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Therefore, lumped system analysis is not applicable. However, we can still use
it to get a “rough” estimate of the time of death. The exponent b in this case is

b DA h 8 W/ - °C
pCV  pCpL. (996 kg/m?)(4178 Jkg - °C)(0.0689 m)
=279% 105s!

We now substitute these values into Eq. 4-4,

T(t) - T, — ght 25-20 — @ (279x10°s Yt

T - T. 37— 20

which yields
t=43,860s=12.2h
Therefore, as a rough estimate, the person died about 12 h before the body was

found, and thus the time of death is 5 Am. This example demonstrates how to
obtain “ball park” values using a simple analysis.

4-2 - TRANSIENT HEAT CONDUCTION IN LARGE
PLANE WALLS, LONG CYLINDERS, AND
SPHERES WITH SPATIAL EFFECTS

In Section, 4-1, we considered bodies in which the variation of temperature
within the body was negligible; that is, bodies that remain nearly isothermal
during a process. Relatively small bodies of highly conductive materials ap-
proximate this behavior. In general, however, the temperature within a body
will change from point to point as well as with time. In this section, we con-
sider the variation of temperature with time and position in one-dimensional
problems such as those associated with alarge plane wall, along cylinder, and
asphere.

Consider a plane wall of thickness 2L, a long cylinder of radius r,, and
a sphere of radius r,, initially at a uniform temperature T;, as shown in Fig.
4-11. At timet = 0, each geometry is placed in alarge medium that is at a
constant temperature T,, and kept in that medium for t > 0. Heat transfer takes
place between these bodies and their environments by convection with a uni-
formand constant heat transfer coefficient h. Note that all three cases possess
geometric and thermal symmetry: the planewall is symmetric about its center
plane (x = 0), the cylinder is symmetric about its centerline (r = 0), and the
sphere is symmetric about its center point (r = 0). We neglect radiation heat
transfer between these bodies and their surrounding surfaces, or incorporate
the radiation effect into the convection heat transfer coefficient h.

The variation of the temperature profile with time in the plane wall is
illustrated in Fig. 4-12. When the wall is first exposed to the surrounding
mediumat T, < T, at t = 0, theentirewall is at itsinitial temperature T;. But
the wall temperature at and near the surfaces starts to drop as a result of heat
transfer from the wall to the surrounding medium. This creates a temperature
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gradient in the wall and initiates heat conduction from the inner parts of the
wall toward its outer surfaces. Note that the temperature at the center of the
wall remainsat T, until t = t,, and that the temperature profile within the wall
remains symmetric at all times about the center plane. The temperature profile
getsflatter and flatter astime passes as aresult of heat transfer, and eventualy
becomes uniform at T = T... That is, the wall reaches thermal equilibrium
with its surroundings. At that point, the heat transfer stops since there is no
longer atemperature difference. Similar discussions can be given for the long
cylinder or sphere.

The formulation of the problems for the determination of the one-
dimensional transient temperature distribution T(x, t) in awall resultsin a par-
tial differential equation, which can be solved using advanced mathematical
techniques. The solution, however, normally involves infinite series, which
are inconvenient and time-consuming to evaluate. Therefore, there is clear
motivation to present the solution in tabular or graphical form. However, the
solution involvesthe parametersx, L, t, k, o, h, T;, and T.., which are too many
to make any graphical presentation of the results practical. In order to reduce
the number of parameters, we nondimensionalize the problem by defining the
following dimensionless quantities:

Dimensionless temperature: o(x, t) = w

Dimensionless distance from the center: X= E

Dimensionless heat transfer coefficient: Bi = h_ll_ (Biot number)
Dimensionless time: T= L—E (Fourier number)

The nondimensionalization enables us to present the temperature in terms of
three parameters only: X, Bi, and 7. This makes it practical to present the
solution in graphical form. The dimensionless quantities defined above for a
plane wall can also be used for a cylinder or sphere by replacing the space
variable x by r and the half-thickness L by the outer radius r,. Note that
the characteristic length in the definition of the Biot number istaken to be the
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FIGURE 4-11

Schematic of the simple
geometriesin which heat
transfer is one-dimensional.
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FIGURE 4-12

Transient temperature profilesin a
plane wall exposed to convection
fromits surfacesfor T; > T..
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half-thickness L for the plane wall, and the radiusr, for the long cylinder and
sphere instead of V/A used in lumped system analysis.

