
N AT U R A L  C O N V E C T I O N

In Chapters 7 and 8, we considered heat transfer by forced convection,
where a fluid was forced to move over a surface or in a tube by external
means such as a pump or a fan. In this chapter, we consider natural con-

vection, where any fluid motion occurs by natural means such as buoyancy.
The fluid motion in forced convection is quite noticeable, since a fan or a
pump can transfer enough momentum to the fluid to move it in a certain di-
rection. The fluid motion in natural convection, however, is often not notice-
able because of the low velocities involved.

The convection heat transfer coefficient is a strong function of velocity: the
higher the velocity, the higher the convection heat transfer coefficient. The
fluid velocities associated with natural convection are low, typically less than
1 m/s. Therefore, the heat transfer coefficients encountered in natural convec-
tion are usually much lower than those encountered in forced convection. Yet
several types of heat transfer equipment are designed to operate under natural
convection conditions instead of forced convection, because natural convec-
tion does not require the use of a fluid mover.

We start this chapter with a discussion of the physical mechanism of natural
convection and the Grashof number. We then present the correlations to eval-
uate heat transfer by natural convection for various geometries, including
finned surfaces and enclosures. Finally, we discuss simultaneous forced and
natural convection.
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9–1 PHYSICAL MECHANISM OF NATURAL
CONVECTION

Many familiar heat transfer applications involve natural convection as the pri-
mary mechanism of heat transfer. Some examples are cooling of electronic
equipment such as power transistors, TVs, and VCRs; heat transfer from elec-
tric baseboard heaters or steam radiators; heat transfer from the refrigeration
coils and power transmission lines; and heat transfer from the bodies of ani-
mals and human beings. Natural convection in gases is usually accompanied
by radiation of comparable magnitude except for low-emissivity surfaces.

We know that a hot boiled egg (or a hot baked potato) on a plate eventually
cools to the surrounding air temperature (Fig. 9–1). The egg is cooled by
transferring heat by convection to the air and by radiation to the surrounding
surfaces. Disregarding heat transfer by radiation, the physical mechanism of
cooling a hot egg (or any hot object) in a cooler environment can be explained
as follows:

As soon as the hot egg is exposed to cooler air, the temperature of the outer
surface of the egg shell will drop somewhat, and the temperature of the air ad-
jacent to the shell will rise as a result of heat conduction from the shell to the
air. Consequently, the egg will soon be surrounded by a thin layer of warmer
air, and heat will then be transferred from this warmer layer to the outer lay-
ers of air. The cooling process in this case would be rather slow since the egg
would always be blanketed by warm air, and it would have no direct contact
with the cooler air farther away. We may not notice any air motion in the
vicinity of the egg, but careful measurements indicate otherwise.

The temperature of the air adjacent to the egg is higher, and thus its density
is lower, since at constant pressure the density of a gas is inversely propor-
tional to its temperature. Thus, we have a situation in which some low-density
or “light” gas is surrounded by a high-density or “heavy” gas, and the natural
laws dictate that the light gas rise. This is no different than the oil in a vine-
gar-and-oil salad dressing rising to the top (since �oil � �vinegar). This phe-
nomenon is characterized incorrectly by the phrase “heat rises,” which is
understood to mean heated air rises. The space vacated by the warmer air in
the vicinity of the egg is replaced by the cooler air nearby, and the presence of
cooler air in the vicinity of the egg speeds up the cooling process. The rise
of warmer air and the flow of cooler air into its place continues until the egg
is cooled to the temperature of the surrounding air. The motion that results
from the continual replacement of the heated air in the vicinity of the egg by
the cooler air nearby is called a natural convection current, and the heat
transfer that is enhanced as a result of this natural convection current is called
natural convection heat transfer. Note that in the absence of natural con-
vection currents, heat transfer from the egg to the air surrounding it would be
by conduction only, and the rate of heat transfer from the egg would be much
lower.

Natural convection is just as effective in the heating of cold surfaces in a
warmer environment as it is in the cooling of hot surfaces in a cooler envi-
ronment, as shown in Figure 9–2. Note that the direction of fluid motion is
reversed in this case.

In a gravitational field, there is a net force that pushes upward a light fluid
placed in a heavier fluid. The upward force exerted by a fluid on a body

�
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FIGURE 9–1
The cooling of a boiled egg in a cooler
environment by natural convection.

FIGURE 9–2
The warming up of a cold drink
in a warmer environment by
natural convection.
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completely or partially immersed in it is called the buoyancy force. The mag-
nitude of the buoyancy force is equal to the weight of the fluid displaced by
the body. That is,

Fbuoyancy � �fluid gVbody (9-1)

where �fluid is the average density of the fluid (not the body), g is the gravita-
tional acceleration, and Vbody is the volume of the portion of the body im-
mersed in the fluid (for bodies completely immersed in the fluid, it is the total
volume of the body). In the absence of other forces, the net vertical force
acting on a body is the difference between the weight of the body and the
buoyancy force. That is,

Fnet � W � Fbuoyancy

� �body gVbody � �fluid gVbody (9-2)

� (�body � �fluid) gVbody

Note that this force is proportional to the difference in the densities of the fluid
and the body immersed in it. Thus, a body immersed in a fluid will experience
a “weight loss” in an amount equal to the weight of the fluid it displaces. This
is known as Archimedes’ principle.

To have a better understanding of the buoyancy effect, consider an egg
dropped into water. If the average density of the egg is greater than the density
of water (a sign of freshness), the egg will settle at the bottom of the container.
Otherwise, it will rise to the top. When the density of the egg equals the
density of water, the egg will settle somewhere in the water while remaining
completely immersed, acting like a “weightless object” in space. This occurs
when the upward buoyancy force acting on the egg equals the weight of the
egg, which acts downward.

The buoyancy effect has far-reaching implications in life. For one thing,
without buoyancy, heat transfer between a hot (or cold) surface and the fluid
surrounding it would be by conduction instead of by natural convection. The
natural convection currents encountered in the oceans, lakes, and the atmos-
phere owe their existence to buoyancy. Also, light boats as well as heavy war-
ships made of steel float on water because of buoyancy (Fig. 9–3). Ships are
designed on the basis of the principle that the entire weight of a ship and its
contents is equal to the weight of the water that the submerged volume of the
ship can contain. The “chimney effect” that induces the upward flow of hot
combustion gases through a chimney is also due to the buoyancy effect, and
the upward force acting on the gases in the chimney is proportional to the dif-
ference between the densities of the hot gases in the chimney and the cooler
air outside. Note that there is no gravity in space, and thus there can be no nat-
ural convection heat transfer in a spacecraft, even if the spacecraft is filled
with atmospheric air.

In heat transfer studies, the primary variable is temperature, and it is desir-
able to express the net buoyancy force (Eq. 9-2) in terms of temperature dif-
ferences. But this requires expressing the density difference in terms of a
temperature difference, which requires a knowledge of a property that repre-
sents the variation of the density of a fluid with temperature at constant pres-
sure. The property that provides that information is the volume expansion
coefficient �, defined as (Fig. 9–4)
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� � (1/K) (9-3)

In natural convection studies, the condition of the fluid sufficiently far from
the hot or cold surface is indicated by the subscript “infinity” to serve as a re-
minder that this is the value at a distance where the presence of the surface is
not felt. In such cases, the volume expansion coefficient can be expressed ap-
proximately by replacing differential quantities by differences as

(9-4)

or

�� � � � ��(T � T�) (at constant P) (9-5)

where �� is the density and T� is the temperature of the quiescent fluid away
from the surface.

We can show easily that the volume expansion coefficient � of an ideal gas
(P � �RT) at a temperature T is equivalent to the inverse of the temperature:

�ideal gas � (1/K) (9-6)

where T is the absolute temperature. Note that a large value of � for a fluid
means a large change in density with temperature, and that the product � �T
represents the fraction of volume change of a fluid that corresponds to a tem-
perature change �T at constant pressure. Also note that the buoyancy force is
proportional to the density difference, which is proportional to the temperature
difference at constant pressure. Therefore, the larger the temperature differ-
ence between the fluid adjacent to a hot (or cold) surface and the fluid away
from it, the larger the buoyancy force and the stronger the natural convection
currents, and thus the higher the heat transfer rate.

The magnitude of the natural convection heat transfer between a surface and
a fluid is directly related to the flow rate of the fluid. The higher the flow rate,
the higher the heat transfer rate. In fact, it is the very high flow rates that in-
crease the heat transfer coefficient by orders of magnitude when forced con-
vection is used. In natural convection, no blowers are used, and therefore the
flow rate cannot be controlled externally. The flow rate in this case is estab-
lished by the dynamic balance of buoyancy and friction.

As we have discussed earlier, the buoyancy force is caused by the density dif-
ference between the heated (or cooled) fluid adjacent to the surface and the
fluid surrounding it, and is proportional to this density difference and the vol-
ume occupied by the warmer fluid. It is also well known that whenever two
bodies in contact (solid–solid, solid–fluid, or fluid–fluid) move relative to each
other, a friction force develops at the contact surface in the direction opposite to
that of the motion. This opposing force slows down the fluid and thus reduces
the flow rate of the fluid. Under steady conditions, the air flow rate driven by
buoyancy is established at the point where these two effects balance each other.
The friction force increases as more and more solid surfaces are introduced, se-
riously disrupting the fluid flow and heat transfer. For that reason, heat sinks
with closely spaced fins are not suitable for natural convection cooling.

