 715 K

Note that the radiation effect causes a difference of 65°C (or 65 K since °C � K
for temperature differences) in temperature reading in this case.

0.6 
 (5.67 
 10�8 W/m2 ·  K4)[(650 K)4 	 (400 K)4]

80 W/m2 ·  °C

th �(T 4
th 	 T 4

w)
h

Tf

Tth  = 650 K

Tw = 400 K

ε = 0.6

FIGURE 12–33
Schematic for Example 12–12.
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comes very close. Gases that consist of monatomic molecules such as Ar and
He and symmetric diatomic molecules such as N2 and O2 are essentially trans-
parent to radiation, except at extremely high temperatures at which ionization
occurs. Therefore, atmospheric air can be considered to be a nonparticipating
medium in radiation calculations.

Gases with asymmetric molecules such as H2O, CO2, CO, SO2, and hydro-
carbons HnCm may participate in the radiation process by absorption at mod-
erate temperatures, and by absorption and emission at high temperatures such
as those encountered in combustion chambers. Therefore, air or any other
medium that contains such gases with asymmetric molecules at sufficient con-
centrations must be treated as a participating medium in radiation calcula-
tions. Combustion gases in a furnace or a combustion chamber, for example,
contain sufficient amounts of H2O and CO2, and thus the emission and ab-
sorption of gases in furnaces must be taken into consideration.

The presence of a participating medium complicates the radiation analysis
considerably for several reasons:

• A participating medium emits and absorbs radiation throughout its entire
volume. That is, gaseous radiation is a volumetric phenomena, and thus it
depends on the size and shape of the body. This is the case even if the
temperature is uniform throughout the medium.

• Gases emit and absorb radiation at a number of narrow wavelength bands.
This is in contrast to solids, which emit and absorb radiation over the
entire spectrum. Therefore, the gray assumption may not always be
appropriate for a gas even when the surrounding surfaces are gray.

• The emission and absorption characteristics of the constituents of a gas
mixture also depends on the temperature, pressure, and composition of
the gas mixture. Therefore, the presence of other participating gases
affects the radiation characteristics of a particular gas.

The propagation of radiation through a medium can be complicated further
by presence of aerosols such as dust, ice particles, liquid droplets, and soot
(unburned carbon) particles that scatter radiation. Scattering refers to the
change of direction of radiation due to reflection, refraction, and diffraction.
Scattering caused by gas molecules themselves is known as the Rayleigh scat-
tering, and it has negligible effect on heat transfer. Radiation transfer in scat-
tering media is considered in advanced books such as the ones by Modest
(1993, Ref. 12) and Siegel and Howell (1992, Ref. 14).

The participating medium can also be semitransparent liquids or solids such
as water, glass, and plastics. To keep complexities to a manageable level, we
will limit our consideration to gases that emit and absorb radiation. In partic-
ular, we will consider the emission and absorption of radiation by H2O and
CO2 only since they are the participating gases most commonly encountered
in practice (combustion products in furnaces and combustion chambers burn-
ing hydrocarbon fuels contain both gases at high concentrations), and they are
sufficient to demonstrate the basic principles involved.

Radiation Properties of a Participating Medium
Consider a participating medium of thickness L. A spectral radiation beam of
intensity I�, 0 is incident on the medium, which is attenuated as it propagates
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due to absorption. The decrease in the intensity of radiation as it passes
through a layer of thickness dx is proportional to the intensity itself and the
thickness dx. This is known as Beer’s law, and is expressed as (Fig. 12–34)

dI�(x) � 	��I�(x)dx (12-47)

where the constant of proportionality �� is the spectral absorption coeffi-
cient of the medium whose unit is m	1 (from the requirement of dimensional
homogeneity). This is just like the amount of interest earned by a bank
account during a time interval being proportional to the amount of money in
the account and the time interval, with the interest rate being the constant of
proportionality.

Separating the variables and integrating from x � 0 to x � L gives

� e	��L (12-48)

where we have assumed the absorptivity of the medium to be independent
of x. Note that radiation intensity decays exponentially in accordance with
Beer’s law.