The one-dimensional transient heat conduction problem just described can
be solved exactly for any of the three geometries, but the solution involvesin-
finite series, which are difficult to deal with. However, the terms in the solu-
tions converge rapidly with increasing time, and for T > 0.2, keeping the first
term and neglecting all the remaining terms in the series results in an error
under 2 percent. We are usually interested in the solution for times with
7> 0.2, and thus it is very convenient to express the solution using this one-
term approximation, given as

T(x, t) — T..
5\,';?6 0(X, Dwal = % = Ale*x% cos (A ¥/L), 7>0.2 (4-10)
) i o0
i T(rl t) - Tz 2
Cy|lndefi G(r, t)cyl = ﬁ = Ale*}\l‘r \]0()\1',./'.0)l T > 02 @11
] oo
: Ty -T2 sSin(Agr/rg)
Sphere: 0(r, epn = ToT - A M T ~02 @12)

where the constants A, and \; are functions of the Bi number only, and their
values are listed in Table 4-1 against the Bi number for al three geometries.
The function J, is the zeroth-order Bessel function of the first kind, whose
value can be determined from Table 4-2. Noting that cos (0) = J,(0) = 1 and
the limit of (sin X)/x is also 1, these relations simplify to the next ones at the
center of aplane wall, cylinder, or sphere:

To— T
Center of planewall (x = 0): 00, wal = .I_Of.r = Ale*@T (4-13)
i )
_ To— T 2
Center of cylinder (r = 0): 00, ey = T T = A M7 (4-14)
i o
To— T 2
Center of sphere (r = 0): Qoon =T -7 = Aje M (4-15)
i o

Once the Bi number is known, the above relations can be used to determine
the temperature anywhere in the medium. The determination of the constants
A; and \; usually requires interpolation. For those who prefer reading charts
to interpolating, the relations above are plotted and the one-term approxima:
tion solutions are presented in graphical form, known as the transient temper-
ature charts. Note that the charts are sometimes difficult to read, and they are
subject to reading errors. Therefore, the relations above should be preferred to
the charts.

The transient temperature chartsin Figs. 4-13, 4-14, and 4-15 for alarge
plane wall, long cylinder, and sphere were presented by M. P. Heisler in 1947
and are called Heisler charts. They were supplemented in 1961 with transient
heat transfer charts by H. Grober. There are three charts associated with each
geometry: thefirst chart isto determine the temperature T, at the center of the
geometry at a given timet. The second chart is to determine the temperature
at other locations at the same time in terms of T,. The third chart is to deter-
mine the total amount of heat transfer up to the timet. These plots are valid
fort > 0.2.
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TABLE 4-1 TABLE 4-2
Coefficients used in the one-term approximate solution of transient one- The zeroth- and first-order Bessel
dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hL/k functions of the first kind
for_a plane wall of thickness 2L, and Bi = hr,/kfor a cylinder or sphere of £ I8 51 ()
radius r,)
0.0 1.0000 0.0000
Plane Wall Cylinder Sphere 0.1 0.9975 0.0499
Bi N\ A N\ A A\ A 0.2 0.9900 0.0995

0.3 0.9776 0.1483

0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030 04 0.9604 0.1960

0.02 0.1410 10033 0.1995 1.0050  0.2445  1.0060
0.04 01987 10066 02814 1.0099 0.3450 1.0120
0.06 02425 10098 03438 10148 04217 10179
008 02791 10130 03960 1.0197 0.4860 1.0239
01 03111 10161 04417 10246 05423  1.0298
02 04328 10311 06170 10483 07593  1.0592
03 05218 10450 07465 1.0712 09208  1.0880
04 05932 10580 08516 1.0931 10528 1.1164 10 07652  0.4400
05 06533 10701 09408 1.1143 11656 1.1441 11 07196 04709
06 07051 10814 10184 11345 12644 11713 1> 08711 04983

1.3

1.4

0.5 0.9385 0.2423
0.6 0.9120 0.2867
0.7 0.8812 0.3290
0.8 0.8463 0.3688
0.9 0.8075 0.4059

0.7 0.7506 1.0918 1.0873 1.1539 1.3525 1.1978 0.6201 0.5220
0.8 0.7910 1.1016 1.1490 1.1724 1.4320 1.2236 0.5669 0.5419
0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488

1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732 1.5 0.5118 0.5579
2.0 1.0769 1.1785 1.5995 1.3384 2.0288 1.4793 1.6 0.4554 0.5699
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227 1.7 0.3980 0.5778
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202 1.8 0.3400 0.5815
5.0 1.3138 1.2403 1.9898 1.5029 2.5704 1.7870 1.9 0.2818 0.5812
6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338

7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673 2.0 0.2239 0.5767
8.0 1.3978 1.2570 2.1286 1.5526 2.7654 1.8920 2.1 0.1666 0.5683
9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106 2.2 0.1104 0.5560
10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249 2.3 0.0555 0.5399
20.0 1.4961 1.2699 2.2880 1.5919 2.9857 1.9781 2.4 0.0025 0.5202
30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898
40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942 2.6 —0.0968 —0.4708
50.0 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962 2.8 —0.1850 —0.4097
100.0 1.5552 1.2731 2.3809 1.6015 3.1102 1.9990 3.0 —-0.2601 —0.3391
o0 1.5708 1.2732 2.4048 1.6021 3.1416 2.0000 3.2 —-0.3202 -0.2613

Note that the case 1/Bi = k/hL = 0 corresponds to h — <, which corre-
sponds to the case of specified surface temperature T... That is, the case in
which the surfaces of the body are suddenly brought to the temperature T,
att= 0andkept a T, at al times can be handled by setting h to infinity
(Fig. 4-16).