Most heat transfer correlations in natural convection are based on ex-
perimental measurements. The instrument often used in natural convection

1
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experiments is the Mach–Zehnder interferometer, which gives a plot
of isotherms in the fluid in the vicinity of a surface. The operation principle of
interferometers is based on the fact that at low pressure, the lines of constant
temperature for a gas correspond to the lines of constant density, and that the
index of refraction of a gas is a function of its density. Therefore, the degree
of refraction of light at some point in a gas is a measure of the tempera-
ture gradient at that point. An interferometer produces a map of interference
fringes, which can be interpreted as lines of constant temperature as shown
in Figure 9–5. The smooth and parallel lines in (a) indicate that the flow is
laminar, whereas the eddies and irregularities in (b) indicate that the flow is
turbulent. Note that the lines are closest near the surface, indicating a higher
temperature gradient.

9–2 EQUATION OF MOTION AND THE GRASHOF
NUMBER

In this section we derive the equation of motion that governs the natural con-
vection flow in laminar boundary layer. The conservation of mass and energy
equations derived in Chapter 6 for forced convection are also applicable for
natural convection, but the momentum equation needs to be modified to in-
corporate buoyancy.

Consider a vertical hot flat plate immersed in a quiescent fluid body. We as-
sume the natural convection flow to be steady, laminar, and two-dimensional,
and the fluid to be Newtonian with constant properties, including density, with
one exception: the density difference � � �� is to be considered since it is this
density difference between the inside and the outside of the boundary layer
that gives rise to buoyancy force and sustains flow. (This is known as the
Boussinesq approximation.) We take the upward direction along the plate to
be x, and the direction normal to surface to be y, as shown in Figure 9–6.
Therefore, gravity acts in the �x-direction. Noting that the flow is steady and
two-dimensional, the x- and y-components of velocity within boundary layer
are u � u(x, y) and v � v(x, y), respectively.

The velocity and temperature profiles for natural convection over a vertical
hot plate are also shown in Figure 9–6. Note that as in forced convection, the
thickness of the boundary layer increases in the flow direction. Unlike forced
convection, however, the fluid velocity is zero at the outer edge of the veloc-
ity boundary layer as well as at the surface of the plate. This is expected since
the fluid beyond the boundary layer is motionless. Thus, the fluid velocity in-
creases with distance from the surface, reaches a maximum, and gradually de-
creases to zero at a distance sufficiently far from the surface. At the surface,
the fluid temperature is equal to the plate temperature, and gradually de-
creases to the temperature of the surrounding fluid at a distance sufficiently
far from the surface, as shown in the figure. In the case of cold surfaces, the
shape of the velocity and temperature profiles remains the same but their di-
rection is reversed.

Consider a differential volume element of height dx, length dy, and unit
depth in the z-direction (normal to the paper) for analysis. The forces acting
on this volume element are shown in Figure 9–7. Newton’s second law of mo-
tion for this control volume can be expressed as

�
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FIGURE 9–5
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profiles for natural convection flow
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�m � ax � Fx (9-7)

where �m � �(dx � dy � 1) is the mass of the fluid element within the control
volume. The acceleration in the x-direction is obtained by taking the total dif-
ferential of u(x, y), which is du � (
u/
x)dx  (
u/
y)dy, and dividing it by dt.
We get

(9-8)

The forces acting on the differential volume element in the vertical direction
are the pressure forces acting on the top and bottom surfaces, the shear
stresses acting on the side surfaces (the normal stresses acting on the top and
bottom surfaces are small and are disregarded), and the force of gravity act-
ing on the entire volume element. Then the net surface force acting in the
x-direction becomes

(9-9)

since � � �(
u/
y). Substituting Eqs. 9-8 and 9-9 into Eq. 9-7 and dividing by
� � dx � dy � 1 gives the conservation of momentum in the x-direction as

� �g (9-10)

The x-momentum equation in the quiescent fluid outside the boundary layer
can be obtained from the relation above as a special case by setting u � 0. It
gives

(9-11)

which is simply the relation for the variation of hydrostatic pressure in a qui-
escent fluid with height, as expected. Also, noting that v � u in the boundary
layer and thus 
v/
x � 
v/
y � 0, and that there are no body forces (including
gravity) in the y-direction, the force balance in that direction gives 
P/
y � 0.
That is, the variation of pressure in the direction normal to the surface is neg-
ligible, and for a given x the pressure in the boundary layer is equal to the
pressure in the quiescent fluid. Therefore, P � P(x) � P�(x) and 
P/
x �

P�/
x � ���g. Substituting into Eq. 9-10,

(9-12)

The last term represents the net upward force per unit volume of the fluid (the
difference between the buoyant force and the fluid weight). This is the force
that initiates and sustains convection currents.

From Eq. 9-5, we have �� � � � ��(T � T�). Substituting it into the
last equation and dividing both sides by � gives the desired form of the
x-momentum equation,
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(9-13)

This is the equation that governs the fluid motion in the boundary layer due
to the effect of buoyancy. Note that the momentum equation involves the
temperature, and thus the momentum and energy equations must be solved
simultaneously.

The set of three partial differential equations (the continuity, momentum,
and the energy equations) that govern natural convection flow over vertical
isothermal plates can be reduced to a set of two ordinary nonlinear differential
equations by the introduction of a similarity variable. But the resulting equa-
tions must still be solved numerically [Ostrach (1953), Ref. 27]. Interested
reader is referred to advanced books on the topic for detailed discussions [e.g.,
Kays and Crawford (1993), Ref. 23].

The Grashof Number
The governing equations of natural convection and the boundary conditions
can be nondimensionalized by dividing all dependent and independent vari-
ables by suitable constant quantities: all lengths by a characteristic length Lc ,
all velocities by an arbitrary reference velocity � (which, from the definition
of Reynolds number, is taken to be � � ReL 	/Lc), and temperature by a suit-
able temperature difference (which is taken to be Ts � T�) as

where asterisks are used to denote nondimensional variables. Substituting
them into the momentum equation and simplifying give

(9-14)

The dimensionless parameter in the brackets represents the natural convection
effects, and is called the Grashof number GrL ,

(9-15)

where
g � gravitational acceleration, m/s2

� � coefficient of volume expansion, 1/K (� � 1/T for ideal gases)
Ts � temperature of the surface, ˚C
T� � temperature of the fluid sufficiently far from the surface, ˚C
Lc � characteristic length of the geometry, m
	 � kinematic viscosity of the fluid, m2/s

We mentioned in the preceding chapters that the flow regime in forced con-
vection is governed by the dimensionless Reynolds number, which represents
the ratio of inertial forces to viscous forces acting on the fluid. The flow
regime in natural convection is governed by the dimensionless Grashof num-
ber, which represents the ratio of the buoyancy force to the viscous force act-
ing on the fluid (Fig. 9–8).
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The role played by the Reynolds number in forced convection is played by
the Grashof number in natural convection. As such, the Grashof number pro-
vides the main criterion in determining whether the fluid flow is laminar or
turbulent in natural convection. For vertical plates, for example, the critical
Grashof number is observed to be about 109. Therefore, the flow regime on a
vertical plate becomes turbulent at Grashof numbers greater than 109.

When a surface is subjected to external flow, the problem involves both nat-
ural and forced convection. The relative importance of each mode of heat
transfer is determined by the value of the coefficient GrL /ReL

2: Natural con-
vection effects are negligible if GrL /ReL

2 � 1, free convection dominates and
the forced convection effects are negligible if GrL/ReL

2 � 1, and both effects
are significant and must be considered if GrL /ReL

2 � 1.

9–3 NATURAL CONVECTION OVER SURFACES
Natural convection heat transfer on a surface depends on the geometry of the
surface as well as its orientation. It also depends on the variation of tempera-
ture on the surface and the thermophysical properties of the fluid involved.

Although we understand the mechanism of natural convection well, the
complexities of fluid motion make it very difficult to obtain simple analytical
relations for heat transfer by solving the governing equations of motion and
energy. Some analytical solutions exist for natural convection, but such solu-
tions lack generality since they are obtained for simple geometries under some
simplifying assumptions. Therefore, with the exception of some simple cases,
heat transfer relations in natural convection are based on experimental studies.
Of the numerous such correlations of varying complexity and claimed accu-
racy available in the literature for any given geometry, we present here the
ones that are best known and widely used.

The simple empirical correlations for the average Nusselt number Nu in nat-
ural convection are of the form (Fig. 9–9)

(9-16)

where RaL is the Rayleigh number, which is the product of the Grashof and
Prandtl numbers:

(9-17)

The values of the constants C and n depend on the geometry of the surface and
the flow regime, which is characterized by the range of the Rayleigh number.
The value of n is usually for laminar flow and for turbulent flow. The value
of the constant C is normally less than 1.

Simple relations for the average Nusselt number for various geometries are
given in Table 9–1, together with sketches of the geometries. Also given in
this table are the characteristic lengths of the geometries and the ranges of
Rayleigh number in which the relation is applicable. All fluid properties are to
be evaluated at the film temperature Tf � (Ts  T�).

When the average Nusselt number and thus the average convection coef-
ficient is known, the rate of heat transfer by natural convection from a solid

1
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1
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Ra L � GrL Pr �
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surface at a uniform temperature Ts to the surrounding fluid is expressed by
Newton’s law of cooling as

(9-18)

where As is the heat transfer surface area and h is the average heat transfer co-
efficient on the surface.

Vertical Plates (Ts � constant)
For a vertical flat plate, the characteristic length is the plate height L. In Table
9–1 we give three relations for the average Nusselt number for an isothermal
vertical plate. The first two relations are very simple. Despite its complexity,
we suggest using the third one (Eq. 9-21) recommended by Churchill and Chu
(1975, Ref. 13) since it is applicable over the entire range of Rayleigh number.
This relation is most accurate in the range of 10�1 � RaL � 109.