The spectral transmissivity of a medium can be defined as the ratio of the
intensity of radiation leaving the medium to that entering the medium. That is,

�� � � e	��L (12-49)

Note that �� � 1 when no radiation is absorbed and thus radiation intensity re-
mains constant. Also, the spectral transmissivity of a medium represents the
fraction of radiation transmitted by the medium at a given wavelength.

Radiation passing through a nonscattering (and thus nonreflecting) medium
is either absorbed or transmitted. Therefore �� � �� � 1, and the spectral ab-
sorptivity of a medium of thickness L is

�� � 1 	 �� � 1 	 e	��L (12-50)

From Kirchoff’s law, the spectral emissivity of the medium is

� � �� � 1 	 e	��L (12-51)

Note that the spectral absorptivity, transmissivity, and emissivity of a medium
are dimensionless quantities, with values less than or equal to 1. The spectral
absorption coefficient of a medium (and thus �, ��, and ��), in general, vary
with wavelength, temperature, pressure, and composition.

For an optically thick medium (a medium with a large value of ��L), Eq.
12–51 gives �  ��  1. For ��L � 5, for example, � � �� � 0.993. There-
fore, an optically thick medium emits like a blackbody at the given wave-
length. As a result, an optically thick absorbing-emitting medium with no
significant scattering at a given temperature Tg can be viewed as a “black sur-
face” at Tg since it will absorb essentially all the radiation passing through it,
and it will emit the maximum possible radiation that can be emitted by a sur-
face at Tg, which is Eb�(Tg).

I�, L

I�, 0

I�, L

I�, 0
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dx

0
L

Iλ,0 Iλ,LIλ(x)

x

Iλ(x)

FIGURE 12–34
The attenuation of a radiation

beam while passing through an
absorbing medium of thickness L.
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Emissivity and Absorptivity
of Gases and Gas Mixtures
The spectral absorptivity of CO2 is given in Figure 12–35 as a function of
wavelength. The various peaks and dips in the figure together with disconti-
nuities show clearly the band nature of absorption and the strong nongray
characteristics. The shape and the width of these absorption bands vary with
temperature and pressure, but the magnitude of absorptivity also varies with
the thickness of the gas layer. Therefore, absorptivity values without specified
thickness and pressure are meaningless.

The nongray nature of properties should be considered in radiation calcula-
tions for high accuracy. This can be done using a band model, and thus per-
forming calculations for each absorption band. However, satisfactory results
can be obtained by assuming the gas to be gray, and using an effective total
absorptivity and emissivity determined by some averaging process. Charts for
the total emissivities of gases are first presented by Hottel (Ref. 6), and they
have been widely used in radiation calculations with reasonable accuracy.
Alternative emissivity charts and calculation procedures have been developed
more recently by Edwards and Matavosian (Ref. 2). Here we present the
Hottel approach because of its simplicity.

Even with gray assumption, the total emissivity and absorptivity of a gas
depends on the geometry of the gas body as well as the temperature, pressure,
and composition. Gases that participate in radiation exchange such as CO2 and
H2O typically coexist with nonparticipating gases such as N2 and O2, and thus
radiation properties of an absorbing and emitting gas are usually reported for
a mixture of the gas with nonparticipating gases rather than the pure gas. The
emissivity and absorptivity of a gas component in a mixture depends pri-
marily on its density, which is a function of temperature and partial pressure
of the gas.

The emissivity of H2O vapor in a mixture of nonparticipating gases is
plotted in Figure 12–36a for a total pressure of P � 1 atm as a function of gas
temperature Tg for a range of values for Pw L, where Pw is the partial pressure
of water vapor and L is the mean distance traveled by the radiation beam.
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FIGURE 12–35
Spectral absorptivity of