The temperature of the body changes from the initial temperature T, to the
temperature of the surroundings T.. at the end of the transient heat conduction
process. Thus, the maximum amount of heat that a body can gain (or lose if
T, > T.) issimply the change in the energy content of the body. That is,

Qmax = MC(T.. — Tj) = pVC(T.. — Ty) (kJ) (4-16)
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FIGURE 4-13

Transient temperature and heat transfer charts for a plane wall of thickness 2L initially at a uniform temperature T,
subjected to convection from both sides to an environment at temperature T,. with a convection coefficient of h.

where mis the mass, V is the volume, p is the density, and C;, is the specific
heat of the body. Thus, Q.. represents the amount of heat transfer for t — oe.
The amount of heat transfer Q at afinitetimet will obviously be lessthan this



22
CHAPTER 4

T,-T
f,= 0=
o T-T.
1 0 1T I
o7l ""ﬁi*: ===== w Cylinder
0511 e NN NS
0: 2 NN \\: S NN T T T N A
oo N e R e NN
024 NN 0?‘\4 N\ N N ~ \\\ NN 7R
ot NN 5 NN
0.1 \\\ AAY N\ ’\}6\ h \\\\ h h A ‘eoi \\ AVAN h N \\
) TN ¢ on \ 26 74 \ N P 1Y
0.05 LY . DT&
0.04 \\\\ YLy \ \\\’ 1t \\\ \ N \\;e\*”? \ \ ?Oi N UAN \
0.03 TN G N \ ] \ \
: 1 VY INCNSR LTATAWAY O[N] \ ,,‘6*0 NA
0.02 WAANNolY \ \ AN D \
| AGEE \ el \ \
o | ) | N
0.01 o o o | ‘5\\
) PN AR NEHTH A} L RN TATATA
0.007 =4 o) WAVAY AN NLT LAY A} AV @ T Y
- PR \ AV LI WAWR WA WAV 3
0.005 ol i N LTAYAN \ \\
=\ \ AN N\ \ \ [\
0.004 \\\\\ \\\ \ ‘\\\\ \\ \ \ \\\\ A N A\ \\ \\
o RENAE AR R ER LR |
0.002
1 \ \TAN \
0001 |\ VI \
0 1 2 3 4 6 8 10 14 18 22 26 30 50 70 100 120 140 150 250 350
T=ot/r? |
I
(a) Centerline temperature (from M. P. Heisler) T, Initilail T,
h|f T 3 T |[h
I
0? o |
T-T Q i
0= = < ~
To -T. Qma\x -I
1.0 — = e e 1.0 T
MR i Bi= h K p p
0.9 i) vq 09 / I 7 /
g ,—‘/
0.8 0.8 / / /
0.7 0.7 / y ' / / y
0.6 0.6 0.6 N 10
£8 ¥isla g U LT
05 05 p o,?,o Q,?,o 07/0,,'\/,‘\177% N Loy {1 7;0
[/ / / /
0.4 W 0.4 / i 7 i ’ »
0.3 m” 0.3 7 7 7
0.2 H-09 02 / / / /
i
011107 Cylinder 01— il i o i s en Cylinder
0 [ THfT 0== Sl Az = i
0.01 0.1 1.0 10 100 10° 104 103 102 101 1 10 102 108 104
1 _ k Bi2t = h2a.t/k?2
Bi ~ hr,
(b) Temperature distribution (from M. P. Heidler) (c) Heat transfer (from H. Grober et al.)
FIGURE 4-14

Transient temperature and heat transfer charts for along cylinder of radiusr, initially at a uniform temperature T,
subjected to convection from all sidesto an environment at temperature T,, with a convection coefficient of h.
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FIGURE 4-15

Transient temperature and heat transfer charts for a sphere of radiusr, initially at a uniform temperature T; subjected to
convection from all sides to an environment at temperature T., with a convection coefficient of h.

maximum. The ratio Q/Q,, is plotted in Figures 4-13c, 4-14c, and 4-15c
against the variables Bi and h?at/k? for the large plane wall, long cylinder, and



sphere, respectively. Note that once the fraction of heat transfer Q/Q,, has
been determined from these charts for the given t, the actual amount of heat
transfer by that time can be evaluated by multiplying this fraction by Q.
A negative sign for Q. indicates that heat is leaving the body (Fig. 4-17).

The fraction of heat transfer can aso be determined from these relations,
which are based on the one-term approximations already discussed:

Q Sin\;
Planewall: — =1—0gpal—~— 4-17)
Qnmax wall ' A
Ji(\
Cylinder: <i> =1—20p,¢y 1) (4-18)
Qmax oyl ' )\l
SiNA; — N\ COSA
Sphere: (i) =1-30ggn— 35— (4-19)
Qrmex sh ' A

The use of the Heidler/Grober charts and the one-term solutions already dis-
cussed is limited to the conditions specified at the beginning of this section:
the body isinitialy at a uniform temperature, the temperature of the medium
surrounding the body and the convection heat transfer coefficient are constant
and uniform, and there is no energy generation in the body.

