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and (d) the rate of heat transfer from the entire finned surface
of the plate.

5–36 A hot surface at 100°C is to be cooled by attach-
ing 3-cm-long, 0.25-cm-diameter aluminum pin fins (k �
237 W/m · °C) with a center-to-center distance of 0.6 cm. The
temperature of the surrounding medium is 30°C, and the com-
bined heat transfer coefficient on the surfaces is 35 W/m2 · °C.
Assuming steady one-dimensional heat transfer along the fin
and taking the nodal spacing to be 0.5 cm, determine (a) the fi-
nite difference formulation of this problem, (b) the nodal tem-
peratures along the fin by solving these equations, (c) the rate
of heat transfer from a single fin, and (d) the rate of heat trans-
fer from a 1-m � 1-m section of the plate.

5–37 Repeat Problem 5–36 using copper fins (k � 386
W/m · °C) instead of aluminum ones.

Answers: (b) 98.6°C, 97.5°C, 96.7°C, 96.0°C, 95.7°C, 95.5°C

5–38 Two 3-m-long and 0.4-cm-thick cast iron (k � 52
W/m · °C, 	 � 0.8) steam pipes of outer diameter 10 cm are
connected to each other through two 1-cm-thick flanges of
outer diameter 20 cm, as shown in the figure. The steam flows
inside the pipe at an average temperature of 200°C with a heat
transfer coefficient of 180 W/m2 · °C. The outer surface of the
pipe is exposed to convection with ambient air at 8°C with a
heat transfer coefficient of 25 W/m2 · °C as well as radiation
with the surrounding surfaces at an average temperature of
Tsurr � 290 K. Assuming steady one-dimensional heat conduc-
tion along the flanges and taking the nodal spacing to be 1 cm
along the flange (a) obtain the finite difference formulation for
all nodes, (b) determine the temperature at the tip of the flange
by solving those equations, and (c) determine the rate of heat
transfer from the exposed surfaces of the flange.

5–39 Reconsider Problem 5–38. Using EES (or other)
software, investigate the effects of the steam tem-

perature and the outer heat transfer coefficient on the flange tip
temperature and the rate of heat transfer from the exposed sur-
faces of the flange. Let the steam temperature vary from 150°C
to 300°C and the heat transfer coefficient from 15 W/m2 · °C to
60 W/m2 · °C. Plot the flange tip temperature and the heat
transfer rate as functions of steam temperature and heat trans-
fer coefficient, and discuss the results.

5–40 Using EES (or other) software, solve these sys-
tems of algebraic equations.

(a) 3x1 � x2 � 3x3 � 0

�x1 � 2x2 � x3 � 3

2x1 � x2 � x3 � 2

(b) 4x1 � 2x � 0.5x3 � �2

x � x2 � x3 � 11.964

x1 � x2 � x3 � 3
Answers: (a) x1 � 2, x2 � 3, x3 � �1, (b) x1 � 2.33, x2 � 2.29,

x3 � �1.62

5–41 Using EES (or other) software, solve these sys-
tems of algebraic equations.

(a) 3x1 � 2x2 � x3 � x4 � 6

x1 � 2x2 � x4 � �3

�2x1 � x2 � 3x3 � x4 � 2

3x2 � x3 � 4x4 � �6

(b) 3x1 � x � 2x3 � 8

�x � 3x2 � 2x3 � �6.293

2x1 � x � 4x3 � �124
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5–42 Using EES (or other) software, solve these sys-
tems of algebraic equations.

(a) 4x1 � x2 � 2x3 � x4 � �6

x1 � 3x2 � x3 � 4x4 � �1

�x1 � 2x2 � 5x4 � 5

2x2 � 4x3 � 3x4 � �5

(b) 2x1 � x � 2x3 � x4 � 1

x � 4x2 � 2x � 2x4 � �3

�x1 � x � 5x3 � 10

3x1 � x � 8x4 � 15

Two-Dimensional Steady Heat Conduction

5–43C Consider a medium in which the finite difference
formulation of a general interior node is given in its simplest
form as

Tleft � Ttop � Tright � Tbottom � 4Tnode � � 0

(a) Is heat transfer in this medium steady or transient?
(b) Is heat transfer one-, two-, or three-dimensional?
(c) Is there heat generation in the medium?
(d) Is the nodal spacing constant or variable?
(e) Is the thermal conductivity of the medium constant or

variable?

5–44C Consider a medium in which the finite difference
formulation of a general interior node is given in its simplest
form as

Tnode � (Tleft � Ttop � Tright � Tbottom)/4

(a) Is heat transfer in this medium steady or transient?
(b) Is heat transfer one-, two-, or three-dimensional?
(c) Is there heat generation in the medium?
(d) Is the nodal spacing constant or variable?
(e) Is the thermal conductivity of the medium constant or

variable?

5–45C What is an irregular boundary? What is a practical
way of handling irregular boundary surfaces with the finite dif-
ference method?

5–46 Consider steady two-dimensional heat transfer in a long
solid body whose cross section is given in the figure. The tem-
peratures at the selected nodes and the thermal conditions at
the boundaries are as shown. The thermal conductivity of the
body is k � 45 W/m · °C, and heat is generated in the body uni-
formly at a rate of g· � 6 � 106 W/m3. Using the finite differ-
ence method with a mesh size of �x � �y � 5.0 cm, determine
(a) the temperatures at nodes 1, 2, and 3 and (b) the rate of heat
loss from the bottom surface through a 1-m-long section of the
body.

5–47 Consider steady two-dimensional heat transfer in a long
solid body whose cross section is given in the figure. The mea-
sured temperatures at selected points of the outer surfaces are
as shown. The thermal conductivity of the body is k � 45
W/m · °C, and there is no heat generation. Using the finite dif-
ference method with a mesh size of �x � �y � 2.0 cm, deter-
mine the temperatures at the indicated points in the medium.
Hint: Take advantage of symmetry.

5–48 Consider steady two-dimensional heat transfer in a long
solid bar whose cross section is given in the figure. The mea-
sured temperatures at selected points of the outer surfaces are
as shown. The thermal conductivity of the body is k � 20
W/m · °C, and there is no heat generation. Using the finite dif-
ference method with a mesh size of �x � �y � 1.0 cm, deter-
mine the temperatures at the indicated points in the medium.

Answers: T1 � 185°C, T2 � T3 � T4 � 190°C

5–49 Starting with an energy balance on a volume element,
obtain the steady two-dimensional finite difference equation
for a general interior node in rectangular coordinates for T(x, y)
for the case of variable thermal conductivity and uniform heat
generation.
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5–50 Consider steady two-dimensional heat transfer in a long
solid body whose cross section is given in the figure. The tem-
peratures at the selected nodes and the thermal conditions on
the boundaries are as shown. The thermal conductivity of the
body is k � 180 W/m · °C, and heat is generated in the body
uniformly at a rate of g· � 107 W/m3. Using the finite difference
method with a mesh size of �x � �y � 10 cm, determine
(a) the temperatures at nodes 1, 2, 3, and 4 and (b) the rate
of heat loss from the top surface through a 1-m-long section of
the body.

5–51 Reconsider Problem 5–50. Using EES (or other)
software, investigate the effects of the thermal

conductivity and the heat generation rate on the temperatures at
nodes 1 and 3, and the rate of heat loss from the top surface.
Let the thermal conductivity vary from 10 W/m · °C to 400
W/m · °C and the heat generation rate from 105 W/m3 to 108

W/m3. Plot the temperatures at nodes 1 and 3, and the rate of
heat loss as functions of thermal conductivity and heat genera-
tion rate, and discuss the results.

5–52 Consider steady two-dimensional heat transfer in a long
solid bar whose cross section is given in the figure. The mea-
sured temperatures at selected points on the outer surfaces are
as shown. The thermal conductivity of the body is k � 20
W/m · °C, and there is no heat generation. Using the finite dif-
ference method with a mesh size of �x � �y � 1.0 cm, deter-
mine the temperatures at the indicated points in the medium.
Hint: Take advantage of symmetry.

Answers: (b) T1 � T4 � 143°C, T2 � T3 � 136°C

5–53 Consider steady two-dimensional heat transfer in an
L-shaped solid body whose cross section is given in the figure.
The thermal conductivity of the body is k � 45 W/m · °C, and
heat is generated in the body at a rate of g· � 5 � 106 W/m3.
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The right surface of the body is insulated, and the bottom sur-
face is maintained at a uniform temperature of 120°C. The
entire top surface is subjected to convection with ambient air
at T� � 30°C with a heat transfer coefficient of h � 55
W/m2 · °C, and the left surface is subjected to heat flux at a uni-
form rate of q·L � 8000 W/m2. The nodal network of the prob-
lem consists of 13 equally spaced nodes with �x � �y �
1.5 cm. Five of the nodes are at the bottom surface and thus
their temperatures are known. (a) Obtain the finite difference
equations at the remaining eight nodes and (b) determine the
nodal temperatures by solving those equations.

5–54E Consider steady two-dimensional heat transfer in a
long solid bar of square cross section in which heat is gener-
ated uniformly at a rate of g· � 0.19 � 105 Btu/h · ft3. The cross
section of the bar is 0.4 ft � 0.4 ft in size, and its thermal con-
ductivity is k � 16 Btu/h · ft · °F. All four sides of the bar are
subjected to convection with the ambient air at T� � 70°F with
a heat transfer coefficient of h � 7.9 Btu/h · ft2 · °F. Using the
finite difference method with a mesh size of �x � �y � 0.2 ft,
determine (a) the temperatures at the nine nodes and (b) the
rate of heat loss from the bar through a 1-ft-long section.

Answer: (b) 3040 Btu/h

5–55 Hot combustion gases of a furnace are flowing through
a concrete chimney (k � 1.4 W/m · °C) of rectangular cross

section. The flow section of the chimney is 20 cm � 40 cm,
and the thickness of the wall is 10 cm. The average temperature
of the hot gases in the chimney is Ti � 280°C, and the average
convection heat transfer coefficient inside the chimney is hi �
75 W/m2 · °C. The chimney is losing heat from its outer surface
to the ambient air at To � 15°C by convection with a heat
transfer coefficient of ho � 18 W/m2 · °C and to the sky by
radiation. The emissivity of the outer surface of the wall is
	 � 0.9, and the effective sky temperature is estimated to be
250 K. Using the finite difference method with �x � �y �
10 cm and taking full advantage of symmetry, (a) obtain the
finite difference formulation of this problem for steady two-
dimensional heat transfer, (b) determine the temperatures at the
nodal points of a cross section, and (c) evaluate the rate of heat
loss for a 1-m-long section of the chimney.

5–56 Repeat Problem 5–55 by disregarding radiation heat
transfer from the outer surfaces of the chimney.

5–57 Reconsider Problem 5–55. Using EES (or other)
software, investigate the effects of hot-gas tem-

perature and the outer surface emissivity on the temperatures at
the outer corner of the wall and the middle of the inner surface
of the right wall, and the rate of heat loss. Let the temperature
of the hot gases vary from 200°C to 400°C and the emissivity
from 0.1 to 1.0. Plot the temperatures and the rate of heat loss
as functions of the temperature of the hot gases and the emis-
sivity, and discuss the results.