Vertical Plates (q̇s � constant)
In the case of constant surface heat flux, the rate of heat transfer is known (it
is simply Q

·
� q· s A s ), but the surface temperature Ts is not. In fact, Ts in-

creases with height along the plate. It turns out that the Nusselt number rela-
tions for the constant surface temperature and constant surface heat flux cases
are nearly identical [Churchill and Chu (1975), Ref. 13]. Therefore, the rela-
tions for isothermal plates can also be used for plates subjected to uniform
heat flux, provided that the plate midpoint temperature TL / 2 is used for Ts in
the evaluation of the film temperature, Rayleigh number, and the Nusselt
number. Noting that h � q· s / (TL / 2 � T�), the average Nusselt number in this
case can be expressed as

(9-27)

The midpoint temperature TL / 2 is determined by iteration so that the Nusselt
numbers determined from Eqs. 9-21 and 9-27 match.

Vertical Cylinders
An outer surface of a vertical cylinder can be treated as a vertical plate when
the diameter of the cylinder is sufficiently large so that the curvature effects
are negligible. This condition is satisfied if

(9-28)

When this criteria is met, the relations for vertical plates can also be used for
vertical cylinders. Nusselt number relations for slender cylinders that do not
meet this criteria are available in the literature [e.g., Cebeci (1974), Ref. 8].

Inclined Plates
Consider an inclined hot plate that makes an angle � from the vertical, as
shown in Figure 9–10, in a cooler environment. The net force F � g(�� � �)
(the difference between the buoyancy and gravity) acting on a unit volume of
the fluid in the boundary layer is always in the vertical direction. In the case

D �
35L
GrL

1/4

Nu �
hL
k

�
q̇s L

k(TL / 2 � T�)

Q̇conv � hAs(Ts � T�)    (W)
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TABLE 9–1

Empirical correlations for the average Nusselt number for natural convection over surfaces

Characteristic
Geometry length Lc Range of Ra Nu

104–109 Nu � 0.59Ra1/4
L (9-19)

109–1013 Nu � 0.1Ra1/3
L (9-20)

L Entire range Nu � (9-21)

(complex but more accurate)

Use vertical plate equations for the upper
surface of a cold plate and the lower 
surface of a hot plate

L
Replace g by g cos� for Ra � 109

104–107 Nu � 0.54Ra1/4
L (9-22)

107–1011 Nu � 0.15Ra1/3
L (9-23)

As /p

105–1011 Nu � 0.27Ra1/4
L (9-24)

A vertical cylinder can be treated as a
vertical plate when

L

D �

D RaD � 1012 Nu � (9-25)

RaD � 1011 Nu � 2  (9-26)

D (Pr � 0.7)

0.589RaD
1/4

[1  (0.469/Pr)9/16]4/9

D

�0.6 
0.387RaD

1/6

[1  (0.559/Pr)9/16]8/27�2

Ts 

D

35L
Gr1/4

L

Ts 

L

Horiontal plate
(Surface area A and perimeter p)
(a) Upper surface of a hot plate
(or lower surface of a cold plate)

(b) Lower surface of a hot plate
(or upper surface of a cold plate)

θ
L

Ts

L �0.825 
0.387Ra1/ 6

L

[1  (0.492/Pr)9/16]8/27�2

Horizontal cylinder

Vertical plate

Inclined plate

Ts Hot surface

Ts 
Hot surface

Vertical cylinder

Sphere

cen58933_ch09.qxd  9/4/2002  12:25 PM  Page 468



of inclined plate, this force can be resolved into two components: Fy � F cos
� parallel to the plate that drives the flow along the plate, and Fy � F sin �
normal to the plate. Noting that the force that drives the motion is reduced, we
expect the convection currents to be weaker, and the rate of heat transfer to be
lower relative to the vertical plate case.

The experiments confirm what we suspect for the lower surface of a hot
plate, but the opposite is observed on the upper surface. The reason for this cu-
rious behavior for the upper surface is that the force component Fy initiates
upward motion in addition to the parallel motion along the plate, and thus the
boundary layer breaks up and forms plumes, as shown in the figure. As a re-
sult, the thickness of the boundary layer and thus the resistance to heat trans-
fer decreases, and the rate of heat transfer increases relative to the vertical
orientation.

In the case of a cold plate in a warmer environment, the opposite occurs as
expected: The boundary layer on the upper surface remains intact with weaker
boundary layer flow and thus lower rate of heat transfer, and the boundary
layer on the lower surface breaks apart (the colder fluid falls down) and thus
enhances heat transfer.

When the boundary layer remains intact (the lower surface of a hot plate or
the upper surface of a cold plate), the Nusselt number can be determined from
the vertical plate relations provided that g in the Rayleigh number relation is
replaced by g cos � for � � 60˚. Nusselt number relations for the other two
surfaces (the upper surface of a hot plate or the lower surface of a cold plate)
are available in the literature [e.g., Fujiii and Imura (1972), Ref. 18].

Horizontal Plates
The rate of heat transfer to or from a horizontal surface depends on whether
the surface is facing upward or downward. For a hot surface in a cooler envi-
ronment, the net force acts upward, forcing the heated fluid to rise. If the hot
surface is facing upward, the heated fluid rises freely, inducing strong natural
convection currents and thus effective heat transfer, as shown in Figure 9–11.
But if the hot surface is facing downward, the plate will block the heated fluid
that tends to rise (except near the edges), impeding heat transfer. The opposite
is true for a cold plate in a warmer environment since the net force (weight
minus buoyancy force) in this case acts downward, and the cooled fluid near
the plate tends to descend.

The average Nusselt number for horizontal surfaces can be determined from
the simple power-law relations given in Table 9–1. The characteristic length
for horizontal surfaces is calculated from

(9-29)

where As is the surface area and p is the perimeter. Note that Lc � a/4 for a
horizontal square surface of length a, and D/4 for a horizontal circular surface
of diameter D.

Horizontal Cylinders and Spheres
The boundary layer over a hot horizontal cylinder start to develop at the bot-
tom, increasing in thickness along the circumference, and forming a rising

L c �
As

p
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Natural
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currents

Hot
plate

FIGURE 9–11
Natural convection flows on the

upper and lower surfaces of
a horizontal hot plate.
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plume at the top, as shown in Figure 9–12. Therefore, the local Nusselt num-
ber is highest at the bottom, and lowest at the top of the cylinder when the
boundary layer flow remains laminar. The opposite is true in the case of a cold
horizontal cylinder in a warmer medium, and the boundary layer in this case
starts to develop at the top of the cylinder and ending with a descending plume
at the bottom.

The average Nusselt number over the entire surface can be determined from
Eq. 9-26 [Churchill and Chu (1975), Ref. 13] for an isothermal horizontal
cylinder, and from Eq. 9-27 for an isothermal sphere [Churchill (1983}, Ref.
11] both given in Table 9–1.
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Boundary
layer flow

Hot
cylinder

FIGURE 9–12
Natural convection flow over a
horizontal hot cylinder.

EXAMPLE 9–1 Heat Loss from Hot Water Pipes

A 6-m-long section of an 8-cm-diameter horizontal hot water pipe shown in Fig-
ure 9–13 passes through a large room whose temperature is 20˚C. If the outer
surface temperature of the pipe is 70˚C, determine the rate of heat loss from
the pipe by natural convection.

SOLUTION A horizontal hot water pipe passes through a large room. The rate
of heat loss from the pipe by natural convection is to be determined.
Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gas. 3 The
local atmospheric pressure is 1 atm.
Properties The properties of air at the film temperature of Tf � (Ts  T�)/2 �
(70  20)/2 � 45˚C and 1 atm are (Table A–15)

k � 0.02699 W/m � ˚C Pr � 0.7241

	 � 1.749 � 10�5 m2/s � � �

Analysis The characteristic length in this case is the outer diameter of the
pipe, Lc � D � 0.08 m. Then the Rayleigh number becomes

The natural convection Nusselt number in this case can be determined from
Eq. 9-25 to be

Then,

h � Nu � (17.40) � 5.869 W/m � ˚C

As � �DL � �(0.08 m)(6 m) � 1.508 m2

and

Q
·

� hAs(Ts � T�) � (5.869 W/m2 � ˚C)(1.508 m2)(70 � 20)˚C � 443 W

0.02699 W/m � ºC
0.08 m

k
D

 � 17.40

Nu � �0.6 
0.387 Ra1/6

D

[1  (0.559/Pr)9/16]8/27�2

� �0.6 
0.387(1869 � 106)1/6

[1  (0.559/0.7241)9/16]8/27�2

 �
(9.81 m/s2)[1/(318 K)](70 � 20 K)(0.08 m)3

(1.749 � 10�5 m2/s)2  (0.7241) � 1.869 � 106

RaD �
g�(Ts � T�)D3

v2  Pr

1
318 K

1
Tf

T� = 20°C

D = 8 cm

70°C

6 m

FIGURE 9–13
Schematic for Example 9–1.

cen58933_ch09.qxd  9/4/2002  12:25 PM  Page 470



CHAPTER 9
471

Therefore, the pipe will lose heat to the air in the room at a rate of 443 W by
natural convection.
Discussion The pipe will lose heat to the surroundings by radiation as well as by
natural convection. Assuming the outer surface of the pipe to be black (emissiv-
ity � � 1) and the inner surfaces of the walls of the room to be at room temper-
ature, the radiation heat transfer is determined to be (Fig. 9–14)

Q
·

rad � �As�(T s
4 � T surr

4 )

� (1)(1.508 m2)(5.67 � 10�8 W/m2 � K4)[(70  273 K)4 � (20  273 K)4]

� 553 W

which is larger than natural convection. The emissivity of a real surface is less
than 1, and thus the radiation heat transfer for a real surface will be less. But
radiation will still be significant for most systems cooled by natural convection.
Therefore, a radiation analysis should normally accompany a natural convection
analysis unless the emissivity of the surface is low.