We discussed the physical significance of the Biot number earlier and indi-
cated that it is a measure of the relative magnitudes of the two heat transfer
mechanisms: convection at the surface and conduction through the solid.
A small value of Bi indicates that the inner resistance of the body to heat con-
duction is small relative to the resistance to convection between the surface
and the fluid. As a result, the temperature distribution within the solid be-
comes fairly uniform, and lumped system analysis becomes applicable. Recall
that when Bi < 0.1, the error in assuming the temperature within the body to
be uniformis negligible.

To understand the physical significance of the Fourier number T, we ex-
pressit as (Fig. 4-18)

Therate at which heat is conducted
_at  KL2(WL)AT  acrossL of abody of volume L® 420
T2 pC,L¥t AT~ Therateat which heat is stored (4-20)
in abody of volume L3

Therefore, the Fourier number isameasure of heat conducted through a body
relative to heat stored. Thus, alarge value of the Fourier number indicates
faster propagation of heat through a body.

Perhaps you are wondering about what constitutes an infinitely large plate
or an infinitely long cylinder. After al, nothing in thisworld isinfinite. A plate
whose thickness is small relative to the other dimensions can be modeled as
aninfinitely large plate, except very near the outer edges. But the edge effects
on large bodies are usually negligible, and thus alarge plane wall such asthe
wall of ahouse can be modeled as an infinitely large wall for heat transfer pur-
poses. Similarly, along cylinder whose diameter is small relative to its length
can be analyzed as an infinitely long cylinder. The use of the transient tem-
perature charts and the one-term solutions is illustrated in the following
examples.
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FIGURE 4-16
The specified surface
temperature corresponds to the case
of convection to an environment at
T.. with a convection coefficient h
that isinfinite.
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(a) Maximum heat transfer (t — =)

Q

Bi2:... Q
h_at:BiZfC:... Qmax

K2
(Grober chart)

(b) Actual heat transfer for timet
FIGURE 4-17
The fraction of total heat transfer
Q/Q,.x Up to aspecified timetis
determined using the Grober charts.

Qoonducted

—ot :Qconducled
L? .

Fourier number: t
Qslored

FIGURE 4-18

Fourier number at timet can be
viewed as the ratio of the rate of heat
conducted to the rate of heat stored
at that time.

EXAMPLE 4-3 Boiling Eggs

An ordinary egg can be approximated as a 5-cm-diameter sphere (Fig. 4-19).
The egg is initially at a uniform temperature of 5°C and is dropped into boil-
ing water at 95°C. Taking the convection heat transfer coefficient to be
h = 1200 W/m? - °C, determine how long it will take for the center of the egg
to reach 70°C.

SOLUTION An egg is cooked in boiling water. The cooking time of the egg is to
be determined.

Assumptions 1 The egg is spherical in shape with a radius of r, = 2.5 cm.
2 Heat conduction in the egg is one-dimensional because of thermal symmetry
about the midpoint. 3 The thermal properties of the egg and the heat transfer
coefficient are constant. 4 The Fourier number is T > 0.2 so that the one-term
approximate solutions are applicable.

Properties The water content of eggs is about 74 percent, and thus the ther-
mal conductivity and diffusivity of eggs can be approximated by those of water
at the average temperature of (5 + 70)/2 = 37.5°C; k = 0.627 W/m - °C and
a = klpC, = 0.151 X 10°° m?s (Table A-9).

Analysis The temperature within the egg varies with radial distance as well as
time, and the temperature at a specified location at a given time can be deter-
mined from the Heisler charts or the one-term solutions. Here we will use the
latter to demonstrate their use. The Biot number for this problem is

hry (1200 W/m2 - °C)(0.025m) _
k 0.627 W/m - °C -

47.8

which is much greater than 0.1, and thus the lumped system analysis is not
applicable. The coefficients A; and A; for a sphere corresponding to this Bi are,
from Table 4-1,

\, = 30753, A, = 1.9958

Substituting these and other values into Eq. 4-15 and solving for T gives

To— T
Ti - -I—Qo

70 — 95

E—op = 19958e GO 5 1 =0.200

= A167 )\% i

which is greater than 0.2, and thus the one-term solution is applicable with an
error of less than 2 percent. Then the cooking time is determined from the de-
finition of the Fourier number to be

g (0.209)(0.025 m)?

t =
& 0151 X 10 °m?s

= 865 s = 14.4 min

Therefore, it will take about 15 min for the center of the egg to be heated from
5°C to 70°C.

Discussion Note that the Biot number in lumped system analysis was defined
differently as Bi = hL./k = h(r/3)/k. However, either definition can be used in
determining the applicability of the lumped system analysis unless Bi = 0.1.
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EXAMPLE 44 Heating of Large Brass Plates in an Oven

In a production facility, large brass plates of 4 cm thickness that are initially at
a uniform temperature of 20°C are heated by passing them through an oven
that is maintained at 500°C (Fig. 4-20). The plates remain in the oven for a
period of 7 min. Taking the combined convection and radiation heat transfer
coefficient to be h = 120 W/m? - °C, determine the surface temperature of the
plates when they come out of the oven.

