
R A D I AT I O N  H E AT  T R A N S F E R

In Chapter 11, we considered the fundamental aspects of radiation and the
radiation properties of surfaces. We are now in a position to consider
radiation exchange between two or more surfaces, which is the primary

quantity of interest in most radiation problems.
We start this chapter with a discussion of view factors and the rules associ-

ated with them. View factor expressions and charts for some common config-
urations are given, and the crossed-strings method is presented. We then
discuss radiation heat transfer, first between black surfaces and then between
nonblack surfaces using the radiation network approach. We continue with ra-
diation shields and discuss the radiation effect on temperature measurements
and comfort. Finally, we consider gas radiation, and discuss the effective
emissivities and absorptivities of gas bodies of various shapes. We also dis-
cuss radiation exchange between the walls of combustion chambers and the
high-temperature emitting and absorbing combustion gases inside.

605

CHAPTER

12
CONTENTS

12–1 The View Factor 606

12–2 View Factor Relations 609

12–3 Radiation Heat Transfer:
Black Surfaces 620

12–4 Radiation Heat Transfer:
Diffuse, Gray Surfaces 623

12–5 Radiation Shields and
the Radiation Effect 635

12–6 Radiation Exchange
with Emitting and
Absorbing Gases 639

Topic of Special Interest:

Heat Transfer from 
the Human Body 649

cen58933_ch12.qxd  9/9/2002  9:48 AM  Page 605



12–1 THE VIEW FACTOR
Radiation heat transfer between surfaces depends on the orientation of the
surfaces relative to each other as well as their radiation properties and tem-
peratures, as illustrated in Figure 12–1. For example, a camper will make the
most use of a campfire on a cold night by standing as close to the fire as pos-
sible and by blocking as much of the radiation coming from the fire by turn-
ing her front to the fire instead of her side. Likewise, a person will maximize
the amount of solar radiation incident on him and take a sunbath by lying
down on his back instead of standing up on his feet.

To account for the effects of orientation on radiation heat transfer between
two surfaces, we define a new parameter called the view factor, which is a
purely geometric quantity and is independent of the surface properties and
temperature. It is also called the shape factor, configuration factor, and angle
factor. The view factor based on the assumption that the surfaces are diffuse
emitters and diffuse reflectors is called the diffuse view factor, and the view
factor based on the assumption that the surfaces are diffuse emitters but spec-
ular reflectors is called the specular view factor. In this book, we will consider
radiation exchange between diffuse surfaces only, and thus the term view fac-
tor will simply mean diffuse view factor.

The view factor from a surface i to a surface j is denoted by Fi → j or just Fij,
and is defined as

Fij � the fraction of the radiation leaving surface i that strikes surface j directly

The notation Fi → j is instructive for beginners, since it emphasizes that the
view factor is for radiation that travels from surface i to surface j. However,
this notation becomes rather awkward when it has to be used many times in a
problem. In such cases, it is convenient to replace it by its shorthand ver-
sion Fij.

Therefore, the view factor F12 represents the fraction of radiation leaving
surface 1 that strikes surface 2 directly, and F21 represents the fraction of the
radiation leaving surface 2 that strikes surface 1 directly. Note that the radia-
tion that strikes a surface does not need to be absorbed by that surface. Also,
radiation that strikes a surface after being reflected by other surfaces is not
considered in the evaluation of view factors.

To develop a general expression for the view factor, consider two differen-
tial surfaces dA1 and dA2 on two arbitrarily oriented surfaces A1 and A2, re-
spectively, as shown in Figure 12–2. The distance between dA1 and dA2 is r,
and the angles between the normals of the surfaces and the line that connects
dA1 and dA2 are �1 and �2, respectively. Surface 1 emits and reflects radiation
diffusely in all directions with a constant intensity of I1, and the solid angle
subtended by dA2 when viewed by dA1 is d�21.

The rate at which radiation leaves dA1 in the direction of �1 is I1 cos �1dA1.
Noting that d�21 � dA2 cos �2 /r 2, the portion of this radiation that strikes
dA2 is

Q
·

d → d � I1 cos �1dA1d�21 � I1 cos �1dA1 (12-1)
dA2 cos �2

r 2A2A1

�
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FIGURE 12–1
Radiation heat exchange between
surfaces depends on the orientation
of the surfaces relative to each other,
and this dependence on orientation is
accounted for by the view factor.
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FIGURE 12–2
Geometry for the determination of the
view factor between two surfaces.
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The total rate at which radiation leaves dA1 (via emission and reflection) in all
directions is the radiosity (which is J1 � �I1) times the surface area,

Q
·

d � J1dA1 � �I1dA1 (12-2)

Then the differential view factor dFd → d , which is the fraction of radiation
leaving dA1 that strikes dA2 directly, becomes

dFd → d � � dA2 (12-3)

The differential view factor dFd → d can be determined from Eq. 12–3 by
interchanging the subscripts 1 and 2.