EXAMPLE 9–2 Cooling of a Plate in Different Orientations

Consider a 0.6-m � 0.6-m thin square plate in a room at 30˚C. One side of the
plate is maintained at a temperature of 90˚C, while the other side is insulated,
as shown in Figure 9–15. Determine the rate of heat transfer from the plate by
natural convection if the plate is (a) vertical, (b) horizontal with hot surface fac-
ing up, and (c) horizontal with hot surface facing down.

SOLUTION A hot plate with an insulated back is considered. The rate of heat
loss by natural convection is to be determined for different orientations.
Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gas. 3 The
local atmospheric pressure is 1 atm.
Properties The properties of air at the film temperature of Tf � (Ts  T�)/2 �
(90  30)/2 � 60˚C and 1 atm are (Table A-15)

k � 0.02808 W/m � ˚C Pr � 0.7202

	 �1.896 � 10�5 m2/s � � �

Analysis (a) Vertical. The characteristic length in this case is the height of the
plate, which is L � 0.6 m. The Rayleigh number is

RaL �

� (0.722) � 7.656 � 108

Then the natural convection Nusselt number can be determined from Eq. 9-21
to be

Nu �

� � 113.4�0.825 
0.387(7.656 � 108)1/6

1  (0.492/0.7202)9/16]8/27�2

�0.825 
0.387 Ra1/6

L

[1  (0.492/Pr)9/16]8/27�2

(9.81 m/s2)[1/(333 K)](90 � 30 K)(0.6 m)3

(1.896 � 10�5
 m2/s)2

g�(Ts � T�)L3

v2  Pr

1
333 K

1
Tf

.
Q

.
Q

T� = 20°C

Ts = 70°C

nat conv

rad, max = 553 W

= 443 W

FIGURE 9–14
Radiation heat transfer is usually

comparable to natural convection in
magnitude and should be considered in

heat transfer analysis.

T� = 30°C
90°C

(a) Vertical

(b) Hot surface facing up

(c) Hot surface facing down

L = 0.6 m

FIGURE 9–15
Schematic for Example 9–2.
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Note that the simpler relation Eq. 9-19 would give Nu � 0.59 RaL
1/4 � 98.14,

which is 13 percent lower. Then,

h � Nu � (113.4) � 5.306 W/m2 � ˚C

As � L2 � (0.6 m)2 � 0.36 m2

and

Q
·

� hAs(Ts � T�) � (5.306 W/m2 � ˚C)(0.36 m2)(90 � 30)˚C � 115 W

(b) Horizontal with hot surface facing up. The characteristic length and the
Rayleigh number in this case are

Lc � � 0.15 m

RaL � Pr

� (0.7202) � 1.196 � 107

The natural convection Nusselt number can be determined from Eq. 9-22 to be

Nu � 0.54 RaL
1/4 � 0.54(1.196 � 107)1/4 � 31.76

Then,

h � Nu � (31.76) � 5.946 W/m2 � ˚C

As � L2 � (0.6 m)2 � 0.36 m2

and

Q
·

� hAs(Ts � T�) � (5.946 W/m2 � ˚C)(0.36 m2)(90 � 30)˚C � 128 W

(c) Horizontal with hot surface facing down. The characteristic length, the heat
transfer surface area, and the Rayleigh number in this case are the same as
those determined in (b). But the natural convection Nusselt number is to be de-
termined from Eq. 9-24,

Nu � 0.27 Ra L
1/4 � 0.27(1.196 � 107)1/4 � 15.86

Then,

h � Nu � (15.86) � 2.973 W/m2 � ˚C

and

Q
·

� hAs(Ts � T�) � (2.973 W/m2 � ˚C)(0.36 m2)(90 � 30)˚C � 64.2 W

Note that the natural convection heat transfer is the lowest in the case of the
hot surface facing down. This is not surprising, since the hot air is “trapped”
under the plate in this case and cannot get away from the plate easily. As a re-
sult, the cooler air in the vicinity of the plate will have difficulty reaching the
plate, which results in a reduced rate of heat transfer.
Discussion The plate will lose heat to the surroundings by radiation as well as
by natural convection. Assuming the surface of the plate to be black (emissivity

0.02808 W/m � ºC
0.15 m

k
Lc

0.0280 W/m � ºC
0.15 m

k
Lc

(9.81 m/s2)[1/(333 K)](90 � 30 K)(0.15 m)3

(1.896 � 10�5 m2/s)2

g�(Ts � T�)L3
c

v2

As

p �
L2

4L
�

L
4

�
0.6 m

4

0.02808 W/m � ºC
0.6 m

k
L
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9–4 NATURAL CONVECTION FROM FINNED
SURFACES AND PCBs

Natural convection flow through a channel formed by two parallel plates as
shown in Figure 9–16 is commonly encountered in practice. When the plates
are hot (Ts � T�), the ambient fluid at T� enters the channel from the lower
end, rises as it is heated under the effect of buoyancy, and the heated fluid
leaves the channel from the upper end. The plates could be the fins of a finned
heat sink, or the PCBs (printed circuit boards) of an electronic device. The
plates can be approximated as being isothermal (Ts � constant) in the first
case, and isoflux (q·s � constant) in the second case.

Boundary layers start to develop at the lower ends of opposing surfaces, and
eventually merge at the midplane if the plates are vertical and sufficiently
long. In this case, we will have fully developed channel flow after the merger
of the boundary layers, and the natural convection flow is analyzed as channel
flow. But when the plates are short or the spacing is large, the boundary lay-
ers of opposing surfaces never reach each other, and the natural convection
flow on a surface is not affected by the presence of the opposing surface. In
that case, the problem should be analyzed as natural convection from two in-
dependent plates in a quiescent medium, using the relations given for surfaces,
rather than natural convection flow through a channel.

Natural Convection Cooling of Finned Surfaces
(Ts � constant)
Finned surfaces of various shapes, called heat sinks, are frequently used in the
cooling of electronic devices. Energy dissipated by these devices is transferred
to the heat sinks by conduction and from the heat sinks to the ambient air by
natural or forced convection, depending on the power dissipation require-
ments. Natural convection is the preferred mode of heat transfer since it in-
volves no moving parts, like the electronic components themselves. However,
in the natural convection mode, the components are more likely to run at a
higher temperature and thus undermine reliability. A properly selected heat
sink may considerably lower the operation temperature of the components and
thus reduce the risk of failure.

Natural convection from vertical finned surfaces of rectangular shape has
been the subject of numerous studies, mostly experimental. Bar-Cohen and

�
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� � 1) and the inner surfaces of the walls of the room to be at room tempera-
ture, the radiation heat transfer in this case is determined to be

Q
·

rad � �As�( � )

� (1)(0.36 m2)(5.67 � 10�8 W/m2 � K4)[(90  273 K)4 � (30  273 K)4]

� 182 W

which is larger than that for natural convection heat transfer for each case.
Therefore, radiation can be significant and needs to be considered in surfaces
cooled by natural convection.

T 4
surrT 4

s

Ambient
fluid
T�

L

S

Isothermal
plate at Ts

Fully
developed

flow

Boundary
layer

FIGURE 9–16
Natural convection flow through a

channel between two isothermal
vertical plates.

cen58933_ch09.qxd  9/4/2002  12:25 PM  Page 473



Rohsenow (1984, Ref. 5) have compiled the available data under various
boundary conditions, and developed correlations for the Nusselt number and
optimum spacing. The characteristic length for vertical parallel plates used as
fins is usually taken to be the spacing between adjacent fins S, although the fin
height L could also be used. The Rayleigh number is expressed as

RaS � Pr and RaL � Pr � RaS (9-30)

The recommended relation for the average Nusselt number for vertical
isothermal parallel plates is

Ts � constant: Nu � (9-31)

A question that often arises in the selection of a heat sink is whether to se-
lect one with closely packed fins or widely spaced fins for a given base area
(Fig. 9–17). A heat sink with closely packed fins will have greater surface area
for heat transfer but a smaller heat transfer coefficient because of the extra
resistance the additional fins introduce to fluid flow through the interfin
passages. A heat sink with widely spaced fins, on the other hand, will have a
higher heat transfer coefficient but a smaller surface area. Therefore, there
must be an optimum spacing that maximizes the natural convection heat trans-
fer from the heat sink for a given base area WL, where W and L are the width
and height of the base of the heat sink, respectively, as shown in Figure 9–18.
When the fins are essentially isothermal and the fin thickness t is small rela-
tive to the fin spacing S, the optimum fin spacing for a vertical heat sink is de-
termined by Bar-Cohen and Rohsenow to be

Ts � constant: Sopt � 2.714 � 2.714 (9-32)

It can be shown by combining the three equations above that when S � Sopt,
the Nusselt number is a constant and its value is 1.307,

S � Sopt: Nu � � 1.307 (9-33)

The rate of heat transfer by natural convection from the fins can be deter-
mined from

Q
·

� h(2nLH)(Ts � T�) (9-34)

where n � W/(S  t) � W/S is the number of fins on the heat sink and Ts is the
surface temperature of the fins. All fluid properties are to be evaluated at the
average temperature Tave � (Ts  T�)/2.