SOLUTION Large brass plates are heated in an oven. The surface temperature
of the plates leaving the oven is to be determined.

Assumptions 1 Heat conduction in the plate is one-dimensional since the plate
is large relative to its thickness and there is thermal symmetry about the center
plane. 2 The thermal properties of the plate and the heat transfer coefficient are
constant. 3 The Fourier number is > 0.2 so that the one-term approximate so-
lutions are applicable.

Properties The properties of brass at room temperature are k = 110 W/m - °C,
p = 8530 kg/m3, C, = 380 J/kg - °C, and a = 33.9 X 107° m?/s (Table A-3).
More accurate results are obtained by using properties at average temperature.
Analysis The temperature at a specified location at a given time can be de-
termined from the Heisler charts or one-term solutions. Here we will use the
charts to demonstrate their use. Noting that the half-thickness of the plate is
L = 0.02 m, from Fig. 4-13 we have

1k _ 100 W/m - °C _ 458
Bi hL (120 W/m? - °C)(0.02 m) ‘ g =l 0,46
ot (339X 10°°ms)(7 X 60s) 56 T-T.
TTRT (0.02 m)? -
Also,
1_k_
Bi AL P8 o
x_L_, To_Toc=o.99
L L
Therefore,
T-T. T-T.T,-T. B
ToT ST oT.TOT = 0.46 X 0.99 = 0.455

and

T =T, + 0.455(T; — T..) = 500 + 0.455(20 — 500) = 282°C

Therefore, the surface temperature of the plates will be 282°C when they leave
the oven.

Discussion We notice that the Biot number in this case is Bi = 1/45.8 =
0.022, which is much less than 0.1. Therefore, we expect the lumped system
analysis to be applicable. This is also evident from (T — T.)/(T, — T..) = 0.99,
which indicates that the temperatures at the center and the surface of the plate
relative to the surrounding temperature are within 1 percent of each other.

h = 1200 W/m2-°C
T, =95°C

FIGURE 4-19
Schematic for Example 4-3.

T, =500°C
h =120 W/m2°C

7
Brass
plate

T,=20°C

FIGURE 4-20
Schematic for Example 4-4.
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Noting that the error involved in reading the Heisler charts is typically at least a
few percent, the lumped system analysis in this case may yield just as accurate
results with less effort.

The heat transfer surface area of the plate is 2A, where A is the face area of
the plate (the plate transfers heat through both of its surfaces), and the volume
of the plate is V = (2L)A, where L is the half-thickness of the plate. The expo-
nent b used in the lumped system analysis is determined to be

s A _ h@dy _ h
pCV  pC,(2LA)  pCyL
_ 120 W/m? - °C
(8530 kg/m?3)(380 Jkg - °C)(0.02 m)

= 0.00185s!

Then the temperature of the plate at t = 7 min = 420 s is determined from

T() - T. — Mt T(t) — 500 — @ (0.0018557)(4209)
T, —T. 20 — 500
It yields
T(t) = 279°C

which is practically identical to the result obtained above using the Heisler
charts. Therefore, we can use lumped system analysis with confidence when the
Biot number is sufficiently small.

T, =200°C
h =80W/m?-°C

Stainless steel
shaft

T, = 600°C D =20cm

FIGURE 4-21
Schematic for Example 4-5.

EXAMPLE 4-5 Cooling of a Long
Stainless Steel Cylindrical Shaft

A long 20-cm-diameter cylindrical shaft made of stainless steel 304 comes out
of an oven at a uniform temperature of 600°C (Fig. 4-21). The shaft is then al-
lowed to cool slowly in an environment chamber at 200°C with an average heat
transfer coefficient of h = 80 W/m? - °C. Determine the temperature at the cen-
ter of the shaft 45 min after the start of the cooling process. Also, determine
the heat transfer per unit length of the shaft during this time period.

SOLUTION A long cylindrical shaft at 600°C is allowed to cool slowly. The cen-
ter temperature and the heat transfer per unit length are to be determined.
Assumptions 1 Heat conduction in the shaft is one-dimensional since it is long
and it has thermal symmetry about the centerline. 2 The thermal properties of
the shaft and the heat transfer coefficient are constant. 3 The Fourier number
is T > 0.2 so that the one-term approximate solutions are applicable.
Properties The properties of stainless steel 304 at room temperature
are k = 149 W/m - °C, p = 7900 kg/m3, C, = 477 J/kg - °C, and
a = 3.95 X 10°° m?s (Table A-3). More accurate results can be obtained by
using properties at average temperature.

Analysis The temperature within the shaft may vary with the radial distance r
as well as time, and the temperature at a specified location at a given time can




be determined from the Heisler charts. Noting that the radius of the shaft is
r,= 0.1 m, from Fig. 4-14 we have

1_k__ 149Wm-°C _ oo
Bi hr, (BOW/M?-°C)(0.1m) T,— T.

ot (395 % 10°°m?s)(45 X 60S) =T 0.40
b OLm? = 1.07

and

T, = T, + 0.4(T; — T..) = 200 + 0.4(600 — 200) = 360°C

Therefore, the center temperature of the shaft will drop from 600°C to 360°C
in 45 min.