5–58 Consider a long concrete dam (k � 0.6 W/m · °C,
�s � 0.7 m2/s) of triangular cross section whose

exposed surface is subjected to solar heat flux of q·s �
800 W/m2 and to convection and radiation to the environ-
ment at 25°C with a combined heat transfer coefficient of 30
W/m2 · °C. The 2-m-high vertical section of the dam is sub-
jected to convection by water at 15°C with a heat transfer
coefficient of 150 W/m2 · °C, and heat transfer through the
2-m-long base is considered to be negligible. Using the finite
difference method with a mesh size of �x � �y � 1 m and
assuming steady two-dimensional heat transfer, determine the
temperature of the top, middle, and bottom of the exposed sur-
face of the dam. Answers: 21.3°C, 43.2°C, 43.6°C
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5–59E Consider steady two-dimensional heat transfer in a
V-grooved solid body whose cross section is given in the fig-
ure. The top surfaces of the groove are maintained at 32°F
while the bottom surface is maintained at 212°F. The side sur-
faces of the groove are insulated. Using the finite difference
method with a mesh size of �x � �y � 1 ft and taking advan-
tage of symmetry, determine the temperatures at the middle of
the insulated surfaces.

5–60 Reconsider Problem 5–59E. Using EES (or
other) software, investigate the effects of the

temperatures at the top and bottom surfaces on the temperature
in the middle of the insulated surface. Let the temperatures at
the top and bottom surfaces vary from 32°F to 212°F. Plot the
temperature in the middle of the insulated surface as functions
of the temperatures at the top and bottom surfaces, and discuss
the results.

5–61 Consider a long solid bar whose thermal conductivity is
k � 12 W/m · °C and whose cross section is given in the figure.
The top surface of the bar is maintained at 50°C while the bot-
tom surface is maintained at 120°C. The left surface is insu-
lated and the remaining three surfaces are subjected to
convection with ambient air at T� � 25°C with a heat transfer
coefficient of h � 30 W/m2 · °C. Using the finite difference
method with a mesh size of �x � �y � 10 cm, (a) obtain the
finite difference formulation of this problem for steady two-

dimensional heat transfer and (b) determine the unknown nodal
temperatures by solving those equations.

Answers: (b) 85.7°C, 86.4°C, 87.6°C

5–62 Consider a 5-m-long constantan block (k � 23
W/m · °C) 30 cm high and 50 cm wide. The block is com-
pletely submerged in iced water at 0°C that is well stirred, and
the heat transfer coefficient is so high that the temperatures on
both sides of the block can be taken to be 0°C. The bottom sur-
face of the bar is covered with a low-conductivity material so
that heat transfer through the bottom surface is negligible. The
top surface of the block is heated uniformly by a 6-kW resis-
tance heater. Using the finite difference method with a mesh
size of �x � �y � 10 cm and taking advantage of symmetry,
(a) obtain the finite difference formulation of this problem for
steady two-dimensional heat transfer, (b) determine the un-
known nodal temperatures by solving those equations, and
(c) determine the rate of heat transfer from the block to the iced
water.

Transient Heat Conduction

5–63C How does the finite difference formulation of 
a transient heat conduction problem differ from that of a
steady heat conduction problem? What does the term
A�xC( � )/�t represent in the transient finite differ-
ence formulation?

5–64C What are the two basic methods of solution of tran-
sient problems based on finite differencing? How do heat
transfer terms in the energy balance formulation differ in the
two methods?

5–65C The explicit finite difference formulation of a general
interior node for transient heat conduction in a plane wall is
given by

� 2 � � �

Obtain the finite difference formulation for the steady case by
simplifying the relation above.
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5–66C The explicit finite difference formulation of a general
interior node for transient two-dimensional heat conduction is
given by

� �( � � � )

� (1 � 4�) � �

Obtain the finite difference formulation for the steady case by
simplifying the relation above.

5–67C Is there any limitation on the size of the time step �t
in the solution of transient heat conduction problems using
(a) the explicit method and (b) the implicit method?

5–68C Express the general stability criterion for the explicit
method of solution of transient heat conduction problems.

5–69C Consider transient one-dimensional heat conduction
in a plane wall that is to be solved by the explicit method. If
both sides of the wall are at specified temperatures, express the
stability criterion for this problem in its simplest form.

5–70C Consider transient one-dimensional heat conduction
in a plane wall that is to be solved by the explicit method.
If both sides of the wall are subjected to specified heat 
flux, express the stability criterion for this problem in its sim-
plest form.

5–71C Consider transient two-dimensional heat conduction
in a rectangular region that is to be solved by the explicit
method. If all boundaries of the region are either insulated or at
specified temperatures, express the stability criterion for this
problem in its simplest form.

5–72C The implicit method is unconditionally stable and
thus any value of time step �t can be used in the solution of
transient heat conduction problems. To minimize the computa-
tion time, someone suggests using a very large value of �t
since there is no danger of instability. Do you agree with this
suggestion? Explain.

5–73 Consider transient heat conduction in a plane wall
whose left surface (node 0) is maintained at 50°C while the
right surface (node 6) is subjected to a solar heat flux of 600
W/m2. The wall is initially at a uniform temperature of 50°C.
Express the explicit finite difference formulation of the bound-
ary nodes 0 and 6 for the case of no heat generation. Also,
obtain the finite difference formulation for the total amount
of heat transfer at the left boundary during the first three
time steps.

5–74 Consider transient heat conduction in a plane wall with
variable heat generation and constant thermal conductivity.
The nodal network of the medium consists of nodes 0, 1, 2, 3,
and 4 with a uniform nodal spacing of �x. The wall is initially
at a specified temperature. Using the energy balance approach,
obtain the explicit finite difference formulation of the boundary
nodes for the case of uniform heat flux q·0 at the left boundary

(node 0) and convection at the right boundary (node 4) with a
convection coefficient of h and an ambient temperature of T�.
Do not simplify.

5–75 Repeat Problem 5–74 for the case of implicit formula-
tion.

5–76 Consider transient heat conduction in a plane wall with
variable heat generation and constant thermal conductivity.
The nodal network of the medium consists of nodes 0, 1, 2,
3, 4, and 5 with a uniform nodal spacing of �x. The wall is ini-
tially at a specified temperature. Using the energy balance ap-
proach, obtain the explicit finite difference formulation of the
boundary nodes for the case of insulation at the left boundary
(node 0) and radiation at the right boundary (node 5) with an
emissivity of 	 and surrounding temperature of Tsurr.

5–77 Consider transient heat conduction in a plane wall with
variable heat generation and constant thermal conductivity.
The nodal network of the medium consists of nodes 0, 1, 2, 3,
and 4 with a uniform nodal spacing of �x. The wall is initially
at a specified temperature. The temperature at the right bound-
ary (node 4) is specified. Using the energy balance approach,
obtain the explicit finite difference formulation of the boundary
node 0 for the case of combined convection, radiation, and heat
flux at the left boundary with an emissivity of 	, convection co-
efficient of h, ambient temperature of T�, surrounding temper-
ature of Tsurr, and uniform heat flux of q·0 toward the wall. Also,
obtain the finite difference formulation for the total amount of
heat transfer at the right boundary for the first 20 time steps.
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5–78 Starting with an energy balance on a volume element,
obtain the two-dimensional transient explicit finite difference
equation for a general interior node in rectangular coordinates
for T(x, y, t) for the case of constant thermal conductivity and
no heat generation.

5–79 Starting with an energy balance on a volume element,
obtain the two-dimensional transient implicit finite difference
equation for a general interior node in rectangular coordinates
for T(x, y, t) for the case of constant thermal conductivity and
no heat generation.

5–80 Starting with an energy balance on a disk volume ele-
ment, derive the one-dimensional transient explicit finite dif-
ference equation for a general interior node for T(z, t) in a
cylinder whose side surface is insulated for the case of constant
thermal conductivity with uniform heat generation.

5–81 Consider one-dimensional transient heat conduction in
a composite plane wall that consists of two layers A and B with
perfect contact at the interface. The wall involves no heat gen-
eration and initially is at a specified temperature. The nodal
network of the medium consists of nodes 0, 1 (at the interface),
and 2 with a uniform nodal spacing of �x. Using the energy
balance approach, obtain the explicit finite difference formula-
tion of this problem for the case of insulation at the left bound-
ary (node 0) and radiation at the right boundary (node 2) with
an emissivity of 	 and surrounding temperature of Tsurr.

5–82 Consider transient one-dimensional heat conduction in
a pin fin of constant diameter D with constant thermal conduc-
tivity. The fin is losing heat by convection to the ambient air at
T� with a heat transfer coefficient of h and by radiation to the
surrounding surfaces at an average temperature of Tsurr. The
nodal network of the fin consists of nodes 0 (at the base), 1 (in
the middle), and 2 (at the fin tip) with a uniform nodal spacing
of �x. Using the energy balance approach, obtain the explicit
finite difference formulation of this problem for the case of a
specified temperature at the fin base and negligible heat trans-
fer at the fin tip.

5–83 Repeat Problem 5–82 for the case of implicit
formulation.

5–84 Consider a large uranium plate of thickness L � 8 cm,
thermal conductivity k � 28 W/m · °C, and thermal diffusivity
� � 12.5 � 10�6 m2/s that is initially at a uniform temperature
of 100°C. Heat is generated uniformly in the plate at a constant
rate of g· � 106 W/m3. At time t � 0, the left side of the plate is
insulated while the other side is subjected to convection with
an environment at T� � 20°C with a heat transfer coefficient of
h � 35 W/m2 · °C. Using the explicit finite difference approach
with a uniform nodal spacing of �x � 2 cm, determine (a) the
temperature distribution in the plate after 5 min and (b) how
long it will take for steady conditions to be reached in the plate.

5–85 Reconsider Problem 5–84. Using EES (or other)
software, investigate the effect of the cooling

time on the temperatures of the left and right sides of the plate.
Let the time vary from 5 min to 60 min. Plot the temperatures
at the left and right surfaces as a function of time, and discuss
the results.

5–86 Consider a house whose south wall consists of a 30-cm-
thick Trombe wall whose thermal conductivity is k � 0.70
W/m · °C and whose thermal diffusivity is � � 0.44 � 10�6

m2/s. The variations of the ambient temperature Tout and the
solar heat flux q·solar incident on a south-facing vertical surface
throughout the day for a typical day in February are given in
the table in 3-h intervals. The Trombe wall has single glazing
with an absorptivity-transmissivity product of � � 0.76 (that
is, 76 percent of the solar energy incident is absorbed by the
exposed surface of the Trombe wall), and the average com-
bined heat transfer coefficient for heat loss from the Trombe
wall to the ambient is determined to be hout � 3.4 W/m2 · °C.
The interior of the house is maintained at Tin � 20°C at all
times, and the heat transfer coefficient at the interior surface of
the Trombe wall is hin � 9.1 W/m2 · °C. Also, the vents on the
Trombe wall are kept closed, and thus the only heat transfer be-
tween the air in the house and the Trombe wall is through the
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interior surface of the wall. Assuming the temperature of the
Trombe wall to vary linearly between 20°C at the interior sur-
face and 0°C at the exterior surface at 7 AM and using the ex-
plicit finite difference method with a uniform nodal spacing of
�x � 5 cm, determine the temperature distribution along the
thickness of the Trombe wall after 6, 12, 18, 24, 30, 36, 42, and
48 hours and plot the results. Also, determine the net amount of
heat transferred to the house from the Trombe wall during the
first day if the wall is 2.8 m high and 7 m long.