Natural Convection Cooling of Vertical PCBs 
(q̇s � constant)
Arrays of printed circuit boards used in electronic systems can often be mod-
eled as parallel plates subjected to uniform heat flux q·s (Fig. 9–19). The plate
temperature in this case increases with height, reaching a maximum at the

hSopt

k

L
Ra0.25

L
�S 3L
RaS

�0.25

hS
k

� � 576
(RaS S/L)2 

2.873
(RaS S/L)0.5�

�0.5

L 3

S 3

g�(Ts � T�)L 3

v 2

g�(Ts � T�)S3

v2
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FIGURE 9–17
Heat sinks with (a) widely spaced and
(b) closely packed fins (courtesy of
Vemaline Products).
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Ts 
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FIGURE 9–18
Various dimensions of a finned surface
oriented vertically.
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upper edge of the board. The modified Rayleigh number for uniform heat flux
on both plates is expressed as

(9-35)

The Nusselt number at the upper edge of the plate where maximum tempera-
ture occurs is determined from [Bar-Cohen and Rohsenow (1984), Ref. 5]

(9-36)

The optimum fin spacing for the case of uniform heat flux on both plates is
given as

q·s � constant: Sopt � 2.12 (9-37)

The total rate of heat transfer from the plates is

Q
·

� q·s As � q·s (2nLH) (9-38)

where n � W/(S  t) � W/S is the number of plates. The critical surface tem-
perature TL occurs at the upper edge of the plates, and it can be determined
from

q·s � hL(TL � T�) (9-39)

All fluid properties are to be evaluated at the average temperature Tave �
(TL  T�)/2.

Mass Flow Rate through the Space between Plates
As we mentioned earlier, the magnitude of the natural convection heat trans-
fer is directly related to the mass flow rate of the fluid, which is established by
the dynamic balance of two opposing effects: buoyancy and friction.

The fins of a heat sink introduce both effects: inducing extra buoyancy as a
result of the elevated temperature of the fin surfaces and slowing down the
fluid by acting as an added obstacle on the flow path. As a result, increasing
the number of fins on a heat sink can either enhance or reduce natural con-
vection, depending on which effect is dominant. The buoyancy-driven fluid
flow rate is established at the point where these two effects balance each
other. The friction force increases as more and more solid surfaces are intro-
duced, seriously disrupting fluid flow and heat transfer. Under some condi-
tions, the increase in friction may more than offset the increase in buoyancy.
This in turn will tend to reduce the flow rate and thus the heat transfer. For that
reason, heat sinks with closely spaced fills are not suitable for natural convec-
tion cooling.

When the heat sink involves closely spaced fins, the narrow channels
formed tend to block or “suffocate” the fluid, especially when the heat sink is
long. As a result, the blocking action produced overwhelms the extra buoy-
ancy and downgrades the heat transfer characteristics of the heat sink. Then,
at a fixed power setting, the heat sink runs at a higher temperature relative to
the no-shroud case. When the heat sink involves widely spaced fins, the

�S 4L
Ra*

S
�0.2

NuL �
hLS
k

� � 48
Ra*

S S/L


2.51
(Ra*

LS/L)0.4�
�0.5

Ra*
S �

g� q̇s S 4

kv2  Pr
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FIGURE 9–19
Arrays of vertical printed circuit
boards (PCBs) cooled by natural

convection.
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shroud does not introduce a significant increase in resistance to flow, and the
buoyancy effects dominate. As a result, heat transfer by natural convection
may improve, and at a fixed power level the heat sink may run at a lower tem-
perature.

When extended surfaces such as fins are used to enhance natural convection
heat transfer between a solid and a fluid, the flow rate of the fluid in the vicin-
ity of the solid adjusts itself to incorporate the changes in buoyancy and fric-
tion. It is obvious that this enhancement technique will work to advantage
only when the increase in buoyancy is greater than the additional friction in-
troduced. One does not need to be concerned with pressure drop or pumping
power when studying natural convection since no pumps or blowers are used
in this case. Therefore, an enhancement technique in natural convection is
evaluated on heat transfer performance alone.

The failure rate of an electronic component increases almost exponentially
with operating temperature. The cooler the electronic device operates, the
more reliable it is. A rule of thumb is that the semiconductor failure rate is
halved for each 10˚C reduction in junction operating temperature. The desire
to lower the operating temperature without having to resort to forced convec-
tion has motivated researchers to investigate enhancement techniques for nat-
ural convection. Sparrow and Prakash (Ref. 31) have demonstrated that, under
certain conditions, the use of discrete plates in lieu of continuous plates of the
same surface area increases heat transfer considerably. In other experimental
work, using transistors as the heat source, Çengel and Zing (Ref. 9) have
demonstrated that temperature recorded on the transistor case dropped by as
much as 30˚C when a shroud was used, as opposed to the corresponding no-
shroud case.
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EXAMPLE 9–3 Optimum Fin Spacing of a Heat Sink

A 12-cm-wide and 18-cm-high vertical hot surface in 30˚C air is to be cooled by
a heat sink with equally spaced fins of rectangular profile (Fig. 9–20). The fins
are 0.1 cm thick and 18 cm long in the vertical direction and have a height of
2.4 cm from the base. Determine the optimum fin spacing and the rate of heat
transfer by natural convection from the heat sink if the base temperature is 80˚C.

SOLUTION A heat sink with equally spaced rectangular fins is to be used to
cool a hot surface. The optimum fin spacing and the rate of heat transfer are to
be determined.
Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gas. 3 The
atmospheric pressure at that location is 1 atm. 4 The thickness t of the fins is
very small relative to the fin spacing S so that Eq. 9-32 for optimum fin spac-
ing is applicable. 5 All fin surfaces are isothermal at base temperature.
Properties The properties of air at the film temperature of Tf � (Ts  T�)/2 �
(80  30)/2 � 55˚C and 1 atm pressure are (Table A-15)

k � 0.02772 W/m � ˚C Pr � 0.7215

	 � 1.846 � 10�5 m2/s � � 1/Tf � 1/328 K

Analysis We take the characteristic length to be the length of the fins in the
vertical direction (since we do not know the fin spacing). Then the Rayleigh
number becomes

W = 0.12 m

t = 1 mm S

H = 2.4 cm

L = 0.18 m

Ts = 80°C

FIGURE 9–20
Schematic for Example 9–3.
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9–5 NATURAL CONVECTION INSIDE ENCLOSURES
A considerable portion of heat loss from a typical residence occurs through
the windows. We certainly would insulate the windows, if we could, in order
to conserve energy. The problem is finding an insulating material that is trans-
parent. An examination of the thermal conductivities of the insulting materi-
als reveals that air is a better insulator than most common insulating
materials. Besides, it is transparent. Therefore, it makes sense to insulate the
windows with a layer of air. Of course, we need to use another sheet of glass
to trap the air. The result is an enclosure, which is known as a double-pane
window in this case. Other examples of enclosures include wall cavities, solar
collectors, and cryogenic chambers involving concentric cylinders or spheres.

Enclosures are frequently encountered in practice, and heat transfer through
them is of practical interest. Heat transfer in enclosed spaces is complicated
by the fact that the fluid in the enclosure, in general, does not remain station-
ary. In a vertical enclosure, the fluid adjacent to the hotter surface rises and the
fluid adjacent to the cooler one falls, setting off a rotationary motion within
the enclosure that enhances heat transfer through the enclosure. Typical flow
patterns in vertical and horizontal rectangular enclosures are shown in Figures
9–2l and 9–22.

�
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RaL � Pr

� (0.7215) � 1.846 � 107

The optimum fin spacing is determined from Eq. 7-32 to be

Sopt � 2.714 � 7.45 � 10�3 m � 7.45 mm

which is about seven times the thickness of the fins. Therefore, the assumption
of negligible fin thickness in this case is acceptable. The number of fins and
the heat transfer coefficient for this optimum fin spacing case are

n � � � 15 fins

The convection coefficient for this optimum in spacing case is, from Eq. 9-33,

h � Nuopt � 0.2012 W/m2 � ˚C

Then the rate of natural convection heat transfer becomes

Q
·

� hAs(Ts � T�) � h(2nLH)(Ts � T�)

� (0.2012 W/m2 � ˚C)[2 � 15(0.18 m)(0.024 m)](80 � 30)˚C � 1.30 W

Therefore, this heat sink can dissipate heat by natural convection at a rate of
1.30 W.

k
Sopt

� 1.307 
0.02772 W/m � ºC

0.00745 m

0.12 m
(0.00745  0.0001) m

W
S  t

L
Ra L

0.25 � 2.714 
0.8 m

(1.846 � 107)0.25

(981 m/s2)[1/(328 K)](80 � 30 K)(0.18 m)3

(1.846 � 10�5 m2/s)2

g�(Ts � T�)L3

v 2

.
Q

Hot
surface

Velocity
profile
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surface

L

FIGURE 9–21
Convective currents in a vertical

rectangular enclosure.