To determine the actual heat transfer, we first need to calculate the maximum
heat that can be transferred from the cylinder, which is the sensible energy of
the cylinder relative to its environment. Taking L = 1 m,

m = pV = pmrZ L = (7900 kg/m3)m(0.1 m)3(1 m) = 248.2 kg
Quac = MCy(T.. — T;) = (248.2 kg)(0.477 kI/kg - °C)(600 — 200)°C
= 47,354 kJ

The dimensionless heat transfer ratio is determined from Fig. 4—-14c for a long
cylinder to be

11

Bl =1gi ~ 186 0% o)

hat o =062
iz = Bi*r = (0.537)(1.07) = 0.309 | ~™

Therefore,
Q = 0.62Q,. = 0.62 X (47,354 kJ) = 29,360 kJ

which is the total heat transfer from the shaft during the first 45 min of
the cooling.

ALTERNATIVE SOLUTION We could also solve this problem using the one-term
solution relation instead of the transient charts. First we find the Biot number

. hr, (80W/m?.°C)(0.1m)
Bl = = Taowim..c _ 05%

The coefficients \; and A; for a cylinder corresponding to this Bi are deter-
mined from Table 4-1 to be

A, = 0970, A, =1122

Substituting these values into Eq. 4-14 gives

To— T _ Alef}‘f" = 1.122e (09705100 — (41

bo=1—7,

CHAPTER 4
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o Plane
surface
T,
h 0 ”
FIGURE 4-22

Schematic of a semi-infinite body.

and thus

T, = T.. + 0.41(T, — T..) = 200 + 0.41(600 — 200) = 364°C

The value of Ji(\;) for \; = 0.970 is determined from Table 4-2 to be 0.430.
Then the fractional heat transfer is determined from Eq. 4-18 to be

Q J(N) 0.430 _
N =1—-2X 0.41m = 0.636

and thus

Q = 0.636Q, = 0.636 X (47,354 kJ) = 30,120 kJ

Discussion The slight difference between the two results is due to the reading
error of the charts.

4-3 = TRANSIENT HEAT CONDUCTION
IN SEMI-INFINITE SOLIDS

A semi-infinite solid is an idealized body that has a single plane surface and
extendsto infinity in all directions, as shown in Fig. 4-22. Thisidealized body
is used to indicate that the temperature change in the part of the body in which
we are interested (the region close to the surface) is due to the thermal condi-
tions on a single surface. The earth, for example, can be considered to be a
semi-infinite medium in determining the variation of temperature near its sur-
face. Also, athick wall can be modeled as a semi-infinite medium if all we are
interested in is the variation of temperature in the region near one of the sur-
faces, and the other surface is too far to have any impact on the region of in-
terest during the time of observation.

Consider a semi-infinite solid that is at a uniform temperature T,. At time
t = 0, the surface of the solid at x = 0 is exposed to convection by afluid at a
constant temperature T,,, with a heat transfer coefficient h. This problem can
be formulated as a partial differential equation, which can be solved analyti-
cally for the transient temperature distribution T(x, t). The solution obtained is
presented in Fig. 4-23 graphically for the nondimensionalized temperature
defined as

TXxt) —T. Txt)—T
T-T. T.—-T

1-0(xt)=1- 4-21)

against the dimensionless variable x/(2\/«at) for various values of the param-
eter hn/at/k.

Note that the values on the vertical axis correspond to x = 0, and thus rep-
resent the surface temperature. The curve h\/at/k = o correspondsto h — o,
which corresponds to the case of specified temperature T., at the surface at
x = 0. That is, the case in which the surface of the semi-infinite body is sud-
denly brought to temperature T, at t = 0 and kept at T., at all times can be han-
dled by setting h to infinity. The specified surface temperature caseis closely
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Variation of temperature with position and time in a semi-infinite solid initially at T; subjected to convection to an
environment at T,. with a convection heat transfer coefficient of h (from P. J. Schneider, Ref. 10).

approximated in practice when condensation or boiling takes place on the
surface. For a finite heat transfer coefficient h, the surface temperature
approaches the fluid temperature T,, asthe time t approaches infinity.