5–87 Consider two-dimensional transient heat transfer in an
L-shaped solid bar that is initially at a uniform temperature
of 140°C and whose cross section is given in the figure. The
thermal conductivity and diffusivity of the body are k � 15
W/m · °C and � � 3.2 � 10�6 m2/s, respectively, and heat is
generated in the body at a rate of g· � 2 � 107 W/m3. The right
surface of the body is insulated, and the bottom surface is
maintained at a uniform temperature of 140°C at all times. At
time t � 0, the entire top surface is subjected to convection
with ambient air at T� � 25°C with a heat transfer coefficient
of h � 80 W/m2 · °C, and the left surface is subjected to
uniform heat flux at a rate of q·L � 8000 W/m2. The nodal net-
work of the problem consists of 13 equally spaced nodes with
�x � �y � 1.5 cm. Using the explicit method, determine the
temperature at the top corner (node 3) of the body after 2, 5,
and 30 min.

5–88 Reconsider Problem 5–87. Using EES (or other)
software, plot the temperature at the top corner as

a function of heating time varies from 2 min to 30 min, and dis-
cuss the results.

5–89 Consider a long solid bar (k � 28 W/m · °C and � �
12 � 10�6 m2/s) of square cross section that is initially at a uni-
form temperature of 20°C. The cross section of the bar is
20 cm � 20 cm in size, and heat is generated in it uniformly at
a rate of g· � 8 � 105 W/m3. All four sides of the bar are sub-
jected to convection to the ambient air at T� � 30°C with
a heat transfer coefficient of h � 45 W/m2 · °C. Using the
explicit finite difference method with a mesh size of �x �
�y � 10 cm, determine the centerline temperature of the bar
(a) after 10 min and (b) after steady conditions are established.

5–90E Consider a house whose windows are made of
0.375-in.-thick glass (k � 0.48 Btu/h · ft · °F and � � 4.2 �
10�6 ft2/s). Initially, the entire house, including the walls and
the windows, is at the outdoor temperature of To � 35°F. It is
observed that the windows are fogged because the indoor tem-
perature is below the dew-point temperature of 54°F. Now the
heater is turned on and the air temperature in the house is
raised to Ti � 72°F at a rate of 2°F rise per minute. The heat
transfer coefficients at the inner and outer surfaces of the wall
can be taken to be hi � 1.2 and ho � 2.6 Btu/h · ft2 · °F, respec-
tively, and the outdoor temperature can be assumed to remain
constant. Using the explicit finite difference method with a
mesh size of �x � 0.125 in., determine how long it will take

TABLE P5–86

The hourly variations of the monthly average ambient
temperature and solar heat flux incident on a
vertical surface

Ambient Solar 
Time of Day Temperature, °C Insolation, W/m2

7 AM–10 AM 0 375
10 AM–1 PM 4 750

1 PM–4 PM 6 580
4 PM–7 PM 1 95
7 PM–10 PM �2 0

10 PM–1 AM �3 0
1 AM–4 AM �4 0
4 AM–7 AM 4 0
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for the fog on the windows to clear up (i.e., for the inner sur-
face temperature of the window glass to reach 54°F).

5–91 A common annoyance in cars in winter months is the
formation of fog on the glass surfaces that blocks the view.
A practical way of solving this problem is to blow hot air or to
attach electric resistance heaters to the inner surfaces. Consider
the rear window of a car that consists of a 0.4-cm-thick glass
(k � 0.84 W/m · °C and � � 0.39 � 10�6 m2/s). Strip heater
wires of negligible thickness are attached to the inner surface
of the glass, 4 cm apart. Each wire generates heat at a rate of
10 W/m length. Initially the entire car, including its windows,
is at the outdoor temperature of To � �3°C. The heat transfer
coefficients at the inner and outer surfaces of the glass can be
taken to be hi � 6 and ho � 20 W/m2 · °C, respectively. Using
the explicit finite difference method with a mesh size of �x �
0.2 cm along the thickness and �y � 1 cm in the direction nor-
mal to the heater wires, determine the temperature distribution
throughout the glass 15 min after the strip heaters are turned
on. Also, determine the temperature distribution when steady
conditions are reached.

5–92 Repeat Problem 5–91 using the implicit method
with a time step of 1 min.

5–93 The roof of a house consists of a 15-cm-thick concrete
slab (k � 1.4 W/m · °C and � � 0.69 � 10�6 m2/s) that is 20 m
wide and 20 m long. One evening at 6 PM, the slab is observed
to be at a uniform temperature of 18°C. The average ambient
air and the night sky temperatures for the entire night are pre-
dicted to be 6°C and 260 K, respectively. The convection heat
transfer coefficients at the inner and outer surfaces of the roof
can be taken to be hi � 5 and ho � 12 W/m2 · °C, respectively.
The house and the interior surfaces of the walls and the floor

are maintained at a constant temperature of 20°C during the
night, and the emissivity of both surfaces of the concrete roof
is 0.9. Considering both radiation and convection heat transfers
and using the explicit finite difference method with a time step
of �t � 5 min and a mesh size of �x � 3 cm, determine the
temperatures of the inner and outer surfaces of the roof at 6 AM.
Also, determine the average rate of heat transfer through the
roof during that night.

5–94 Consider a refrigerator whose outer dimensions are
1.80 m � 0.8 m � 0.7 m. The walls of the refrigerator are
constructed of 3-cm-thick urethane insulation (k � 0.026
W/m · ° C and � � 0.36 � 10�6 m2/s) sandwiched between
two layers of sheet metal with negligible thickness. The refrig-
erated space is maintained at 3°C and the average heat transfer
coefficients at the inner and outer surfaces of the wall are
6 W/m2 · °C and 9 W/m2 · °C, respectively. Heat transfer
through the bottom surface of the refrigerator is negligible. The
kitchen temperature remains constant at about 25°C. Initially,
the refrigerator contains 15 kg of food items at an average
specific heat of 3.6 kJ/kg · °C. Now a malfunction occurs and
the refrigerator stops running for 6 h as a result. Assuming the
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temperature of the contents of the refrigerator, including the
air inside, rises uniformly during this period, predict the tem-
perature inside the refrigerator after 6 h when the repair-
man arrives. Use the explicit finite difference method with a
time step of �t � 1 min and a mesh size of �x � 1 cm and dis-
regard corner effects (i.e., assume one-dimensional heat trans-
fer in the walls).

5–95 Reconsider Problem 5–94. Using EES (or other)
software, plot the temperature inside the refrig-

erator as a function of heating time as time varies from 1 h to
10 h, and discuss the results.

Special Topic: Controlling the Numerical Error

5–96C Why do the results obtained using a numerical
method differ from the exact results obtained analytically?
What are the causes of this difference?

5–97C What is the cause of the discretization error? How
does the global discretization error differ from the local
discretization error?

5–98C Can the global (accumulated) discretization error be
less than the local error during a step? Explain.

5–99C How is the finite difference formulation for the first
derivative related to the Taylor series expansion of the solution
function?

5–100C Explain why the local discretization error of the fi-
nite difference method is proportional to the square of the step
size. Also explain why the global discretization error is propor-
tional to the step size itself.

5–101C What causes the round-off error? What kind of
calculations are most susceptible to round-off error?

5–102C What happens to the discretization and the round-
off errors as the step size is decreased?

5–103C Suggest some practical ways of reducing the
round-off error.

5–104C What is a practical way of checking if the round-off
error has been significant in calculations?

5–105C What is a practical way of checking if the dis-
cretization error has been significant in calculations?

Review Problems

5–106 Starting with an energy balance on the volume ele-
ment, obtain the steady three-dimensional finite difference
equation for a general interior node in rectangular coordinates
for T(x, y, z) for the case of constant thermal conductivity and
uniform heat generation.

5–107 Starting with an energy balance on the volume ele-
ment, obtain the three-dimensional transient explicit finite dif-
ference equation for a general interior node in rectangular

coordinates for T(x, y, z, t) for the case of constant thermal con-
ductivity and no heat generation.

5–108 Consider steady one-dimensional heat conduction in a
plane wall with variable heat generation and constant thermal
conductivity. The nodal network of the medium consists of
nodes 0, 1, 2, and 3 with a uniform nodal spacing of �x. The
temperature at the left boundary (node 0) is specified. Using
the energy balance approach, obtain the finite difference for-
mulation of boundary node 3 at the right boundary for the case
of combined convection and radiation with an emissivity of 	,
convection coefficient of h, ambient temperature of T�, and
surrounding temperature of Tsurr. Also, obtain the finite dif-
ference formulation for the rate of heat transfer at the left
boundary.

5–109 Consider one-dimensional transient heat conduction
in a plane wall with variable heat generation and variable ther-
mal conductivity. The nodal network of the medium consists of
nodes 0, 1, and 2 with a uniform nodal spacing of �x. Using
the energy balance approach, obtain the explicit finite differ-
ence formulation of this problem for the case of specified heat
flux q·0 and convection at the left boundary (node 0) with a con-
vection coefficient of h and ambient temperature of T�, and ra-
diation at the right boundary (node 2) with an emissivity of 	
and surrounding temperature of Tsurr.

5–110 Repeat Problem 5–109 for the case of implicit
formulation.

5–111 Consider steady one-dimensional heat conduction in a
pin fin of constant diameter D with constant thermal conduc-
tivity. The fin is losing heat by convection with the ambient air
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at T� (in °C) with a convection coefficient of h, and by radia-
tion to the surrounding surfaces at an average temperature of
Tsurr (in K). The nodal network of the fin consists of nodes 0 (at
the base), 1 (in the middle), and 2 (at the fin tip) with a uniform
nodal spacing of �x. Using the energy balance approach, ob-
tain the finite difference formulation of this problem for the
case of a specified temperature at the fin base and convection
and radiation heat transfer at the fin tip.

5–112 Starting with an energy balance on the volume ele-
ment, obtain the two-dimensional transient explicit finite dif-
ference equation for a general interior node in rectangular
coordinates for T(x, y, t) for the case of constant thermal con-
ductivity and uniform heat generation.

5–113 Starting with an energy balance on a disk volume ele-
ment, derive the one-dimensional transient implicit finite dif-
ference equation for a general interior node for T(z, t) in a
cylinder whose side surface is subjected to convection with a
convection coefficient of h and an ambient temperature of T�

for the case of constant thermal conductivity with uniform heat
generation.