Light fluid

Heavy fluid

Heavy fluid

Light fluid

Hot
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(No fluid motion)

(a) Hot plate at the top

(b) Hot plate at the bottom

Hot

FIGURE 9–22
Convective currents in a horizontal

enclosure with (a) hot plate at the top
and (b) hot plate at the bottom.
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The characteristics of heat transfer through a horizontal enclosure depend
on whether the hotter plate is at the top or at the bottom, as shown in Fig-
ure 9–22. When the hotter plate is at the top, no convection currents will de-
velop in the enclosure, since the lighter fluid will always be on top of the
heavier fluid. Heat transfer in this case will be by pure conduction, and we
will have Nu � 1. When the hotter plate is at the bottom, the heavier fluid will
be on top of the lighter fluid, and there will be a tendency for the lighter fluid
to topple the heavier fluid and rise to the top, where it will come in contact
with the cooler plate and cool down. Until that happens, however, the heat
transfer is still by pure conduction and Nu � 1. When Ra � 1708, the buoy-
ant force overcomes the fluid resistance and initiates natural convection cur-
rents, which are observed to be in the form of hexagonal cells called Bénard
cells. For Ra � 3 � 105, the cells break down and the fluid motion becomes
turbulent.

The Rayleigh number for an enclosure is determined from

RaL � Pr (9-40)

where the characteristic length Lc is the distance between the hot and cold sur-
faces, and T1 and T2 are the temperatures of the hot and cold surfaces, respec-
tively. All fluid properties are to be evaluated at the average fluid temperature
Tave � (T1  T2)/2.

Effective Thermal Conductivity
When the Nusselt number is known, the rate of heat transfer through the en-
closure can be determined from

Q
·

� hAs(T1 � T2) � kNuAs (9-41)

since h � kNu/L. The rate of steady heat conduction across a layer of thick-
ness Lc , area As, and thermal conductivity k is expressed as

Q
·

cond � kAs (9-42)

where T1 and T2 are the temperatures on the two sides of the layer. A compar-
ison of this relation with Eq. 9-41 reveals that the convection heat transfer in
an enclosure is analogous to heat conduction across the fluid layer in the en-
closure provided that the thermal conductivity k is replaced by kNu. That is,
the fluid in an enclosure behaves like a fluid whose thermal conductivity is
kNu as a result of convection currents. Therefore, the quantity kNu is called
the effective thermal conductivity of the enclosure. That is,

keff � kNu (9-43)

Note that for the special case of Nu � 1, the effective thermal conductivity of
the enclosure becomes equal to the conductivity of the fluid. This is expected
since this case corresponds to pure conduction (Fig. 9–23).

Natural convection heat transfer in enclosed spaces has been the subject
of many experimental and numerical studies, and numerous correlations for
the Nusselt number exist. Simple power-law type relations in the form of

T1 � T2

Lc

T1 � T2

Lc

g�(T1 � T2)L3
c

v 2
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Nu = 3
keff = 3k

Natural
convection

Pure
conduction

(No
motion)

.
Q = 10 W

.
Q = 30 W

kHot Cold Hot Cold

FIGURE 9–23
A Nusselt number of 3 for an
enclosure indicates that heat transfer
through the enclosure by natural
convection is three times that by pure
conduction.
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Nu � CRaL
n , where C and n are constants, are sufficiently accurate, but they

are usually applicable to a narrow range of Prandtl and Rayleigh numbers
and aspect ratios. The relations that are more comprehensive are naturally
more complex. Next we present some widely used relations for various types
of enclosures.

Horizontal Rectangular Enclosures
We need no Nusselt number relations for the case of the hotter plate being at
the top, since there will be no convection currents in this case and heat trans-
fer will be downward by conduction (Nu � 1). When the hotter plate is at the
bottom, however, significant convection currents set in for RaL � 1708, and
the rate of heat transfer increases (Fig. 9–24).

For horizontal enclosures that contain air, Jakob (1949, Ref. 22) recom-
mends the following simple correlations

Nu � 0.195RaL
1/4 104 � RaL � 4 � 105 (9-44)

Nu � 0.068RaL
1/3 4 � 105 � RaL � 107 (9-45)

These relations can also be used for other gases with 0.5 � Pr � 2. Using wa-
ter, silicone oil, and mercury in their experiments, Globe and Dropkin (1959)
obtained this correlation for horizontal enclosures heated from below,

Nu � 0.069RaL
1/3 Pr0.074 3 � 105 � RaL � 7 � 109 (9-46)

Based on experiments with air, Hollands et al (1976, Ref. 19) recommend this
correlation for horizontal enclosures,

Nu � 1  1.44  RaL � 108 (9-47)

The notation [ ] indicates that if the quantity in the bracket is negative, it should
be set equal to zero. This relation also correlates data well for liquids with mod-
erate Prandtl numbers for RaL � 105, and thus it can also be used for water.

Inclined Rectangular Enclosures
Air spaces between two inclined parallel plates are commonly encountered in
flat-plate solar collectors (between the glass cover and the absorber plate) and
the double-pane skylights on inclined roofs. Heat transfer through an inclined
enclosure depends on the aspect ratio H/L as well as the tilt angle � from the
horizontal (Fig. 9–25).

For large aspect ratios (H/L � 12), this equation [Hollands et al., 1976, Ref.
19] correlates experimental data extremely well for tilt angles up to 70˚,

(9-48)

for RaL � 105, 0 � � � 70˚, and H/L � 12. Again any quantity in [ ] should
be set equal to zero if it is negative. This is to ensure that Nu � 1 for RaL cos
� � 1708. Note that this relation reduces to Eq. 9-47 for horizontal enclosures
for � � 0˚, as expected.

Nu � 1  1.44�1 �
1708

RaL cos ��


�1 �
1708(sin 1.8�)1.6

RaL cos � �  �(RaL cos �)1/3

18
� 1�



�Ra1/3
L

18
� 1��1 �

1708
Ra L

�
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H

L Fluid

T2

T1

Q
·

T1 > T2

FIGURE 9–24
A horizontal rectangular enclosure

with isothermal surfaces.

H

L

T2

T1

Q
·

θ

T1 > T2

FIGURE 9–25
An inclined rectangular enclosure

with isothermal surfaces.
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For enclosures with smaller aspect ratios (H/L � 12), the next correlation
can be used provided that the tilt angle is less than the critical value �cr listed
in Table 9–2 [Catton (1978), Ref. 7]

(9-49)

For tilt angles greater than the critical value (�cr � � � 90˚), the Nusselt
number can be obtained by multiplying the Nusselt number for a vertical en-
closure by (sin �)1/4 [Ayyaswamy and Catton (1973), Ref. 3],

Nu � Nu� � 90˚(sin �)1/4 �cr � � � 90˚, any H/L (9-50)

For enclosures tilted more than 90˚, the recommended relation is [Arnold et
al., (1974), Ref. 2]

Nu � 1  (Nu� � 90˚ � 1)sin � 90˚ � � � 180˚, any H/L (9-51)

More recent but more complex correlations are also available in the literature
[e.g., and ElSherbiny et al. (1982), Ref. 17].

Vertical Rectangular Enclosures
For vertical enclosures (Fig. 9–26), Catton (1978, Ref. 7) recommends these
two correlations due to Berkovsky and Polevikov (1977, Ref. 6),

Nu � 0.18 (9-52)

Nu � 0.22 (9-53)

For vertical enclosures with larger aspect ratios, the following correlations can
be used [MacGregor and Emery (1969), Ref. 26]

Nu � 0.42 RaL
1/4 Pr0.012 (9-54)

Nu � 0.46RaL
1/3 (9-55)

Again all fluid properties are to be evaluated at the average temperature
(T1  T2)/2.

Concentric Cylinders
Consider two long concentric horizontal cylinders maintained at uniform but
different temperatures of Ti and To, as shown in Figure 9–27. The diameters of
the inner and outer cylinders are Di and Do, respectively, and the characteris-
tic length is the spacing between the cylinders, Lc � (Do � Di)/2. The rate of
heat transfer through the annular space between the natural convection unit is
expressed as

   
1 � H/L � 40
1 � Pr � 20

106 � RaL � 10 9

�H
L ��0.3

    
10 � H/L � 40

1 � Pr � 2 � 104

104 � RaL � 10 7

2 � H/L � 10
any Prandtl number

RaL � 1010
� Pr
0.2  Pr

 RaL�0.28�H
L�

�1/4

1 � H/L � 2
any Prandtl number

RaL Pr/(0.2  Pr) � 10 3
� Pr
0.2  Pr

 Ra L�0.29

Nu � Nu��0º�Nu��90º

Nu��0º
�

�/�cr

(sin�cr)�/(4�cr)    0º � � � �cr

480
HEAT TRANSFER

TABLE 9–2

Critical angles for inclined
rectangular enclosures

Aspect ratio, Critical angle, 
H/L �cr

1 25˚
3 53˚
6 60˚

12 67˚
� 12 70˚

H L

T2T1

Q
·

T1 > T2

FIGURE 9–26
A vertical rectangular enclosure with
isothermal surfaces.

Outer cylinder
at To

Inner cylinder
at Ti

Di Do

FIGURE 9–27
Two concentric horizontal isothermal
cylinders.
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Q
·

� (9-56)

The recommended relation for effective thermal conductivity is [Raithby and
Hollands (1975), Ref. 28]

(9-57)

where the geometric factor for concentric cylinders Fcyl is

(9-58)

The keff relation in Eq. 9-57 is applicable for 0.70 � Pr � 6000 and 102 �
FcylRaL � 107. For FcylRaL � 100, natural convection currents are negligible
and thus keff � k. Note that keff cannot be less than k, and thus we should set
keff � k if keff/k � 1. The fluid properties are evaluated at the average temper-
ature of (Ti  To)/2.