The exact solution of the transient one-dimensional heat conduction prob-
lem in a semi-infinite medium that isinitially at a uniform temperature of T,
and is suddenly subjected to convection at timet = 0 has been obtained, and

isexpressed as
T, 1) — T ( X ) (hx hz(xt) ( X h\/&)
—— L _ = — -+ — + 4-22
T.— T, erfe 2/ at &Pk k2 {erfc 2V at k } “-22)

where the quantity erfc (¢£) isthe complementary error function, defined as

2 (¢ .
erfc =1- —f e Y du 4-23
(&) V= Jo (4-23)

Despite its simple appearance, the integral that appears in the above relation
cannot be performed analytically. Therefore, it is evaluated numerically for
different values of &, and the results are listed in Table 4-3. For the special
case of h — o, the surface temperature T, becomes equal to the fluid temper-
ature T, and Eq. 4-22 reduces to

T%?;ﬂ: m&éa>

(4-24)
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TABLE 4-3
The complementary error function

S erfc (§) ¢ erfc (§) ¢ erfc (§) £ erfc (§) {4 erfc (§) {4 erfc (§)
0.00 1.00000 | 0.38 0.5910 | 0.76 0.2825 | 1.14 0.1069 1.52 0.03159 | 1.90 0.00721
0.02 0.9774 0.40 0.5716 | 0.78 0.2700 | 1.16 0.10090 | 1.54 0.02941 | 1.92 0.00662
0.04 0.9549 0.42 0.5525 | 0.80 0.2579 | 1.18 0.09516 | 1.56 0.02737 | 1.94 0.00608
0.06 0.9324 0.44 0.5338 | 0.82 0.2462 | 1.20 0.08969 | 1.58 0.02545 | 1.96 0.00557

0.08 0.9099 0.46 0.5153 | 0.84 0.2349 | 1.22 0.08447 | 1.60 0.02365 | 1.98 0.00511
0.10 0.8875 0.48 0.4973 | 0.86 0.2239 | 1.24 0.07950 | 1.62 0.02196 | 2.00 0.00468
0.12 0.8652 0.50 0.4795 | 0.88 0.2133 | 1.26 0.07476 | 1.64 0.02038 | 2.10 0.00298
0.14 0.8431 0.52 0.4621 | 0.90 0.2031 | 1.28 0.07027 | 1.66 0.01890 | 2.20 0.00186
0.16  0.8210 0.54 0.4451 | 0.92 0.1932 | 1.30 0.06599 | 1.68 0.01751 | 2.30 0.00114
0.18 0.7991 0.56 0.4284 | 0.94 0.1837 | 1.32 0.06194 | 1.70 0.01612 | 2.40 0.00069
0.20 0.7773 0.58 0.4121 | 0.96 0.1746 | 1.34 0.05809 | 1.72 0.01500 | 2.50 0.00041
0.22 0.7557 0.60 0.3961 | 0.98 0.1658 | 1.36 0.05444 | 1.74 0.01387 | 2.60 0.00024
0.24 0.7343 0.62 0.3806 | 1.00 0.1573 | 1.38 0.05098 | 1.76 0.01281 | 2.70 0.00013
0.26 0.7131 0.64 0.3654 | 1.02 0.1492 | 1.40 0.04772 | 1.78 0.01183 | 2.80 0.00008
0.28 0.6921 0.66 0.3506 | 1.04 0.1413 | 1.42 0.04462 | 1.80 0.01091 | 2.90 0.00004
0.30 0.6714 0.68 0.3362 | 1.06 0.1339 | 1.44 0.04170 | 1.82 0.01006 | 3.00 0.00002
0.32 0.6509 0.70 0.3222 | 1.08 0.1267 | 1.46 0.03895 | 1.84 0.00926 | 3.20 0.00001
0.34 0.6306 0.72 0.3086 | 1.10 0.1198 | 1.48 0.03635 | 1.86 0.00853 | 3.40 0.00000
0.36 0.6107 0.74 0.2953 | 1.12 0.1132 | 1.50 0.03390 | 1.88 0.00784 | 3.60 0.00000

This solution corresponds to the case when the temperature of the exposed
surface of the medium is suddenly raised (or lowered) to T,att = O and is
maintained at that value at al times. Although the graphical solution givenin
Fig. 4-23 isaplot of the exact analytical solution given by Eq. 4-23, itis sub-
ject to reading errors, and thusis of limited accuracy.

: EXAMPLE 4-6 Minimum Burial Depth of Water Pipes to Avoid
u Freezing

: In areas where the air temperature remains below 0°C for prolonged periods of
m time, the freezing of water in underground pipes is a major concern. Fortu-
B nately, the soil remains relatively warm during those periods, and it takes weeks
B for the subfreezing temperatures to reach the water mains in the ground. Thus,
® the soil effectively serves as an insulation to protect the water from subfreezing
g temperatures in winter.

m The ground at a particular location is covered with snow pack at —10°C for a
m continuous period of three months, and the average soil properties at that loca-
B tion are k = 0.4 W/m - °Cand o = 0.15 X 1076 m?/s (Fig. 4-24). Assuming an
B initial uniform temperature of 15°C for the ground, determine the minimum
: burial depth to prevent the water pipes from freezing.

SOLUTION The water pipes are buried in the ground to prevent freezing. The
minimum burial depth at a particular location is to be determined.
Assumptions 1 The temperature in the soil is affected by the thermal condi-
S e tions at one surface only, and thus the soil can be considered to be a semi-
FIGURE 4-24 infinite medium with a specified surface temperature of —10°C. 2 The thermal

Schematic for Example 4-6 properties of the soil are constant.