5–114E The roof of a house consists of a 5-in.-thick concrete
slab (k � 0.81 Btu/h · ft · °F and � � 7.4 � 10�6 ft2/s) that is
45 ft wide and 55 ft long. One evening at 6 PM, the slab is ob-
served to be at a uniform temperature of 70°F. The ambient air
temperature is predicted to be at about 50°F from 6 PM to
10 PM, 42°F from 10 PM to 2 AM, and 38°F from 2 AM to 6 AM,
while the night sky temperature is expected to be about 445 R
for the entire night. The convection heat transfer coefficients at
the inner and outer surfaces of the roof can be taken to be
hi � 0.9 and ho � 2.1 Btu/h · ft2 · °F, respectively. The house
and the interior surfaces of the walls and the floor are main-
tained at a constant temperature of 70°F during the night, and
the emissivity of both surfaces of the concrete roof is 0.9.
Considering both radiation and convection heat transfers and
using the explicit finite difference method with a mesh size of

�x � 1 in. and a time step of �t � 5 min, determine the tem-
peratures of the inner and outer surfaces of the roof at 6 AM.
Also, determine the average rate of heat transfer through the
roof during that night.

5–115 Solar radiation incident on a large body of clean water
(k � 0.61 W/m · °C and � � 0.15 � 10�6 m2/s) such as a lake,
a river, or a pond is mostly absorbed by water, and the amount
of absorption varies with depth. For solar radiation incident at
a 45° angle on a 1-m-deep large pond whose bottom surface is
black (zero reflectivity), for example, 2.8 percent of the solar
energy is reflected back to the atmosphere, 37.9 percent is ab-
sorbed by the bottom surface, and the remaining 59.3 percent
is absorbed by the water body. If the pond is considered to be
four layers of equal thickness (0.25 m in this case), it can be
shown that 47.3 percent of the incident solar energy is ab-
sorbed by the top layer, 6.1 percent by the upper mid layer, 3.6
percent by the lower mid layer, and 2.4 percent by the bottom
layer [for more information see Çengel and Özişik, Solar En-
ergy, 33, no. 6 (1984), pp. 581–591]. The radiation absorbed by
the water can be treated conveniently as heat generation in the
heat transfer analysis of the pond.

Consider a large 1-m-deep pond that is initially at a uniform
temperature of 15°C throughout. Solar energy is incident on
the pond surface at 45° at an average rate of 500 W/m2 for a pe-
riod of 4 h. Assuming no convection currents in the water and
using the explicit finite difference method with a mesh size of
�x � 0.25 m and a time step of �t � 15 min, determine the
temperature distribution in the pond under the most favorable
conditions (i.e., no heat losses from the top or bottom surfaces
of the pond). The solar energy absorbed by the bottom surface
of the pond can be treated as a heat flux to the water at that sur-
face in this case.
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5–116 Reconsider Problem 5–115. The absorption of solar
radiation in that case can be expressed more accurately as a
fourth-degree polynomial as

g·(x) �
q·s(0.859 � 3.415x � 6.704x2 � 6.339x3 � 2.278x4), W/m3

where q·s is the solar flux incident on the surface of the pond in
W/m2 and x is the distance from the free surface of the pond
in m. Solve Problem 5–115 using this relation for the absorp-
tion of solar radiation.

5–117 A hot surface at 120°C is to be cooled by attaching
8 cm long, 0.8 cm in diameter aluminum pin fins (k � 237
W/m · °C and � � 97.1 � 10�6 m2/s) to it with a center-to-
center distance of 1.6 cm. The temperature of the surrounding
medium is 15°C, and the heat transfer coefficient on the sur-
faces is 35 W/m2 · °C. Initially, the fins are at a uniform tem-
perature of 30°C, and at time t � 0, the temperature of the hot
surface is raised to 120°C. Assuming one-dimensional heat
conduction along the fin and taking the nodal spacing to be
�x � 2 cm and a time step to be �t � 0.5 s, determine the
nodal temperatures after 5 min by using the explicit finite dif-
ference method. Also, determine how long it will take for
steady conditions to be reached.

5–118E Consider a large plane wall of thickness L � 0.3 ft
and thermal conductivity k � 1.2 Btu/h · ft · °F in space. The
wall is covered with a material having an emissivity of
	 � 0.80 and a solar absorptivity of �s � 0.45. The inner sur-
face of the wall is maintained at 520 R at all times, while the
outer surface is exposed to solar radiation that is incident at a
rate of q·s � 300 Btu/h · ft2. The outer surface is also losing heat

by radiation to deep space at 0 R. Using a uniform nodal spac-
ing of �x � 0.1 ft, (a) obtain the finite difference formulation
for steady one-dimensional heat conduction and (b) determine
the nodal temperatures by solving those equations.

Answers: (b) 522 R, 525 R, 527 R

5–119 Frozen food items can be defrosted by simply leaving
them on the counter, but it takes too long. The process can
be speeded up considerably for flat items such as steaks by
placing them on a large piece of highly conducting metal,
called the defrosting plate, which serves as a fin. The increased
surface area enhances heat transfer and thus reduces the de-
frosting time.

Consider two 1.5-cm-thick frozen steaks at �18°C that re-
semble a 15-cm-diameter circular object when placed next to
each other. The steaks are now placed on a 1-cm-thick black-
anodized circular aluminum defrosting plate (k � 237
W/m · °C, � � 97.1 � 10�6 m2/s, and 	 � 0.90) whose outer
diameter is 30 cm. The properties of the frozen steaks are
 � 970 kg/m3, Cp � 1.55 kJ/kg · °C, k � 1.40 W/m · °C,
� � 0.93 � 10�6 m2/s, and 	 � 0.95, and the heat of fusion is
hif � 187 kJ/kg. The steaks can be considered to be defrosted
when their average temperature is 0°C and all of the ice in the
steaks is melted. Initially, the defrosting plate is at the room
temperature of 20°C, and the wooden countertop it is placed on
can be treated as insulation. Also, the surrounding surfaces can
be taken to be at the same temperature as the ambient air, and
the convection heat transfer coefficient for all exposed surfaces
can be taken to be 12 W/m2 · °C. Heat transfer from the lateral
surfaces of the steaks and the defrosting plate can be neglected.
Assuming one-dimensional heat conduction in both the steaks
and the defrosting plate and using the explicit finite difference
method, determine how long it will take to defrost the steaks.
Use four nodes with a nodal spacing of �x � 0.5 cm for the
steaks, and three nodes with a nodal spacing of �r � 3.75 cm
for the exposed portion of the defrosting plate. Also, use a time
step of �t � 5 s. Hint: First, determine the total amount of heat
transfer needed to defrost the steaks, and then determine how
long it will take to transfer that much heat.
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5–120 Repeat Problem 5–119 for a copper defrosting plate
using a time step of �t � 3 s.

Design and Essay Problems

5–121 Write a two-page essay on the finite element method,
and explain why it is used in most commercial engineering
software packages. Also explain how it compares to the finite
difference method.

5–122 Numerous professional software packages are avail-
able in the market for performing heat transfer analysis, and
they are widely advertised in professional magazines such as
the Mechanical Engineering magazine published by the Amer-
ican Society of Mechanical Engineers (ASME). Your company
decides to purchase such a software package and asks you
to prepare a report on the available packages, their costs, ca-
pabilities, ease of use, and compatibility with the available
hardware, and other software as well as the reputation of the
software company, their history, financial health, customer
support, training, and future prospects, among other things.
After a preliminary investigation, select the top three packages
and prepare a full report on them.

5–123 Design a defrosting plate to speed up defrosting of flat
food items such as frozen steaks and packaged vegetables and
evaluate its performance using the finite difference method
(see Prob. 5–119). Compare your design to the defrosting

plates currently available on the market. The plate must per-
form well, and it must be suitable for purchase and use as a
household utensil, durable, easy to clean, easy to manufacture,
and affordable. The frozen food is expected to be at an initial
temperature of �18°C at the beginning of the thawing process
and 0°C at the end with all the ice melted. Specify the material,
shape, size, and thickness of the proposed plate. Justify your
recommendations by calculations. Take the ambient and sur-
rounding surface temperatures to be 20°C and the convection
heat transfer coefficient to be 15 W/m2 · °C in your analysis.
For a typical case, determine the defrosting time with and
without the plate.

5–124 Design a fire-resistant safety box whose outer dimen-
sions are 0.5 m � 0.5 m � 0.5 m that will protect its com-
bustible contents from fire which may last up to 2 h. Assume
the box will be exposed to an environment at an average tem-
perature of 700°C with a combined heat transfer coefficient of
70 W/m2 · °C and the temperature inside the box must be be-
low 150°C at the end of 2 h. The cavity of the box must be as
large as possible while meeting the design constraints, and the
insulation material selected must withstand the high tempera-
tures to which it will be exposed. Cost, durability, and strength
are also important considerations in the selection of insulation
materials.
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F U N D A M E N TA L S  O F
C O N V E C T I O N

So far, we have considered conduction, which is the mechanism of heat
transfer through a solid or a quiescent fluid. We now consider convec-
tion, which is the mechanism of heat transfer through a fluid in the

presence of bulk fluid motion.
Convection is classified as natural (or free) and forced convection, depend-

ing on how the fluid motion is initiated. In forced convection, the fluid is
forced to flow over a surface or in a pipe by external means such as a pump or
a fan. In natural convection, any fluid motion is caused by natural means such
as the buoyancy effect, which manifests itself as the rise of warmer fluid and
the fall of the cooler fluid. Convection is also classified as external and inter-
nal, depending on whether the fluid is forced to flow over a surface or in a
channel.

We start this chapter with a general physical description of the convection
mechanism. We then discuss the velocity and thermal boundary layers, and
laminar and turbulent flows. We continue with the discussion of the dimen-
sionless Reynolds, Prandtl, and Nusselt numbers, and their physical signifi-
cance. Next we derive the convection equations of on the basis of mass,
momentum, and energy conservation, and obtain solutions for flow over a flat
plate. We then nondimensionalize the convection equations, and obtain func-
tional forms of friction and convection coefficients. Finally, we present analo-
gies between momentum and heat transfer.
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6–1 PHYSICAL MECHANISM OF CONVECTION
We mentioned earlier that there are three basic mechanisms of heat transfer:
conduction, convection, and radiation. Conduction and convection are similar
in that both mechanisms require the presence of a material medium. But they
are different in that convection requires the presence of fluid motion.

Heat transfer through a solid is always by conduction, since the molecules
of a solid remain at relatively fixed positions. Heat transfer through a liquid or
gas, however, can be by conduction or convection, depending on the presence
of any bulk fluid motion. Heat transfer through a fluid is by convection in the
presence of bulk fluid motion and by conduction in the absence of it. There-
fore, conduction in a fluid can be viewed as the limiting case of convection,
corresponding to the case of quiescent fluid (Fig. 6–1).

Convection heat transfer is complicated by the fact that it involves fluid mo-
tion as well as heat conduction. The fluid motion enhances heat transfer, since
it brings hotter and cooler chunks of fluid into contact, initiating higher rates
of conduction at a greater number of sites in a fluid. Therefore, the rate of heat
transfer through a fluid is much higher by convection than it is by conduction.
In fact, the higher the fluid velocity, the higher the rate of heat transfer.

To clarify this point further, consider steady heat transfer through a fluid
contained between two parallel plates maintained at different temperatures, as
shown in Figure 6–2. The temperatures of the fluid and the plate will be the
same at the points of contact because of the continuity of temperature. As-
suming no fluid motion, the energy of the hotter fluid molecules near the hot
plate will be transferred to the adjacent cooler fluid molecules. This energy
will then be transferred to the next layer of the cooler fluid molecules. This
energy will then be transferred to the next layer of the cooler fluid, and so on,
until it is finally transferred to the other plate. This is what happens during
conduction through a fluid. Now let us use a syringe to draw some fluid near
the hot plate and inject it near the cold plate repeatedly. You can imagine that
this will speed up the heat transfer process considerably, since some energy is
carried to the other side as a result of fluid motion.