Concentric Spheres
For concentric isothermal spheres, the rate of heat transfer through the gap
between the spheres by natural convection is expressed as (Fig. 9–28)

Q
·

� (9-59)

where Lc � (Do � Di)/2 is the characteristic length. The recommended rela-
tion for effective thermal conductivity is [Raithby and Hollands (1975), Ref. 28]

(9-60)

where the geometric factor for concentric spheres Fsph is

(9-61)

The keff relation in Eq. 9-60 is applicable for 0.70 � Pr � 4200 and 102 �
FsphRaL � 104. If keff/k � 1, we should set keff � k.

Combined Natural Convection and Radiation
Gases are nearly transparent to radiation, and thus heat transfer through a gas
layer is by simultaneous convection (or conduction, if the gas is quiescent)
and radiation. Natural convection heat transfer coefficients are typically very
low compared to those for forced convection. Therefore, radiation is usually
disregarded in forced convection problems, but it must be considered in nat-
ural convection problems that involve a gas. This is especially the case for
surfaces with high emissivities. For example, about half of the heat transfer
through the air space of a double pane window is by radiation. The total
rate of heat transfer is determined by adding the convection and radiation
components,

Q
·

total � Q
·

conv  Q
·

rad (9-62)

Fsph �
Lc

(Di Do)4(Di
�7/5  Do

�7/5)5

keff

k
� 0.74� Pr

0.861  Pr�1/4(Fsph RaL)1/4

keff ��Di Do

Lc
�(Ti � To)    (W)

Fcyl �
[ln(Do /Di )]4

L3
c(D�3/5

i  D�3/5
o )5

keff

k
� 0.386� Pr

0.861  Pr�
1/4

(FcylRaL)1/4

2�k eff

ln(Do /Di )
 (Ti � To )    (W/m)
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D0, T0 Di, Ti

Lc

FIGURE 9–28
Two concentric isothermal spheres.
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Radiation heat transfer from a surface at temperature Ts surrounded by surfaces
at a temperature Tsurr (both in absolute temperature unit K) is determined from

Q
·

rad � ��As( � ) (W) (9-63)

where � is the emissivity of the surface, As is the surface area, and � � 5.67 �
10�8 W/m2 � K4 is the Stefan–Boltzmann constant.

When the end effects are negligible, radiation heat transfer between two
large parallel plates at absolute temperatures T1 and T2 is expressed as (see
Chapter 12 for details)

Q
·

rad � � �effective �As(T 1
4 � T 2

4 ) (W) (9-64)

where �1 and �2 are the emissivities of the plates, and �effective is the effective
emissivity defined as

�effective � (9-65)

The emissivity of an ordinary glass surface, for example, is 0.84. Therefore,
the effective emissivity of two parallel glass surfaces facing each other is 0.72.
Radiation heat transfer between concentric cylinders and spheres is discussed
in Chapter 12.

Note that in some cases the temperature of the surrounding medium may be
below the surface temperature (T� � Ts), while the temperature of the sur-
rounding surfaces is above the surface temperature (Tsurr � Ts). In such cases,
convection and radiation heat transfers are subtracted from each other instead
of being added since they are in opposite directions. Also, for a metal surface,
the radiation effect can be reduced to negligible levels by polishing the surface
and thus lowering the surface emissivity to a value near zero.

1
1/�1  1/�2 � 1

�As(T 4
1 � T 4

2)
1/�1  1/�2 � 1

T 4
surrT 4

s
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EXAMPLE 9–4 Heat Loss through a Double-Pane Window

The vertical 0.8-m-high, 2-m-wide double-pane window shown in Fig. 9–29
consists of two sheets of glass separated by a 2-cm air gap at atmospheric pres-
sure. If the glass surface temperatures across the air gap are measured to be
12˚C and 2˚C, determine the rate of heat transfer through the window.

SOLUTION Two glasses of a double-pane window are maintained at specified
temperatures. The rate of heat transfer through the window is to be determined.
Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gas. 3 Radi-
ation heat transfer is not considered.
Properties The properties of air at the average temperature of Tave � (T1 
T2)/2 � (12  2)/2 � 7˚C and 1 atm pressure are (Table A-15)

k � 0.02416 W/m � ˚C Pr � 0.7344

	 � 1.399 � 10�5 m2/s � �

Analysis We have a rectangular enclosure filled with air. The characteristic
length in this case is the distance between the two glasses, L � 0.02 m. Then
the Rayleigh number becomes

1
Tave

�
1

280 K

H = 0.8 m

Glass
Glass

Air

L = 2 cm

FIGURE 9–29
Schematic for Example 9–4.
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RaL �

� (0.7344) � 1.051 � 104

The aspect ratio of the geometry is H/L � 0.8/0.02 � 40. Then the Nusselt
number in this case can be determined from Eq. 9-54 to be

Nu � 0.42RaL
1/4 Pr 0.012

� 0.42(1.051 � 104)1/4(0.7344)0.012 � 1.401

Then,

As � H � W � (0.8 m)(2 m) � 1.6 m2

and

Q
·

� hAs(T1 � T2) � kNuAs

� (0.02416 W/m � ˚C)(1.401)(1.6 m2) � 27.1 W

Therefore, heat will be lost through the window at a rate of 27.1 W.
Discussion Recall that a Nusselt number of Nu � 1 for an enclosure corre-
sponds to pure conduction heat transfer through the enclosure. The air in the
enclosure in this case remains still, and no natural convection currents occur in
the enclosure. The Nusselt number in our case is 1.32, which indicates that
heat transfer through the enclosure is 1.32 times that by pure conduction. The
increase in heat transfer is due to the natural convection currents that develop
in the enclosure.

(12 � 2)ºC
0.02 m

T1 � T2

L

� 0.8
0.02�

�0.3

�H
L ��0.3

(9.81 m/s2)[1/(280 K)](12 � 2 K)(0.02 m)3

(1.399 � 10�5m 2/s)2

g�(T1 � T2)L3

v 2

EXAMPLE 9–5 Heat Transfer through a Spherical Enclosure

The two concentric spheres of diameters Di � 20 cm and Do � 30 cm shown in
Fig. 9–30 are separated by air at 1 atm pressure. The surface temperatures of
the two spheres enclosing the air are Ti � 320 K and To � 280 K, respectively.
Determine the rate of heat transfer from the inner sphere to the outer sphere by
natural convection.

SOLUTION Two surfaces of a spherical enclosure are maintained at specified
temperatures. The rate of heat transfer through the enclosure is to be determined.
Assumptions 1 Steady operating conditions exist. 2 Air is an ideal gas. 3 Radi-
ation heat transfer is not considered.
Properties The properties of air at the average temperature of Tave � (Ti  To)/2
� (320  280)/2 � 300 K � 27˚C and 1 atm pressure are (Table A-15)

k � 0.02566 W/m � ˚C Pr � 0.7290

	 � 1.580 � 10�5 m2/s � �
1

Tave
�

1
300 K

Di = 20 cm
Ti = 320 K

D0 = 30 cm
T0 = 280 K

Lc = 5 cm

FIGURE 9–30
Schematic for Example 9–5.
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Analysis We have a spherical enclosure filled with air. The characteristic
length in this case is the distance between the two spheres,

Lc � (Do � Di)/2 � (0.3 � 0.2)/2 � 0.05 m

The Rayleigh number is

RaL �

� (0.729) � 4.776 � 105

The effective thermal conductivity is

Fsph �

� � 0.005229

keff � 0.74k (FsphRaL)1/4

� 0.74(0.02566 W/m � ˚C) (0.005229 � 4.776 � 105)1/4

� 0.1104 W/m � ˚C
Then the rate of heat transfer between the spheres becomes

Q
·

� keff� (Ti � To)

� (0.1104 W/m � ˚C)� (320 � 280)K � 16.7 W

Therefore, heat will be lost from the inner sphere to the outer one at a rate of
16.7 W.
Discussion Note that the air in the spherical enclosure will act like a station-
ary fluid whose thermal conductivity is keff/k � 0.1104/0.02566 � 4.3 times
that of air as a result of natural convection currents. Also, radiation heat trans-
fer between spheres is usually very significant, and should be considered in a
complete analysis.

�(0.2 m)(0.3 m)
0.05 m �

�Di Do

Lc
�

� 0.729
0.861  0.729�

� Pr
0.861  Pr�

1/4

0.05 m
[(0.2 m)(0.3 m)]4[(0.2 m�7/5  (0.3 m)�7/5]5

Lc

(Di Do)4(D �7/5
i  Do

�7/5)5

(9.81 m/s2)[1/(300 K)](320 � 280 K)(0.05 m)3

(1.58 � 10�5 m2/s)2

g�(Ti � To)L 3

v 2  Pr

EXAMPLE 9–6 Heating Water in a Tube by Solar Energy

A solar collector consists of a horizontal aluminum tube having an outer di-
ameter of 2 in. enclosed in a concentric thin glass tube of 4-in.-diameter (Fig.
9–31). Water is heated as it flows through the tube, and the annular space be-
tween the aluminum and the glass tubes is filled with air at 1 atm pressure.
The pump circulating the water fails during a clear day, and the water tem-
perature in the tube starts rising. The aluminum tube absorbs solar radiation
at a rate of 30 Btu/h per foot length, and the temperature of the ambient air
outside is 70˚F. Disregarding any heat loss by radiation, determine the tem-
perature of the aluminum tube when steady operation is established (i.e.,
when the rate of heat loss from the tube equals the amount of solar energy
gained by the tube).

70°F

Water
Aluminum tube

Glass cover
Solar

energy

2 in.

4 in.