CO2 at 830 K and 10 atm
for a path length of 38.8 cm

(from Siegel and Howell, 1992).
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Emissivity at a total pressure P other than P � 1 atm is determined by multi-
plying the emissivity value at 1 atm by a pressure correction factor Cw ob-
tained from Figure 12–37a for water vapor. That is,
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FIGURE 12–36
Emissivities of H2O and CO2 gases in a mixture of nonparticipating gases at a total pressure of 1 atm

for a mean beam length of L (1 m � atm � 3.28 ft � atm) (from Hottel, 1954, Ref. 6).
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FIGURE 12–37
Correction factors for the emissivities of H2O and CO2 gases at pressures other than 1 atm for use in the relations

w � Cww, 1 atm and c � Ccc, 1 atm (1 m � atm � 3.28 ft � atm) (from Hottel, 1954, Ref. 6).
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w � Cw w, 1 atm (12-52)

Note that Cw � 1 for P � 1 atm and thus (Pw � P)/2 � 0.5 (a very low con-
centration of water vapor is used in the preparation of the emissivity chart in
Fig. 12–36a and thus Pw is very low). Emissivity values are presented in a
similar manner for a mixture of CO2 and nonparticipating gases in Fig.
12–36b and 12–37b.

Now the question that comes to mind is what will happen if the CO2 and
H2O gases exist together in a mixture with nonparticipating gases. The emis-
sivity of each participating gas can still be determined as explained above us-
ing its partial pressure, but the effective emissivity of the mixture cannot be
determined by simply adding the emissivities of individual gases (although
this would be the case if different gases emitted at different wavelengths).
Instead, it should be determined from

g � c � w 	 �

� Cc c, 1 atm � Cw w, 1 atm 	 � (12-53)

where � is the emissivity correction factor, which accounts for the overlap
of emission bands. For a gas mixture that contains both CO2 and H2O gases,
� is plotted in Figure 12–38.

The emissivity of a gas also depends on the mean length an emitted ra-
diation beam travels in the gas before reaching a bounding surface, and thus
the shape and the size of the gas body involved. During their experiments in
the 1930s, Hottel and his coworkers considered the emission of radiation from
a hemispherical gas body to a small surface element located at the center of
the base of the hemisphere. Therefore, the given charts represent emissivity
data for the emission of radiation from a hemispherical gas body of radius L
toward the center of the base of the hemisphere. It is certainly desirable to
extend the reported emissivity data to gas bodies of other geometries, and this
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FIGURE 12–38
Emissivity correction � for use in g � w � c 	 � when both CO2 and H2O vapor are present in a gas mixture
(1 m � atm � 328 ft � atm) (from Hottel, 1954, Ref. 6).
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is done by introducing the concept of mean beam length L, which represents
the radius of an equivalent hemisphere. The mean beam lengths for various
gas geometries are listed in Table 12–4. More extensive lists are available in
the literature [such as Hottel (1954, Ref. 6), and Siegel and Howell, (1992,
Ref. 14)]. The emissivities associated with these geometries can be deter-
mined from Figures 12–36 through 12–38 by using the appropriate mean
beam length.

Following a procedure recommended by Hottel, the absorptivity of a gas
that contains CO2 and H2O gases for radiation emitted by a source at temper-
ature Ts can be determined similarly from

�g � �c � �w 	 �� (12-54)

where �� � � and is determined from Figure 12–38 at the source tempera-
ture Ts. The absorptivities of CO2 and H2O can be determined from the emis-
sivity charts (Figs. 12–36 and 12–37) as

CO2: �c � Cc 
 (Tg / Ts)0.65 
 c(Ts, Pc LTs / Tg) (12-55)

and

H2O: �w � Cw 
 (Tg / Ts)0.45 
 w(Ts, Pw LTs / Tg) (12-56)

The notation indicates that the emissivities should be evaluated using Ts in-
stead of Tg (both in K or R), Pc LTs / Tg instead of Pc L, and Pw LTs / Tg instead
of Pw L. Note that the absorptivity of the gas depends on the source tempera-
ture Ts as well as the gas temperature Tg. Also, � �  when Ts � Tg, as ex-
pected. The pressure correction factors Cc and Cw are evaluated using Pc L and
Pw L, as in emissivity calculations.