Consider the cooling of a hot iron block with a fan blowing air over its top
surface, as shown in Figure 6–3. We know that heat will be transferred from
the hot block to the surrounding cooler air, and the block will eventually
cool. We also know that the block will cool faster if the fan is switched to a
higher speed. Replacing air by water will enhance the convection heat trans-
fer even more.

Experience shows that convection heat transfer strongly depends on the
fluid properties dynamic viscosity �, thermal conductivity k, density �, and
specific heat Cp, as well as the fluid velocity �. It also depends on the geome-
try and the roughness of the solid surface, in addition to the type of fluid flow
(such as being streamlined or turbulent). Thus, we expect the convection heat
transfer relations to be rather complex because of the dependence of convec-
tion on so many variables. This is not surprising, since convection is the most
complex mechanism of heat transfer.

Despite the complexity of convection, the rate of convection heat transfer is
observed to be proportional to the temperature difference and is conveniently
expressed by Newton’s law of cooling as

�
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q·conv � h(Ts � T�) (W/m2) (6-1)

or

Q
·

conv � hAs(Ts � T�) (W) (6-2)

where

h � convection heat transfer coefficient, W/m2 � ˚C

As � heat transfer surface area, m2

Ts � temperature of the surface, ˚C

T� � temperature of the fluid sufficiently far from the surface, ˚C

Judging from its units, the convection heat transfer coefficient h can be de-
fined as the rate of heat transfer between a solid surface and a fluid per unit
surface area per unit temperature difference.

You should not be deceived by the simple appearance of this relation, be-
cause the convection heat transfer coefficient h depends on the several of the
mentioned variables, and thus is difficult to determine.

When a fluid is forced to flow over a solid surface that is nonporous (i.e.,
impermeable to the fluid), it is observed that the fluid in motion comes to a
complete stop at the surface and assumes a zero velocity relative to the sur-
face. That is, the fluid layer in direct contact with a solid surface “sticks” to
the surface and there is no slip. In fluid flow, this phenomenon is known as the
no-slip condition, and it is due to the viscosity of the fluid (Fig. 6–4).

The no-slip condition is responsible for the development of the velocity pro-
file for flow. Because of the friction between the fluid layers, the layer that
sticks to the wall slows the adjacent fluid layer, which slows the next layer,
and so on. A consequence of the no-slip condition is that all velocity profiles
must have zero values at the points of contact between a fluid and a solid. The
only exception to the no-slip condition occurs in extremely rarified gases.

A similar phenomenon occurs for the temperature. When two bodies at dif-
ferent temperatures are brought into contact, heat transfer occurs until both
bodies assume the same temperature at the point of contact. Therefore, a fluid
and a solid surface will have the same temperature at the point of contact. This
is known as no-temperature-jump condition.

An implication of the no-slip and the no-temperature jump conditions is that
heat transfer from the solid surface to the fluid layer adjacent to the surface is
by pure conduction, since the fluid layer is motionless, and can be expressed as

q·conv � q·cond � �kfluid (W/m2) (6-3)

where T represents the temperature distribution in the fluid and (�T/�y)y�0 is
the temperature gradient at the surface. This heat is then convected away from
the surface as a result of fluid motion. Note that convection heat transfer from
a solid surface to a fluid is merely the conduction heat transfer from the solid
surface to the fluid layer adjacent to the surface. Therefore, we can equate
Eqs. 6-1 and 6-3 for the heat flux to obtain

�T
�y ` y�0
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(W/m2 � ˚C) (6-4)

for the determination of the convection heat transfer coefficient when the tem-
perature distribution within the fluid is known.

The convection heat transfer coefficient, in general, varies along the flow
(or x-) direction. The average or mean convection heat transfer coefficient for
a surface in such cases is determined by properly averaging the local convec-
tion heat transfer coefficients over the entire surface.

Nusselt Number
In convection studies, it is common practice to nondimensionalize the gov-
erning equations and combine the variables, which group together into di-
mensionless numbers in order to reduce the number of total variables. It is also
common practice to nondimensionalize the heat transfer coefficient h with the
Nusselt number, defined as

(6-5)

where k is the thermal conductivity of the fluid and Lc is the characteristic
length. The Nusselt number is named after Wilhelm Nusselt, who made sig-
nificant contributions to convective heat transfer in the first half of the twen-
tieth century, and it is viewed as the dimensionless convection heat transfer
coefficient.

To understand the physical significance of the Nusselt number, consider a
fluid layer of thickness L and temperature difference 	T � T2 � T1, as shown
in Fig. 6–5. Heat transfer through the fluid layer will be by convection when
the fluid involves some motion and by conduction when the fluid layer is mo-
tionless. Heat flux (the rate of heat transfer per unit time per unit surface area)
in either case will be

q·conv � h	T (6-6)

and

q·cond � k (6-7)

Taking their ratio gives

(6-8)

which is the Nusselt number. Therefore, the Nusselt number represents the en-
hancement of heat transfer through a fluid layer as a result of convection rel-
ative to conduction across the same fluid layer. The larger the Nusselt number,
the more effective the convection. A Nusselt number of Nu � 1 for a fluid
layer represents heat transfer across the layer by pure conduction.

We use forced convection in daily life more often than you might think
(Fig. 6–6). We resort to forced convection whenever we want to increase the

q̇conv

q̇cond
�

h	T
k	T/L

�
hL
k

� Nu

	T
L

Nu �
hLc

k

h �
�kfluid(�T/�y)y�0

Ts � T�
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rate of heat transfer from a hot object. For example, we turn on the fan on hot
summer days to help our body cool more effectively. The higher the fan speed,
the better we feel. We stir our soup and blow on a hot slice of pizza to make
them cool faster. The air on windy winter days feels much colder than it actu-
ally is. The simplest solution to heating problems in electronics packaging is
to use a large enough fan.

6–2 CLASSIFICATION OF FLUID FLOWS
Convection heat transfer is closely tied with fluid mechanics, which is the sci-
ence that deals with the behavior of fluids at rest or in motion, and the inter-
action of fluids with solids or other fluids at the boundaries. There are a wide
variety of fluid flow problems encountered in practice, and it is usually con-
venient to classify them on the basis of some common characteristics to make
it feasible to study them in groups. There are many ways to classify the fluid
flow problems, and below we present some general categories.

Viscous versus Inviscid Flow
When two fluid layers move relative to each other, a friction force develops
between them and the slower layer tries to slow down the faster layer. This in-
ternal resistance to flow is called the viscosity, which is a measure of internal
stickiness of the fluid. Viscosity is caused by cohesive forces between the
molecules in liquids, and by the molecular collisions in gases. There is no
fluid with zero viscosity, and thus all fluid flows involve viscous effects to
some degree. Flows in which the effects of viscosity are significant are called
viscous flows. The effects of viscosity are very small in some flows, and ne-
glecting those effects greatly simplifies the analysis without much loss in ac-
curacy. Such idealized flows of zero-viscosity fluids are called frictionless or
inviscid flows.

Internal versus External Flow
A fluid flow is classified as being internal and external, depending on whether
the fluid is forced to flow in a confined channel or over a surface. The flow of
an unbounded fluid over a surface such as a plate, a wire, or a pipe is exter-
nal flow. The flow in a pipe or duct is internal flow if the fluid is completely
bounded by solid surfaces. Water flow in a pipe, for example, is internal flow,
and air flow over an exposed pipe during a windy day is external flow
(Fig. 6–7). The flow of liquids in a pipe is called open-channel flow if the
pipe is partially filled with the liquid and there is a free surface. The flow of
water in rivers and irrigation ditches are examples of such flows.

Compressible versus Incompressible Flow
A fluid flow is classified as being compressible or incompressible, depending
on the density variation of the fluid during flow. The densities of liquids are
essentially constant, and thus the flow of liquids is typically incompressible.
Therefore, liquids are usually classified as incompressible substances. A pres-
sure of 210 atm, for example, will cause the density of liquid water at 1 atm to
change by just 1 percent. Gases, on the other hand, are highly compressible. A

�
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pressure change of just 0.01 atm, for example, will cause a change of 1 per-
cent in the density of atmospheric air. However, gas flows can be treated as
incompressible if the density changes are under about 5 percent, which is usu-
ally the case when the flow velocity is less than 30 percent of the velocity of
sound in that gas (i.e., the Mach number of flow is less than 0.3). The veloc-
ity of sound in air at room temperature is 346 m/s. Therefore, the compress-
ibility effects of air can be neglected at speeds under 100 m/s. Note that the
flow of a gas is not necessarily a compressible flow.

Laminar versus Turbulent Flow
Some flows are smooth and orderly while others are rather chaotic. The highly
ordered fluid motion characterized by smooth streamlines is called laminar.
The flow of high-viscosity fluids such as oils at low velocities is typically
laminar. The highly disordered fluid motion that typically occurs at high ve-
locities characterized by velocity fluctuations is called turbulent. The flow of
low-viscosity fluids such as air at high velocities is typically turbulent. The
flow regime greatly influences the heat transfer rates and the required power
for pumping.

Natural (or Unforced) versus Forced Flow
A fluid flow is said to be natural or forced, depending on how the fluid motion
is initiated. In forced flow, a fluid is forced to flow over a surface or in a pipe
by external means such as a pump or a fan. In natural flows, any fluid motion
is due to a natural means such as the buoyancy effect, which manifests itself
as the rise of the warmer (and thus lighter) fluid and the fall of cooler (and
thus denser) fluid. This thermosiphoning effect is commonly used to replace
pumps in solar water heating systems by placing the water tank sufficiently
above the solar collectors (Fig. 6–8).

Steady versus Unsteady (Transient) Flow
The terms steady and uniform are used frequently in engineering, and thus it
is important to have a clear understanding of their meanings. The term
steady implies no change with time. The opposite of steady is unsteady, or
transient. The term uniform, however, implies no change with location over
a specified region.

Many devices such as turbines, compressors, boilers, condensers, and heat
exchangers operate for long periods of time under the same conditions, and
they are classified as steady-flow devices. During steady flow, the fluid prop-
erties can change from point to point within a device, but at any fixed point
they remain constant.

One-, Two-, and Three-Dimensional Flows
A flow field is best characterized by the velocity distribution, and thus a flow
is said to be one-, two-, or three-dimensional if the flow velocity � varies in
one, two, or three primary dimensions, respectively. A typical fluid flow in-
volves a three-dimensional geometry and the velocity may vary in all three di-
mensions rendering the flow three-dimensional [�(x, y, z) in rectangular
or �(r, 
, z) in cylindrical coordinates]. However, the variation of velocity in
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certain direction can be small relative to the variation in other directions, and
can be ignored with negligible error. In such cases, the flow can be modeled
conveniently as being one- or two-dimensional, which is easier to analyze.