The view factor from a differential area dA1 to a finite area A2 can be
determined from the fact that the fraction of radiation leaving dA1 that strikes
A2 is the sum of the fractions of radiation striking the differential areas dA2.
Therefore, the view factor Fd → is determined by integrating dFd → d
over A2,

Fd → � dA2 (12-4)

The total rate at which radiation leaves the entire A1 (via emission and re-
flection) in all directions is

Q
·

� J1A1 � �I1A1 (12-5)

The portion of this radiation that strikes dA2 is determined by considering the
radiation that leaves dA1 and strikes dA2 (given by Eq. 12–1), and integrating
it over A1,

Q
·

→ d � Q
·

d → d � dA1 (12-6)

Integration of this relation over A2 gives the radiation that strikes the entire A2,

Q
·

→ � Q
·

→ d � dA1 dA2 (12-7)

Dividing this by the total radiation leaving A1 (from Eq. 12–5) gives the frac-
tion of radiation leaving A1 that strikes A2, which is the view factor F → (or
F12 for short),

F12 � F → � � dA1 dA2 (12-8)

The view factor F → is readily determined from Eq. 12–8 by interchanging
the subscripts 1 and 2,

F21 � F → � � dA1dA2 (12-9)�
A2 
�

A1 

cos �1 cos �2

�r 2

1
A2

Q·
A2 → A1

Q·
A2

A1A2

A1A2

�
A2 
�

A1 

cos �1 cos �2

�r 2

1
A1

Q·
A1 → A2

Q·
A1

A2A1

A2A1

�
A2 
�

A1 

I1 cos �1 cos �2

r 2A2A1�
A2

A2A1

�
A1 

I1 cos �1 cos �2 dA2

r 2A2A1�
A1

A2A1

A1

�
A2 

cos �1 cos �2

�r 2A2A1

A2A1A2A1

A1A2

cos �1 cos �2

�r 2

Q·
dA1 → dA2

Q·
dA1

A2A1

A2A1

A1
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Note that I1 is constant but r, �1, and �2 are variables. Also, integrations can be
performed in any order since the integration limits are constants. These rela-
tions confirm that the view factor between two surfaces depends on their rel-
ative orientation and the distance between them.

Combining Eqs. 12–8 and 12–9 after multiplying the former by A1 and the
latter by A2 gives

A1F12 � A2F21 (12-10)

which is known as the reciprocity relation for view factors. It allows the cal-
culation of a view factor from a knowledge of the other.

The view factor relations developed above are applicable to any two sur-
faces i and j provided that the surfaces are diffuse emitters and diffuse reflec-
tors (so that the assumption of constant intensity is valid). For the special case
of j � i, we have

Fi → i � the fraction of radiation leaving surface i that strikes itself directly

Noting that in the absence of strong electromagnetic fields radiation beams
travel in straight paths, the view factor from a surface to itself will be zero un-
less the surface “sees” itself. Therefore, Fi → i � 0 for plane or convex surfaces
and Fi → i � 0 for concave surfaces, as illustrated in Figure 12–3.

The value of the view factor ranges between zero and one. The limiting case
Fi → j � 0 indicates that the two surfaces do not have a direct view of each
other, and thus radiation leaving surface i cannot strike surface j directly. The
other limiting case Fi → j � 1 indicates that surface j completely surrounds sur-
face i, so that the entire radiation leaving surface i is intercepted by surface j.
For example, in a geometry consisting of two concentric spheres, the entire
radiation leaving the surface of the smaller sphere (surface 1) will strike the
larger sphere (surface 2), and thus F1 → 2 � 1, as illustrated in Figure 12–4.

The view factor has proven to be very useful in radiation analysis because it
allows us to express the fraction of radiation leaving a surface that strikes an-
other surface in terms of the orientation of these two surfaces relative to each
other. The underlying assumption in this process is that the radiation a surface
receives from a source is directly proportional to the angle the surface sub-
tends when viewed from the source. This would be the case only if the
radiation coming off the source is uniform in all directions throughout its
surface and the medium between the surfaces does not absorb, emit, or scatter
radiation. That is, it will be the case when the surfaces are isothermal and
diffuse emitters and reflectors and the surfaces are separated by a non-
participating medium such as a vacuum or air.