When the total emissivity of a gas g at temperature Tg is known, the emis-
sive power of the gas (radiation emitted by the gas per unit surface area) can
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TABLE 12–4

Mean beam length L for various gas volume shapes

Gas Volume Geometry L

Hemisphere of radius R radiating to the center of its base R
Sphere of diameter D radiating to its surface 0.65D
Infinite circular cylinder of diameter D radiating to curved surface 0.95D
Semi-infinite circular cylinder of diameter D radiating to its base 0.65D
Semi-infinite circular cylinder of diameter D radiating to center 

of its base 0.90D
Infinite semicircular cylinder of radius R radiating to center 

of its base 1.26R
Circular cylinder of height equal to diameter D radiating to 

entire surface 0.60D
Circular cylinder of height equal to diameter D radiating to center 

of its base 0.71D
Infinite slab of thickness D radiating to either bounding plane 1.80D
Cube of side length L radiating to any face 0.66L
Arbitrary shape of volume V and surface area As radiating to surface 3.6V /As
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be expressed as Eg � g� . Then the rate of radiation energy emitted by a
gas to a bounding surface of area As becomes

Q
·

g, e � g As� (12-57)

If the bounding surface is black at temperature Ts, the surface will emit ra-
diation to the gas at a rate of As�Ts

4 without reflecting any, and the gas will ab-
sorb this radiation at a rate of �g As� , where �g is the absorptivity of the gas.
Then the net rate of radiation heat transfer between the gas and a black surface
surrounding it becomes

Black enclosure: Q
·

net � As�(g 	 �g ) (12-58)

If the surface is not black, the analysis becomes more complicated because
of the radiation reflected by the surface. But for surfaces that are nearly
black with an emissivity s � 0.7, Hottel (1954, Ref. 6), recommends this
modification,

Q
·

net, gray � Q
·

net, black � As�(g 	 �g ) (12-59)

The emissivity of wall surfaces of furnaces and combustion chambers are typ-
ically greater than 0.7, and thus the relation above provides great convenience
for preliminary radiation heat transfer calculations.

T 4
sT 4

g

s � 1
2

s � 1
2

T 4
sT 4

g

T 4
s

T 4
g

T 4
g
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EXAMPLE 12–13 Effective Emissivity of Combustion Gases

A cylindrical furnace whose height and diameter are 5 m contains combustion
gases at 1200 K and a total pressure of 2 atm. The composition of the com-
bustion gases is determined by volumetric analysis to be 80 percent N2, 8 per-
cent H2O, 7 percent O2, and 5 percent CO2. Determine the effective emissivity
of the combustion gases (Fig. 12–39).

SOLUTION The temperature, pressure, and composition of a gas mixture is
given. The emissivity of the mixture is to be determined.
Assumptions 1 All the gases in the mixture are ideal gases. 2 The emissivity
determined is the mean emissivity for radiation emitted to all surfaces of the
cylindrical enclosure.
Analysis The volumetric analysis of a gas mixture gives the mole fractions yi of
the components, which are equivalent to pressure fractions for an ideal gas mix-
ture. Therefore, the partial pressures of CO2 and H2O are

Pc � y P � 0.05(2 atm) � 0.10 atm

Pw � y P � 0.08(2 atm) � 0.16 atm

The mean beam length for a cylinder of equal diameter and height for radiation
emitted to all surfaces is, from Table 12–4,

L � 0.60D � 0.60(5 m) � 3 m

H2O

CO2

Tg � 1200 KD � 5 m

H � 5 m

FIGURE 12–39
Schematic for Example 12–13.
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Then,

Pc L � (0.10 atm)(3 m) � 0.30 m � atm � 0.98 ft � atm

Pw L � (0.16 atm)(3 m) � 0.48 m � atm � 1.57 ft � atm

The emissivities of CO2 and H2O corresponding to these values at the gas tem-
perature of Tg � 1200 K and 1 atm are, from Figure 12–36,

c, 1 atm � 0.16 and w, 1 atm � 0.23

These are the base emissivity values at 1 atm, and they need to be corrected for
the 2 atm total pressure. Noting that (Pw � P)/2 � (0.16 � 2)/2 � 1.08 atm,
the pressure correction factors are, from Figure 12–37,