When the entrance effects are disregarded, fluid flow in a circular pipe is
one-dimensional since the velocity varies in the radial r direction but not in
the angular 
- or axial z-directions (Fig. 6–9). That is, the velocity profile is
the same at any axial z-location, and it is symmetric about the axis of the pipe.
Note that even in this simplest flow, the velocity cannot be uniform across the
cross section of the pipe because of the no-slip condition. However, for con-
venience in calculations, the velocity can be assumed to be constant and thus
uniform at a cross section. Fluid flow in a pipe usually approximated as one-
dimensional uniform flow.

6–3 VELOCITY BOUNDARY LAYER
Consider the parallel flow of a fluid over a flat plate, as shown in Fig. 6–10.
Surfaces that are slightly contoured such as turbine blades can also be ap-
proximated as flat plates with reasonable accuracy. The x-coordinate is mea-
sured along the plate surface from the leading edge of the plate in the
direction of the flow, and y is measured from the surface in the normal direc-
tion. The fluid approaches the plate in the x-direction with a uniform upstream
velocity of �, which is practically identical to the free-stream velocity u� over
the plate away from the surface (this would not be the case for cross flow over
blunt bodies such as a cylinder).

For the sake of discussion, we can consider the fluid to consist of adjacent
layers piled on top of each other. The velocity of the particles in the first fluid
layer adjacent to the plate becomes zero because of the no-slip condition. This
motionless layer slows down the particles of the neighboring fluid layer as a
result of friction between the particles of these two adjoining fluid layers at
different velocities. This fluid layer then slows down the molecules of the next
layer, and so on. Thus, the presence of the plate is felt up to some normal dis-
tance � from the plate beyond which the free-stream velocity u� remains es-
sentially unchanged. As a result, the x-component of the fluid velocity, u, will
vary from 0 at y � 0 to nearly u� at y � � (Fig. 6–11).

�
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The region of the flow above the plate bounded by � in which the effects
of the viscous shearing forces caused by fluid viscosity are felt is called the
velocity boundary layer. The boundary layer thickness, �, is typically de-
fined as the distance y from the surface at which u � 0.99u�.

The hypothetical line of u � 0.99u� divides the flow over a plate into two
regions: the boundary layer region, in which the viscous effects and the ve-
locity changes are significant, and the inviscid flow region, in which the fric-
tional effects are negligible and the velocity remains essentially constant.

Surface Shear Stress
Consider the flow of a fluid over the surface of a plate. The fluid layer in con-
tact with the surface will try to drag the plate along via friction, exerting a fric-
tion force on it. Likewise, a faster fluid layer will try to drag the adjacent
slower layer and exert a friction force because of the friction between the two
layers. Friction force per unit area is called shear stress, and is denoted by �.
Experimental studies indicate that the shear stress for most fluids is propor-
tional to the velocity gradient, and the shear stress at the wall surface is as

(N/m2) (6-9)

where the constant of proportionality � is called the dynamic viscosity of
the fluid, whose unit is kg/m � s (or equivalently, N � s/m2, or Pa � s, or poise
� 0.1 Pa � s).

The fluids that that obey the linear relationship above are called Newtonian
fluids, after Sir Isaac Newton who expressed it first in 1687. Most common
fluids such as water, air, gasoline, and oils are Newtonian fluids. Blood and
liquid plastics are examples of non-Newtonian fluids. In this text we will con-
sider Newtonian fluids only.

In fluid flow and heat transfer studies, the ratio of dynamic viscosity to den-
sity appears frequently. For convenience, this ratio is given the name kine-
matic viscosity  and is expressed as  � �/�. Two common units of
kinematic viscosity are m2/s and stoke (1 stoke � 1 cm2/s � 0.0001 m2/s).

The viscosity of a fluid is a measure of its resistance to flow, and it is a
strong function of temperature. The viscosities of liquids decrease with tem-
perature, whereas the viscosities of gases increase with temperature (Fig.
6–12). The viscosities of some fluids at 20˚C are listed in Table 6–1. Note that
the viscosities of different fluids differ by several orders of magnitude.

The determination of the surface shear stress �s from Eq. 6-9 is not practical
since it requires a knowledge of the flow velocity profile. A more practical ap-
proach in external flow is to relate �s to the upstream velocity � as

(6-10)

where Cf is the dimensionless friction coefficient, whose value in most cases
is determined experimentally, and � is the density of the fluid. Note that the
friction coefficient, in general, will vary with location along the surface. Once
the average friction coefficient over a given surface is available, the friction
force over the entire surface is determined from

�s � Cf 
�� 2

2
    (N/m2)

�s � � 
�u
�y ` y�0
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(6-11)

where As is the surface area.
The friction coefficient is an important parameter in heat transfer studies

since it is directly related to the heat transfer coefficient and the power re-
quirements of the pump or fan.

6–4 THERMAL BOUNDARY LAYER
We have seen that a velocity boundary layer develops when a fluid flows over
a surface as a result of the fluid layer adjacent to the surface assuming the sur-
face velocity (i.e., zero velocity relative to the surface). Also, we defined the
velocity boundary layer as the region in which the fluid velocity varies from
zero to 0.99u�. Likewise, a thermal boundary layer develops when a fluid at
a specified temperature flows over a surface that is at a different temperature,
as shown in Fig. 6–13.

Consider the flow of a fluid at a uniform temperature of T� over an isother-
mal flat plate at temperature Ts. The fluid particles in the layer adjacent to the
surface will reach thermal equilibrium with the plate and assume the surface
temperature Ts. These fluid particles will then exchange energy with the par-
ticles in the adjoining-fluid layer, and so on. As a result, a temperature profile
will develop in the flow field that ranges from Ts at the surface to T� suffi-
ciently far from the surface. The flow region over the surface in which the
temperature variation in the direction normal to the surface is significant is the
thermal boundary layer. The thickness of the thermal boundary layer �t at
any location along the surface is defined as the distance from the surface at
which the temperature difference T � Ts equals 0.99(T� � Ts). Note that for
the special case of Ts � 0, we have T � 0.99T� at the outer edge of the ther-
mal boundary layer, which is analogous to u � 0.99u� for the velocity bound-
ary layer.

The thickness of the thermal boundary layer increases in the flow direction,
since the effects of heat transfer are felt at greater distances from the surface
further down stream.

The convection heat transfer rate anywhere along the surface is directly re-
lated to the temperature gradient at that location. Therefore, the shape of the
temperature profile in the thermal boundary layer dictates the convection heat
transfer between a solid surface and the fluid flowing over it. In flow over a
heated (or cooled) surface, both velocity and thermal boundary layers will de-
velop simultaneously. Noting that the fluid velocity will have a strong influ-
ence on the temperature profile, the development of the velocity boundary
layer relative to the thermal boundary layer will have a strong effect on the
convection heat transfer.

Prandtl Number
The relative thickness of the velocity and the thermal boundary layers is best
described by the dimensionless parameter Prandtl number, defined as

(6-12)Pr �
Molecular diffusivity of momentum

Molecular diffusivity of heat
�


� �

�Cp

k

�

Ff � Cf As 
��2

2
    (N)
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TABLE 6–1

Dynamic viscosities of some fluids
at 1 atm and 20˚C (unless otherwise
stated)

Dynamic viscosity 
Fluid �, kg/m � s

Glycerin:
�20˚C 134.0

0˚C 12.1
20˚C 1.49
40˚C 0.27

Engine oil:
SAE 10W 0.10
SAE 10W30 0.17
SAE 30 0.29
SAE 50 0.86

Mercury 0.0015
Ethyl alcohol 0.0012
Water:

0˚C 0.0018
20˚C 0.0010

100˚C (liquid) 0.0003
100˚C (vapor) 0.000013

Blood, 37˚C 0.0004
Gasoline 0.00029
Ammonia 0.00022
Air 0.000018
Hydrogen, 0˚C 0.000009

T�T�

T�

Ts

Ts + 0.99(T� – Ts)

δt

Free-stream

Thermal
boundary
layer

x

FIGURE 6–13
Thermal boundary layer on a flat plate

(the fluid is hotter than the plate
surface).
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It is named after Ludwig Prandtl, who introduced the concept of boundary
layer in 1904 and made significant contributions to boundary layer theory.
The Prandtl numbers of fluids range from less than 0.01 for liquid metals to
more than 100,000 for heavy oils (Table 6–2). Note that the Prandtl number is
in the order of 10 for water.

The Prandtl numbers of gases are about 1, which indicates that both momen-
tum and heat dissipate through the fluid at about the same rate. Heat diffuses
very quickly in liquid metals (Pr � 1) and very slowly in oils (Pr � 1) relative
to momentum. Consequently the thermal boundary layer is much thicker for
liquid metals and much thinner for oils relative to the velocity boundary layer.

6–5 LAMINAR AND TURBULENT FLOWS
If you have been around smokers, you probably noticed that the cigarette
smoke rises in a smooth plume for the first few centimeters and then starts
fluctuating randomly in all directions as it continues its journey toward the
lungs of others (Fig. 6–14). Likewise, a careful inspection of flow in a pipe re-
veals that the fluid flow is streamlined at low velocities but turns chaotic as
the velocity is increased above a critical value, as shown in Figure 6–15. The
flow regime in the first case is said to be laminar, characterized by smooth
streamlines and highly-ordered motion, and turbulent in the second case,
where it is characterized by velocity fluctuations and highly-disordered mo-
tion. The transition from laminar to turbulent flow does not occur suddenly;
rather, it occurs over some region in which the flow fluctuates between lami-
nar and turbulent flows before it becomes fully turbulent.

We can verify the existence of these laminar, transition, and turbulent flow
regimes by injecting some dye streak into the flow in a glass tube, as the
British scientist Osborn Reynolds (1842–1912) did over a century ago. We
will observe that the dye streak will form a straight and smooth line at low ve-
locities when the flow is laminar (we may see some blurring because of mol-
ecular diffusion), will have bursts of fluctuations in the transition regime, and
will zigzag rapidly and randomly when the flow becomes fully turbulent.
These zigzags and the dispersion of the dye are indicative of the fluctuations
in the main flow and the rapid mixing of fluid particles from adjacent layers.

Typical velocity profiles in laminar and turbulent flow are also given in Fig-
ure 6–10. Note that the velocity profile is approximately parabolic in laminar
flow and becomes flatter in turbulent flow, with a sharp drop near the surface.
The turbulent boundary layer can be considered to consist of three layers. The
very thin layer next to the wall where the viscous effects are dominant is
the laminar sublayer. The velocity profile in this layer is nearly linear, and
the flow is streamlined. Next to the laminar sublayer is the buffer layer, in
which the turbulent effects are significant but not dominant of the diffusion
effects, and next to it is the turbulent layer, in which the turbulent effects
dominate.

The intense mixing of the fluid in turbulent flow as a result of rapid fluctu-
ations enhances heat and momentum transfer between fluid particles, which
increases the friction force on the surface and the convection heat transfer
rate. It also causes the boundary layer to enlarge. Both the friction and heat
transfer coefficients reach maximum values when the flow becomes fully tur-
bulent. So it will come as no surprise that a special effort is made in the design

�
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TABLE 6–2

Typical ranges of Prandtl numbers
for common fluids

Fluid Pr

Liquid metals 0.004–0.030
Gases 0.7–1.0
Water 1.7–13.7
Light organic fluids 5–50
Oils 50–100,000
Glycerin 2000–100,000

Smoke

Turbulent
flow

Laminar
flow

FIGURE 6–14
Laminar and turbulent flow regimes of
cigarette smoke.