FIGURE 9–31
Schematic for Example 9–6.
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SOLUTION The circulating pump of a solar collector that consists of a hori-
zontal tube and its glass cover fails. The equilibrium temperature of the tube is
to be determined.
Assumptions 1 Steady operating conditions exist. 2 The tube and its cover are
isothermal. 3 Air is an ideal gas. 4 Heat loss by radiation is negligible.
Properties The properties of air should be evaluated at the average tempera-
ture. But we do not know the exit temperature of the air in the duct, and thus
we cannot determine the bulk fluid and glass cover temperatures at this point,
and thus we cannot evaluate the average temperatures. Therefore, we will as-
sume the glass temperature to be 110˚F, and use properties at an anticipated
average temperature of (70  110)/2 � 90˚F (Table A-15E),

k � 0.01505 Btu/h � ft � ˚F Pr � 0.7275

	 � 0.6310 ft2/h � 1.753 � 10�4 ft2/s � �

Analysis We have a horizontal cylindrical enclosure filled with air at 1 atm
pressure. The problem involves heat transfer from the aluminum tube to the
glass cover and from the outer surface of the glass cover to the surrounding am-
bient air. When steady operation is reached, these two heat transfer rates must
equal the rate of heat gain. That is,

Q
·

tube-glass � Q
·

glass-ambient � Q
·

so1ar gain � 30 Btu/h (per foot of tube)

The heat transfer surface area of the glass cover is

Ao � Aglass � (�Do L) � �(4/12 ft)(1 ft) � 1.047 ft2 (per foot of tube)

To determine the Rayleigh number, we need to know the surface temperature of
the glass, which is not available. Therefore, it is clear that the solution will re-
quire a trial-and-error approach. Assuming the glass cover temperature to be
100˚F, the Rayleigh number, the Nusselt number, the convection heat transfer
coefficient, and the rate of natural convection heat transfer from the glass cover
to the ambient air are determined to be

Ra �

� (0.7275) � 2.054 � 106

Nu �

� 17.89

ho � Nu � (17.89) � 0.8075 Btu/h � ft2 � ˚F

Q
·

o � hoAo(To � T�) � (0.8075 Btu/h � ft2 � ˚F)(1.047 ft2)(110 � 70)˚F

� 33.8 Btu/h

which is more than 30 Btu/h. Therefore, the assumed temperature of 110˚F for
the glass cover is high. Repeating the calculations with lower temperatures, the
glass cover temperature corresponding to 30 Btu/h is determined to be 106˚F.

0.0150 Btu/h � ft � ºF
4/12 ft

k
D0

�0.6 
0.387 Ra1/6

D

[1  (0.559/Pr)9/16]8/27�2

� �0.6 
0.387(2.054 � 106 )1/6

[1  (0.559/0.7275)9/16]8/27�2

(32.2 ft/s2)[1/(550 R)](110 � 70 R)(4/12 ft)3

(1.753 � 10�4
 ft2/s)2

g�(Ts � T�)Do
3

v 2  PrDo

1
Tave

�
1

550 K
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9–6 COMBINED NATURAL AND FORCED
CONVECTION

The presence of a temperature gradient in a fluid in a gravity field always
gives rise to natural convection currents, and thus heat transfer by natural
convection. Therefore, forced convection is always accompanied by natural
convection.

�
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The temperature of the aluminum tube is determined in a similar manner us-
ing the natural convection relations for two horizontal concentric cylinders. The
characteristic length in this case is the distance between the two cylinders,
which is

Lc � (Do � Di)/2 � (4 � 2)/2 � 1 in. � 1/12 ft

We start the calculations by assuming the tube temperature to be 200˚F, and
thus an average temperature of (106  200)/2 � 154˚F � 614 R. This gives

RaL �

� (0.7184) � 4.579 � 104

The effective thermal conductivity is

Fcyl �

�

keff � 0.386k (FcylRaL)1/4

� 0.386(0.01653 Btu/h � ft � ˚F) (0.1466 � 4.579 � 104)1/4

� 0.04743 Btu/h � ft � ˚F

Then the rate of heat transfer between the cylinders becomes

Q
·

� (Ti � To)

� (200 � 106)˚F � 40.4 Btu/h

which is more than 30 Btu/h. Therefore, the assumed temperature of 200˚F for
the tube is high. By trying other values, the tube temperature corresponding to
30 Btu/h is determined to be 180˚F. Therefore, the tube will reach an equilib-
rium temperature of 180˚F when the pump fails.
Discussion Note that we have not considered heat loss by radiation in the cal-
culations, and thus the tube temperature determined above is probably too
high. This problem is considered again in Chapter 12 by accounting for the ef-
fect of radiation heat transfer.

2�(0.04743 Btu/h � ft � ºF)
ln(4/2)

2�keff

ln(Do /Di)

� 0.7184
0.861  0.7184�

� Pr
0.861  Pr�

1/4

[ln(4/2)]4

(1/12 ft)3[(2/12 ft)�3/5  (4/12 ft)�3/5]5 � 0.1466

[ln(Do /Di)]4

L3
c(D�3/5

i  Do
�3/5)5

(32.2 ft/s2)[1/614 R)](200 � 106 R)(1/12 ft)3

(2.117 � 10�4 ft2/s)2

g�(Ti � To)L3
c

v2  Pr
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We mentioned earlier that the convection heat transfer coefficient, natural or
forced, is a strong function of the fluid velocity. Heat transfer coefficients
encountered in forced convection are typically much higher than those en-
countered in natural convection because of the higher fluid velocities associ-
ated with forced convection. As a result, we tend to ignore natural convection
in heat transfer analyses that involve forced convection, although we recog-
nize that natural convection always accompanies forced convection. The error
involved in ignoring natural convection is negligible at high velocities but
may be considerable at low velocities associated with forced convection.
Therefore, it is desirable to have a criterion to assess the relative magnitude of
natural convection in the presence of forced convection.

For a given fluid, it is observed that the parameter Gr/Re2 represents the im-
portance of natural convection relative to forced convection. This is not
surprising since the convection heat transfer coefficient is a strong function of
the Reynolds number Re in forced convection and the Grashof number Gr in
natural convection.

A plot of the nondimensionalized heat transfer coefficient for combined nat-
ural and forced convection on a vertical plate is given in Fig. 9–32 for differ-
ent fluids. We note from this figure that natural convection is negligible when
Gr/Re2 � 0.1, forced convection is negligible when Gr/Re2 � 10, and neither
is negligible when 0.1 � Gr/Re2 � 10. Therefore, both natural and forced
convection must be considered in heat transfer calculations when the Gr and
Re2 are of the same order of magnitude (one is within a factor of 10 times the
other). Note that forced convection is small relative to natural convection only
in the rare case of extremely low forced flow velocities.

Natural convection may help or hurt forced convection heat transfer, de-
pending on the relative directions of buoyancy-induced and the forced con-
vection motions (Fig. 9–33):
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FIGURE 9–33
Natural convection can enhance or inhibit heat transfer, depending on the relative 

directions of buoyancy-induced motion and the forced convection motion.

FIGURE 9–32
Variation of the local Nusselt number
NUx for combined natural and forced

convection from a hot isothermal
vertical plate (from Lloyd and

Sparrow, Ref. 25).
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1. In assisting flow, the buoyant motion is in the same direction as the
forced motion. Therefore, natural convection assists forced convection
and enhances heat transfer. An example is upward forced flow over a
hot surface.

2. In opposing flow, the buoyant motion is in the opposite direction to the
forced motion. Therefore, natural convection resists forced convection
and decreases heat transfer. An example is upward forced flow over a
cold surface.

3. In transverse flow, the buoyant motion is perpendicular to the forced
motion. Transverse flow enhances fluid mixing and thus enhances heat
transfer. An example is horizontal forced flow over a hot or cold
cylinder or sphere.

When determining heat transfer under combined natural and forced con-
vection conditions, it is tempting to add the contributions of natural and forced
convection in assisting flows and to subtract them in opposing flows. How-
ever, the evidence indicates differently. A review of experimental data sug-
gests a correlation of the form

Nucombined � (Nun
forced � Nun

natural)1/n (9–41)

where Nuforced and Nunatural are determined from the correlations for pure
forced and pure natural convection, respectively. The plus sign is for assisting
and transverse flows and the minus sign is for opposing flows. The value of
the exponent n varies between 3 and 4, depending on the geometry involved.
It is observed that n � 3 correlates experimental data for vertical surfaces
well. Larger values of n are better suited for horizontal surfaces.

A question that frequently arises in the cooling of heat-generating equip-
ment such as electronic components is whether to use a fan (or a pump if the
cooling medium is a liquid)—that is, whether to utilize natural or forced con-
vection in the cooling of the equipment. The answer depends on the maximum
allowable operating temperature. Recall that the convection heat transfer rate
from a surface at temperature Ts in a medium at T� is given by

Q
·

conv � hAs(Ts � T�)

where h is the convection heat transfer coefficient and As is the surface area.
Note that for a fixed value of power dissipation and surface area, h and Ts are
inversely proportional. Therefore, the device will operate at a higher temper-
ature when h is low (typical of natural convection) and at a lower temperature
when h is high (typical of forced convection).

Natural convection is the preferred mode of heat transfer since no blowers
or pumps are needed and thus all the problems associated with these, such as
noise, vibration, power consumption, and malfunctioning, are avoided. Nat-
ural convection is adequate for cooling low-power-output devices, especially
when they are attached to extended surfaces such as heat sinks. For high-
power-output devices, however, we have no choice but to use a blower or a
pump to keep the operating temperature below the maximum allowable level.
For very-high-power-output devices, even forced convection may not be suf-
ficient to keep the surface temperature at the desirable levels. In such cases,
we may have to use boiling and condensation to take advantage of the very
high heat transfer coefficients associated with phase change processes.
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