The view factor F1 → 2 between two surfaces A1 and A2 can be determined in
a systematic manner first by expressing the view factor between two differen-
tial areas dA1 and dA2 in terms of the spatial variables and then by performing
the necessary integrations. However, this approach is not practical, since, even
for simple geometries, the resulting integrations are usually very complex and
difficult to perform.

View factors for hundreds of common geometries are evaluated and the re-
sults are given in analytical, graphical, and tabular form in several publica-
tions. View factors for selected geometries are given in Tables 12–1 and 12–2
in analytical form and in Figures 12–5 to 12–8 in graphical form. The view
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F3 → 3 ≠ 0

(a) Plane surface

(b) Convex surface

(c) Concave surface

FIGURE 12–3
The view factor from a surface
to itself is zero for plane or
convex surfaces and nonzero
for concave surfaces.
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FIGURE 12–4
In a geometry that consists of two
concentric spheres, the view factor
F1 → 2 � 1 since the entire radiation
leaving the surface of the smaller
sphere will be intercepted by the
larger sphere.
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factors in Table 12–1 are for three-dimensional geometries. The view factors
in Table 12–2, on the other hand, are for geometries that are infinitely long
in the direction perpendicular to the plane of the paper and are therefore
two-dimensional.

12–2 VIEW FACTOR RELATIONS
Radiation analysis on an enclosure consisting of N surfaces requires the eval-
uation of N2 view factors, and this evaluation process is probably the most
time-consuming part of a radiation analysis. However, it is neither practical
nor necessary to evaluate all of the view factors directly. Once a sufficient
number of view factors are available, the rest of them can be determined by
utilizing some fundamental relations for view factors, as discussed next.

�
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TABLE 12–1

View factor expressions for some common geometries of finite size (3D)

L

Y
X

i

j

j

i

rj

ri L

Z

Y X
i

j

2——
πXY

(1 + X2)(1 + Y 2)———————
1 + X2 + Y 2

X = X/L and Y = Y/LAligned parallel rectangles

Geometry Relation
––

Fi → j =

Fi → j = S – ( )

ln–––– ––
–– ––

––

––

X———–—
(1 + Y 2)1/2

+ X(1 + Y 2)1/2 tan–1
––––
––

––

Y———–—
(1 + X2)1/2

+ Y(1 + X2)1/2 tan–1
––––

– X tan–1 X – Y tan–1 Y
–– –– ––––

––
––

1—–
πW

1—
W

1—
H

H = Z /X and W = Y/XPerpendicular rectangles
with a common edge

Fi → j = W tan–1 + H tan–1

1———–——
(H2 + W2)1/2

– (H2 + W2)1/2 tan–1

(1 + W2)(1 + H2)———————
1 + W2 + H2

1–
4

+    ln

1 + Rj
2

——–
Ri 

2

rj—
ri

Ri = ri /L and Rj = rj /L
Coaxial parallel disks

S = 1 +

S2 – 4

(

)

2 1/2

W2
W2(1 + W2 + H2)————————

(1 + W2)(W2 + H2)
×

H2
H2(1 + H2 + W2)————————

(1 + H2)(H2 + W2)
×

1–
2

1/2
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1 The Reciprocity Relation
The view factors Fi → j and Fj → i are not equal to each other unless the areas of
the two surfaces are. That is,

Fj → i � Fi → j when Ai � Aj

Fj → i � Fi → j when Ai � Aj

610
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TABLE 12–2

View factor expressions for some infinitely long (2D) geometries

Parallel plates with midlines
connected by perpendicular line

Geometry Relation

Fi → j = 1 – sin    α

Perpendicular plates with a common edge

Three-sided enclosure

Infinite plane and row of cylinders

Inclined plates of equal width
and with a common edge

1–
2

Fi → j =

Wi = wi /L and Wj = wj /L

[(Wi + Wj)
2 + 4]1/2 – (Wj – Wi)

2 + 4]1/2

———————————————
2Wi

Fi → j =
wi + wj – wk—————

2wi

j

i
wi

wj

L

i

j

wi

j

i
α

w

w

k j

i

i

j
D

wj

wj

wi

wk

s

Fi → j = ( )wj—
wi

1 +
wj—
wi

1 + –
2 1/21–

2

Fi → j = 1 –   1 – ( )
( )

D—
s

D—
s

+ tan–1

2 1/2

1/2s2 – D2
———

D2
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FIGURE 12–5
View factor between two
aligned parallel rectangles of
equal size.
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FIGURE 12–7
View factor between two

coaxial parallel disks.
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FIGURE 12–8
View factors for two concentric cylinders of finite length: (a) outer cylinder to inner cylinder; (b) outer cylinder to itself.
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