(a) Laminar flow Die trace

(b) Turbulent flow

FIGURE 6–15
The behavior of colored fluid injected
into the flow in laminar and turbulent
flows in a tube.
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of heat transfer coefficients associated with turbulent flow. The enhancement
in heat transfer in turbulent flow does not come for free, however. It may be
necessary to use a larger pump to overcome the larger friction forces accom-
panying the higher heat transfer rate.

Reynolds Number
The transition from laminar to turbulent flow depends on the surface geome-
try, surface roughness, free-stream velocity, surface temperature, and type of
fluid, among other things. After exhaustive experiments in the 1880s, Osborn
Reynolds discovered that the flow regime depends mainly on the ratio of the
inertia forces to viscous forces in the fluid. This ratio is called the Reynolds
number, which is a dimensionless quantity, and is expressed for external flow
as (Fig. 6–16)

(6-13)

where � is the upstream velocity (equivalent to the free-stream velocity u� for
a flat plate), Lc is the characteristic length of the geometry, and  � �/� is the
kinematic viscosity of the fluid. For a flat plate, the characteristic length is the
distance x from the leading edge. Note that kinematic viscosity has the unit
m2/s, which is identical to the unit of thermal diffusivity, and can be viewed as
viscous diffusivity or diffusivity for momentum.

At large Reynolds numbers, the inertia forces, which are proportional to the
density and the velocity of the fluid, are large relative to the viscous forces,
and thus the viscous forces cannot prevent the random and rapid fluctuations
of the fluid. At small Reynolds numbers, however, the viscous forces are large
enough to overcome the inertia forces and to keep the fluid “in line.” Thus the
flow is turbulent in the first case and laminar in the second.

The Reynolds number at which the flow becomes turbulent is called the
critical Reynolds number. The value of the critical Reynolds number is dif-
ferent for different geometries. For flow over a flat plate, the generally ac-
cepted value of the critical Reynolds number is Recr � �xcr/ � u�xcr/ �
5 � 105, where xcr is the distance from the leading edge of the plate at which
transition from laminar to turbulent flow occurs. The value of Recr may
change substantially, however, depending on the level of turbulence in the free
stream.

6–6 HEAT AND MOMENTUM TRANSFER IN
TURBULENT FLOW

Most flows encountered in engineering practice are turbulent, and thus it is
important to understand how turbulence affects wall shear stress and heat
transfer. Turbulent flow is characterized by random and rapid fluctuations of
groups of fluid particles, called eddies, throughout the boundary layer. These
fluctuations provide an additional mechanism for momentum and heat trans-
fer. In laminar flow, fluid particles flow in an orderly manner along stream-
lines, and both momentum and heat are transferred across streamlines by
molecular diffusion. In turbulent flow, the transverse motion of eddies trans-
port momentum and heat to other regions of flow before they mix with the rest
of the fluid and lose their identity, greatly enhancing momentum and heat

�

Re �
Inertia forces

Viscous
�

�Lc

 �
��Lc

�

CHAPTER 6
343

Inertia forces
––––––––––––
Viscous forces

Re = 

=
ρ   2/L
––––––
µ  /L2

ρ   
––––µ
   L–––ν

=

=
� 

�L

� 

�

L
�

FIGURE 6–16
The Reynolds number can be viewed

as the ratio of the inertia forces to
viscous forces acting on a fluid

volume element.

cen58933_ch06.qxd  9/4/2002  12:05 PM  Page 343



transfer. As a result, turbulent flow is associated with much higher values of
friction and heat transfer coefficients (Fig. 6–17).

Even when the mean flow is steady, the eddying motion in turbulent flow
causes significant fluctuations in the values of velocity, temperature, pressure,
and even density (in compressible flow). Figure 6–18 shows the variation of
the instantaneous velocity component u with time at a specified location, as
can be measured with a hot-wire anemometer probe or other sensitive device.
We observe that the instantaneous values of the velocity fluctuate about a
mean value, which suggests that the velocity can be expressed as the sum of a
mean value and a fluctuating component u�,

u � � u� (6-14)

This is also the case for other properties such as the velocity component v in
the y direction, and thus v � � v�, P � � P�, and T � � T�. The mean
value of a property at some location is determined by averaging it over a time
interval that is sufficiently large so that the net effect of fluctuations is zero.
Therefore, the time average of fluctuating components is zero, e.g., � � 0.
The magnitude of u� is usually just a few percent of , but the high frequen-
cies of eddies (in the order of a thousand per second) makes them very effec-
tive for the transport of momentum and thermal energy. In steady turbulent
flow, the mean values of properties (indicated by an overbar) are independent
of time.

Consider the upward eddy motion of a fluid during flow over a surface. The
mass flow rate of fluid per unit area normal to flow is �v�. Noting that h � CpT
represents the energy of the fluid and T� is the eddy temperature relative to the
mean value, the rate of thermal energy transport by turbulent eddies is
q·t � �Cpv�T�. By a similar argument on momentum transfer, the turbulent shear
stress can be shown to be �t � �� . Note that � 0 even though � 0
and � 0, and experimental results show that is a negative quantity.
Terms such as �� are called Reynolds stresses.

The random eddy motion of groups of particles resembles the random mo-
tion of molecules in a gas—colliding with each other after traveling a certain
distance and exchanging momentum and heat in the process. Therefore, mo-
mentum and heat transport by eddies in turbulent boundary layers is analo-
gous to the molecular momentum and heat diffusion. Then turbulent wall
shear stress and turbulent heat transfer can be expressed in an analogous
manner as

(6-15)

where �t is called the turbulent viscosity, which accounts for momentum
transport by turbulent eddies, and kt is called the turbulent thermal conduc-
tivity, which accounts for thermal energy transport by turbulent eddies. Then
the total shear stress and total heat flux can be expressed conveniently as

(6-16)

and

(6-17)q̇total � �(k � kt) 
�T
�y � ��Cp(� � �H) 

�T
�y

�total � (� � �t) 
�u

_

�y � �( � �M) 
�u

_

�y

�t � ��u�v� � �t 
�u

_

�y     and    q̇t � �Cp v�T� � �kt 
�T
�y

u�v�
u�v�v�

u�u�v�u�v�

u
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FIGURE 6–17
The intense mixing in turbulent flow
brings fluid particles at different
temperatures into close contact, and
thus enhances heat transfer.
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FIGURE 6–18
Fluctuations of the velocity
component u with time at a specified
location in turbulent flow.
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where �M � �t/� is the eddy diffusivity of momentum and �H � kt/�Cp is the
eddy diffusivity of heat.

Eddy motion and thus eddy diffusivities are much larger than their molecu-
lar counterparts in the core region of a turbulent boundary layer. The eddy mo-
tion loses its intensity close to the wall, and diminishes at the wall because of
the no-slip condition. Therefore, the velocity and temperature profiles are
nearly uniform in the core region of a turbulent boundary layer, but very steep
in the thin layer adjacent to the wall, resulting in large velocity and tempera-
ture gradients at the wall surface. So it is no surprise that the wall shear stress
and wall heat flux are much larger in turbulent flow than they are in laminar
flow (Fig. 6–19).

Note that molecular diffusivities  and � (as well as � and k) are fluid prop-
erties, and their values can be found listed in fluid handbooks. Eddy diffusiv-
ities �M and �H (as well as �t and kt), however are not fluid properties and their
values depend on flow conditions. Eddy diffusivities �M and �H decrease to-
wards the wall, becoming zero at the wall.

6–7 DERIVATION OF DIFFERENTIAL
CONVECTION EQUATIONS*

In this section we derive the governing equations of fluid flow in the bound-
ary layers. To keep the analysis at a manageable level, we assume the flow to
be steady and two-dimensional, and the fluid to be Newtonian with constant
properties (density, viscosity, thermal conductivity, etc.).

Consider the parallel flow of a fluid over a surface. We take the flow direc-
tion along the surface to be x and the direction normal to the surface to be y,
and we choose a differential volume element of length dx, height dy, and unit
depth in the z-direction (normal to the paper) for analysis (Fig. 6–20). The
fluid flows over the surface with a uniform free-stream velocity u�, but the ve-
locity within boundary layer is two-dimensional: the x-component of the ve-
locity is u, and the y-component is v. Note that u � u(x, y) and v � v(x, y) in
steady two-dimensional flow.

Next we apply three fundamental laws to this fluid element: Conservation of
mass, conservation of momentum, and conservation of energy to obtain the con-
tinuity, momentum, and energy equations for laminar flow in boundary layers.

Conservation of Mass Equation
The conservation of mass principle is simply a statement that mass cannot be
created or destroyed, and all the mass must be accounted for during an analy-
sis. In steady flow, the amount of mass within the control volume remains
constant, and thus the conservation of mass can be expressed as

(6-18)� Rate of mass flow
into the control volume� � � Rate of mass flow

out of the control volume�

�
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FIGURE 6–19
The velocity and temperature gradients

at the wall, and thus the wall shear stress
and heat transfer rate, are much larger

for turbulent flow than they are for
laminar flow (T is shown relative to Ts).

*This and the upcoming sections of this chapter deal with theoretical aspects of convection,
and can be skipped and be used as a reference if desired without a loss in continuity.
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FIGURE 6–20
Differential control volume used in the
derivation of mass balance in velocity

boundary layer in two-dimensional
flow over a surface.
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Noting that mass flow rate is equal to the product of density, mean velocity,
and cross-sectional area normal to flow, the rate at which fluid enters the con-
trol volume from the left surface is �u(dy � 1). The rate at which the fluid
leaves the control volume from the right surface can be expressed as

(6-19)

Repeating this for the y direction and substituting the results into Eq. 6-18, we
obtain

(6-20)

Simplifying and dividing by dx � dy � 1 gives

(6-21)

This is the conservation of mass relation, also known as the continuity equa-
tion, or mass balance for steady two-dimensional flow of a fluid with con-
stant density.

Conservation of Momentum Equations
The differential forms of the equations of motion in the velocity boundary
layer are obtained by applying Newton’s second law of motion to a differen-
tial control volume element in the boundary layer. Newton’s second law is an
expression for the conservation of momentum, and can be stated as the net
force acting on the control volume is equal to the mass times the acceleration
of the fluid element within the control volume, which is also equal to the net
rate of momentum outflow from the control volume.

The forces acting on the control volume consist of body forces that act
throughout the entire body of the control volume (such as gravity, electric, and
magnetic forces) and are proportional to the volume of the body, and surface
forces that act on the control surface (such as the pressure forces due to hy-
drostatic pressure and shear stresses due to viscous effects) and are propor-
tional to the surface area. The surface forces appear as the control volume is
isolated from its surroundings for analysis, and the effect of the detached body
is replaced by a force at that location. Note that pressure represents the com-
pressive force applied on the fluid element by the surrounding fluid, and is al-
ways directed to the surface.