Cc � 1.1 and Cw � 1.4

Both CO2 and H2O are present in the same mixture, and we need to correct for
the overlap of emission bands. The emissivity correction factor at T � Tg �
1200 K is, from Figure 12–38,

� � 0.048

Then the effective emissivity of the combustion gases becomes

g � Cc c, 1 atm � Cw w, 1 atm 	 � � 1.1 
 0.16 � 1.4 
 0.23 	 0.048 � 0.45

Discussion This is the average emissivity for radiation emitted to all surfaces
of the cylindrical enclosure. For radiation emitted towards the center of the
base, the mean beam length is 0.71D instead of 0.60D, and the emissivity
value would be different.

Pc L � Pw L � 0.98 � 1.57 � 2.55 
Pw

Pw � Pc
�

0.16
0.16 � 0.10

� 0.615�

EXAMPLE 12–14 Radiation Heat Transfer in a Cylindrical Furnace

Reconsider the cylindrical furnace discussed in Example 12–13. For a wall
temperature of 600 K, determine the absorptivity of the combustion gases and
the rate of radiation heat transfer from the combustion gases to the furnace
walls (Fig. 12–40).

SOLUTION The temperatures for the wall surfaces and the combustion gases
are given for a cylindrical furnace. The absorptivity of the gas mixture and the
rate of radiation heat transfer are to be determined.
Assumptions 1 All the gases in the mixture are ideal gases. 2 All interior
surfaces of furnace walls are black. 3 Scattering by soot and other particles is
negligible.
Analysis The average emissivity of the combustion gases at the gas tempera-
ture of Tg � 1200 K was determined in the preceding example to be g � 0.45.

Tg � 1200 K

Ts � 600 K
D � 5 m

H � 5 m

Qnet
·

FIGURE 12–40
Schematic for Example 12–14.
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For a source temperature of Ts � 600 K, the absorptivity of the gas is again
determined using the emissivity charts as

Pc L � (0.10 atm)(3 m) � 0.15 m � atm � 0.49 ft � atm

Pw L � (0.16 atm)(3 m) � 0.24 m � atm � 0.79 ft � atm

The emissivities of CO2 and H2O corresponding to these values at a temperature
of Ts � 600 K and 1 atm are, from Figure 12–36,

c, 1 atm � 0.11 and w, 1 atm � 0.25

The pressure correction factors were determined in the preceding example to be
Cc � 1.1 and Cw � 1.4, and they do not change with surface temperature. Then
the absorptivities of CO2 and H2O become

�c � Cc c, 1 atm � (1.1) (0.11) � 0.19

�w � Cw w, 1 atm � (1.4) (0.25) � 0.48

Also �� � �, but the emissivity correction factor is to be evaluated from
Figure 12–38 at T � Ts � 600 K instead of Tg � 1200 K. There is no chart
for 600 K in the figure, but we can read � values at 400 K and 800 K, and
take their average. At Pw /(Pw � Pc) � 0.615 and Pc L � Pw L � 2.55 we read
� � 0.027. Then the absorptivity of the combustion gases becomes

�g � �c � �w 	 �� � 0.19 � 0.48 	 0.027 � 0.64

The surface area of the cylindrical surface is

As � �DH � 2 � �(5 m)(5 m) � 2 � 118 m2

Then the net rate of radiation heat transfer from the combustion gases to the
walls of the furnace becomes

Q
·

net � As�(g 	 �g )

� (118 m2)(5.67 
 10	8 W/m2 � K4)[0.45(1200 K)4 	 0.64(600 K)4]

� 2.79 � 104 W

Discussion The heat transfer rate determined above is for the case of black
wall surfaces. If the surfaces are not black but the surface emissivity s is
greater than 0.7, the heat transfer rate can be determined by multiplying the
rate of heat transfer already determined by (s � 1)/2.

T 4
sT 4

g

�(5 m)2

4
�D2

4

�1200 K
600 K �

0.45

�Tg

Ts
�

0.45

�1200 K
600 K �

0.65

�Tg

Ts
�

0.65

600 K
1200 K

Ts

Tg

600 K
1200 K

Ts

Tg
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