Properties The properties of the soil are as given in the problem statement.
Analysis The temperature of the soil surrounding the pipes will be 0°C after
three months in the case of minimum burial depth. Therefore, from Fig. 4-23,
we have

h\lfa:w (sinceh — =)
_ X
LT -T_ 0-(10 (5T 2y O
T-T 15— (-10)

We note that
t = (90 days)(24 h/day)(3600 s’h) = 7.78 X 10°s

and thus

X =2&Vat =2X0.36V/(0.15 X 10 5m?/s)(7.78 X 106s) = 0.77 m

Therefore, the water pipes must be buried to a depth of at least 77 cm to avoid
freezing under the specified harsh winter conditions.

ALTERNATIVE SOLUTION The solution of this problem could also be deter-
mined from Eq. 4-24:

X

2Vat

TXt)—T, — arfc
Ts_Ti

0-15 (
erfc

- >=0.60

v

The argument that corresponds to this value of the complementary error func-
tion is determined from Table 4-3 to be £ = 0.37. Therefore,

X = 2£\/at = 2 X 037V/(0.15 X 10 5m?g)(7.78 X 10°5) = 0.80 m

Again, the slight difference is due to the reading error of the chart.

4-4 - TRANSIENT HEAT CONDUCTION IN
MULTIDIMENSIONAL SYSTEMS

The transient temperature charts presented earlier can be used to determine the
temperature distribution and heat transfer in one-dimensional heat conduction
problems associated with a large plane wall, along cylinder, a sphere, and a
semi-infinite medium. Using a superposition approach called the product
solution, these charts can also be used to construct solutions for the two-
dimensional transient heat conduction problems encountered in geometries
such as a short cylinder, along rectangular bar, or a semi-infinite cylinder or
plate, and even three-dimensional problems associated with geometries such
as arectangular prism or asemi-infinite rectangular bar, provided that all sur-
faces of the solid are subjected to convection to the same fluid at temperature

Y - T
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(b) Short cylinder (two-dimensional)
FIGURE 4-25

The temperature in a short

cylinder exposed to convection from
all surfaces variesin both the radial
and axial directions, and thus heat
istransferred in both directions.
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FIGURE 4-26
A short cylinder of radiusr, and

height a isthe intersection of along
cylinder of radiusr, and a plane wall

of thickness a.
/ Plane wall
T,
h
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b |
iR |
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—af
FIGURE 4-27

A long solid bar of rectangular
profilea X bistheintersection
of two plane walls of
thicknesses a and b.

T.., with the same heat transfer coefficient h, and the body involves no heat
generation (Fig. 4-25). The solution in such multidimensional geometries can
be expressed as the product of the solutions for the one-dimensional geome-
tries whose intersection is the multidimensional geometry.

Consider ashort cylinder of height a and radiusr , initially at a uniform tem-
perature T;. There is no heat generation in the cylinder. At time t = O, the
cylinder is subjected to convection from all surfaces to a medium at temper-
ature T,, with a heat transfer coefficient h. The temperature within the cylin-
der will change with x as well asr and time t since heat transfer will occur
from the top and bottom of the cylinder as well as its side surfaces. That is,
T = T(r, X, t) and thus this is a two-dimensional transient heat conduction
problem. When the properties are assumed to be constant, it can be shown that
the solution of this two-dimensional problem can be expressed as

(x0T, (M0 T, (L0 T

infinite (4-25)

cylinder

short
cylinder

plane
wall

That is, the solution for the two-dimensional short cylinder of height a and
radiusr, is equal to the product of the nondimensionalized solutions for the
one-dimensional plane wall of thickness a and the long cylinder of radiusr,,
which are the two geometries whose intersection is the short cylinder, as
shown in Fig. 4-26. We generalize this as follows: the solution for a multi-
dimensional geometry is the product of the solutions of the one-dimensional
geometries whose intersection is the multidimensional body.
For convenience, the one-dimensional solutions are denoted by

T(x,t) — T,
Opan (X, 1) = (?)plane
! * Jwall
T(r,t) — T,
Oyi(r, 1) = (%)inﬁnite
! “ /cylinder
TX, 1) — T,
Osermi-inf(X, 1) = T T Jsemidinfinite (4-26)
! *  /solid

For example, the solution for along solid bar whose cross sectionisana X b
rectangle is the intersection of the two infinite plane walls of thicknesses
aand b, asshown in Fig. 4-27, and thus the transient temperature distribution
for this rectangular bar can be expressed as

(T(x, y, t) — Tx>

T 1 Jrectanguiar = By (X, DBuan(y; 1) 4-27)
1 ]

bar

The proper forms of the product solutions for some other geometries are given
in Table 4-4. It isimportant to note that the x-coordinate is measured from the
surface in asemi-infinite solid, and from the midplanein aplanewall. Thera-
dial distancer is aways measured from the centerline.

Note that the solution of atwo-dimensional problem involves the product of
two one-dimensional solutions, whereas the solution of a three-dimensional
problem involves the product of three one-dimensional solutions.

A modified form of the product solution can also be used to determine
the total transient heat transfer to or from a multidimensional geometry by
using the one-dimensional values, as shown by L. S. Langston in 1982. The