We express Newton’s second law of motion for the control volume as

(6-22)

or

�m � ax � Fsurface, x � Fbody, x (6-23)

where the mass of the fluid element within the control volume is

�m � �(dx � dy � 1) (6-24)

(Mass)� Acceleration
in a specified direction� � �Net force (body and surface)

acting in that direction �

�u
�x �

�v
�y � 0

�u(dy � 1) � �v(dx � 1) � ��u �
�u
�x dx�(dy � 1) � �� �

�v
�y dy�(dx � 1)

��u �
�u
�x dx� (dy � 1)
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Noting that flow is steady and two-dimensional and thus u � u(x, y), the total
differential of u is

(6-25)

Then the acceleration of the fluid element in the x direction becomes

(6-26)

You may be tempted to think that acceleration is zero in steady flow since
acceleration is the rate of change of velocity with time, and in steady flow
there is no change with time. Well, a garden hose nozzle will tell us that this
understanding is not correct. Even in steady flow and thus constant mass flow
rate, water will accelerate through the nozzle (Fig. 6–21). Steady simply
means no change with time at a specified location (and thus �u/�t � 0), but
the value of a quantity may change from one location to another (and thus
�u/�x and �u/�y may be different from zero). In the case of a nozzle, the ve-
locity of water remains constant at a specified point, but it changes from inlet
to the exit (water accelerates along the nozzle, which is the reason for attach-
ing a nozzle to the garden hose in the first place).

The forces acting on a surface are due to pressure and viscous effects. In
two-dimensional flow, the viscous stress at any point on an imaginary surface
within the fluid can be resolved into two perpendicular components: one nor-
mal to the surface called normal stress (which should not be confused with
pressure) and another along the surface called shear stress. The normal stress
is related to the velocity gradients �u/�x and �v/�y, that are much smaller than
�u/�y, to which shear stress is related. Neglecting the normal stresses for sim-
plicity, the surface forces acting on the control volume in the x-direction will
be as shown in Fig. 6–22. Then the net surface force acting in the x-direction
becomes

(6-27)

since � � �(�u/�y). Substituting Eqs. 6-21, 6-23, and 6-24 into Eq. 6-20 and
dividing by dx � dy � 1 gives

(6-28)

This is the relation for the conservation of momentum in the x-direction, and
is known as the x-momentum equation. Note that we would obtain the same
result if we used momentum flow rates for the left-hand side of this equation
instead of mass times acceleration. If there is a body force acting in the
x-direction, it can be added to the right side of the equation provided that it is
expressed per unit volume of the fluid.

In a boundary layer, the velocity component in the flow direction is much
larger than that in the normal direction, and thus u � v, and �v/�x and �v/�y are

��u 
�u
�x � v 

�u
�y� � � 

�2u
�y2 �

�P
�x

 � ��
�2u
�y2 �

�P
�x�(dx � dy � 1)

Fsurface, x � ���
�y dy�(dx � 1) � ��P

�x  dx�(dy � 1) � ���
�y �

�P
�x�(dx � dy � 1)

ax �
du
dt
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�x

 
dx
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FIGURE 6–21
During steady flow, a fluid may not

accelerate in time at a fixed point, but
it may accelerate in space.
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Differential control volume used in the
derivation of x-momentum equation in

velocity boundary layer in two-
dimensional flow over a surface.
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negligible. Also, u varies greatly with y in the normal direction from zero at the
wall surface to nearly the free-stream value across the relatively thin boundary
layer, while the variation of u with x along the flow is typically small. There-
fore, �u/�y � �u/�x. Similarly, if the fluid and the wall are at different temper-
atures and the fluid is heated or cooled during flow, heat conduction will occur
primarily in the direction normal to the surface, and thus �T/�y � �T/�x. That
is, the velocity and temperature gradients normal to the surface are much
greater than those along the surface. These simplifications are known as the
boundary layer approximations. These approximations greatly simplify the
analysis usually with little loss in accuracy, and make it possible to obtain ana-
lytical solutions for certain types of flow problems (Fig. 6–23).

When gravity effects and other body forces are negligible and the boundary
layer approximations are valid, applying Newton’s second law of motion on
the volume element in the y-direction gives the y-momentum equation to be

(6-29)

That is, the variation of pressure in the direction normal to the surface is neg-
ligible, and thus P � P(x) and �P/�x � dP/dx. Then it follows that for a given
x, the pressure in the boundary layer is equal to the pressure in the free stream,
and the pressure determined by a separate analysis of fluid flow in the free
stream (which is typically easier because of the absence of viscous effects)
can readily be used in the boundary layer analysis.

The velocity components in the free stream region of a flat plate are u � u�

� constant and v � 0. Substituting these into the x-momentum equations
(Eq. 6-28) gives �P/�x � 0. Therefore, for flow over a flat plate, the pres-
sure remains constant over the entire plate (both inside and outside the bound-
ary layer).

Conservation of Energy Equation
The energy balance for any system undergoing any process is expressed as
Ein � Eout � 	Esystem, which states that the change in the energy content of a
system during a process is equal to the difference between the energy input
and the energy output. During a steady-flow process, the total energy content
of a control volume remains constant (and thus 	Esystem � 0), and the amount
of energy entering a control volume in all forms must be equal to the amount
of energy leaving it. Then the rate form of the general energy equation reduces
for a steady-flow process to E

·
in � E

·
out � 0.

Noting that energy can be transferred by heat, work, and mass only, the en-
ergy balance for a steady-flow control volume can be written explicitly as

(E
·
in � E

·
out)by heat � (E

·
in � E

·
out)by work � (E

·
in � E

·
out)by mass � 0 (6-30)

The total energy of a flowing fluid stream per unit mass is estream � h � ke �
pe where h is the enthalpy (which is the sum of internal energy and flow en-
ergy), pe � gz is the potential energy, and ke � �2/2 � (u2 � v2)/2 is the
kinetic energy of the fluid per unit mass. The kinetic and potential energies are
usually very small relative to enthalpy, and therefore it is common practice to
neglect them (besides, it can be shown that if kinetic energy is included in the
analysis below, all the terms due to this inclusion cancel each other). We

�P
�y � 0
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assume the density �, specific heat Cp, viscosity �, and the thermal conductiv-
ity k of the fluid to be constant. Then the energy of the fluid per unit mass can
be expressed as estream � h � CpT.

Energy is a scalar quantity, and thus energy interactions in all directions can
be combined in one equation. Noting that mass flow rate of the fluid entering
the control volume from the left is �u(dy � 1), the rate of energy transfer to the
control volume by mass in the x-direction is, from Fig. 6–24,

(6-31)

Repeating this for the y-direction and adding the results, the net rate of energy
transfer to the control volume by mass is determined to be

(6-32)

since �u/�x � �v/�y � 0 from the continuity equation.
The net rate of heat conduction to the volume element in the x-direction is

(6-33)

Repeating this for the y-direction and adding the results, the net rate of energy
transfer to the control volume by heat conduction becomes

(6-34)

Another mechanism of energy transfer to and from the fluid in the control
volume is the work done by the body and surface forces. The work done by a
body force is determined by multiplying this force by the velocity in the di-
rection of the force and the volume of the fluid element, and this work needs
to be considered only in the presence of significant gravitational, electric, or
magnetic effects. The surface forces consist of the forces due to fluid pressure
and the viscous shear stresses. The work done by pressure (the flow work) is
already accounted for in the analysis above by using enthalpy for the micro-
scopic energy of the fluid instead of internal energy. The shear stresses that re-
sult from viscous effects are usually very small, and can be neglected in many
cases. This is especially the case for applications that involve low or moderate
velocities.

Then the energy equation for the steady two-dimensional flow of a fluid
with constant properties and negligible shear stresses is obtained by substitut-
ing Eqs. 6-32 and 6-34 into 6-30 to be

(6-35)�Cp�u 
�T
�x � v 

�T
�y � � k��2T

�x2 �
�2T
�y2 �

(Ėin � Ėout ) by heat � k 
�2T
�x2 dxdy � k 

�2T
�y2 dxdy � k��2T

�x2 �
�2T
�y2 �dxdy

 � �
�
�x ��k(dy � 1) 

�T
�x � dx � k 

�2T
�x2 

 dx dy

(Ėin � Ėout)by heat, x � Q̇x � �Q̇x �
�Q̇x

�x  dx�

 � ��Cp�u 
�T
�x � v 

�T
�y�dxdy

(Ėin � Ėout)by mass � ��Cp�u 
�T
�x � T 

�u
�x�dxdy � �Cp�v 

�T
�y � T 

�v
�y�dxdy

 � �
�[�u(dy � 1)CpT ]

�x  dx � ��Cp�u 
�T
�x � T 

�u
�x�dxdy

(Ėin �Ėout)by mass, x � ( ṁestream)x � �( ṁestream)x �
�(ṁestream)x

�x  dx�
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which states that the net energy convected by the fluid out of the control vol-
ume is equal to the net energy transferred into the control volume by heat
conduction.

When the viscous shear stresses are not negligible, their effect is accounted
for by expressing the energy equation as

(6-36)

where the viscous dissipation function � is obtained after a lengthy analysis
(see an advanced book such as the one by Schlichting (Ref. 9) for details) to be

(6-37)

Viscous dissipation may play a dominant role in high-speed flows, especially
when the viscosity of the fluid is high (like the flow of oil in journal bearings).
This manifests itself as a significant rise in fluid temperature due to the con-
version of the kinetic energy of the fluid to thermal energy. Viscous dissipa-
tion is also significant for high-speed flights of aircraft.

For the special case of a stationary fluid, u � v � 0 and the energy equation
reduces, as expected, to the steady two-dimensional heat conduction equation,

(6-38)
�2T
�x2 �

�2T
�y2 � 0

� � 2���u
�x�

2
� ��v

�y�
2� � ��u

�y �
�v
�x�

2

�Cp�u 
�T
�x � v 

�T
�y � � k��2T

�x2 �
�2T
�y2 � � ��
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FIGURE 6–25
Schematic for Example 6–1.

EXAMPLE 6–1 Temperature Rise of Oil in a Journal Bearing

The flow of oil in a journal bearing can be approximated as parallel flow be-
tween two large plates with one plate moving and the other stationary. Such
flows are known as Couette flow.

Consider two large isothermal plates separated by 2-mm-thick oil film. The
upper plates moves at a constant velocity of 12 m/s, while the lower plate is sta-
tionary. Both plates are maintained at 20˚C. (a) Obtain relations for the velocity
and temperature distributions in the oil. (b) Determine the maximum tempera-
ture in the oil and the heat flux from the oil to each plate (Fig. 6–25).

SOLUTION Parallel flow of oil between two plates is considered. The velocity
and temperature distributions, the maximum temperature, and the total heat
transfer rate are to be determined.
Assumptions 1 Steady operating conditions exist. 2 Oil is an incompressible
substance with constant properties. 3 Body forces such as gravity are negligible.
4 The plates are large so that there is no variation in the z direction.
Properties The properties of oil at 20˚C are (Table A-10):

k � 0.145 W/m � K and � � 0.800 kg/m � s � 0.800 N � s/m2

Analysis (a) We take the x-axis to be the flow direction, and y to be the normal
direction. This is parallel flow between two plates, and thus v � 0. Then the
continuity equation (Eq. 6-21) reduces to

Continuity:
�u
�x �

�v
�y � 0 →  

�u
�x � 0  → u � u(y)
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