
T R A N S I E N T  H E AT
C O N D U C T I O N

The temperature of a body, in general, varies with time as well 
as position. In rectangular coordinates, this variation is expressed as
T(x, y, z, t), where (x, y, z) indicates variation in the x, y, and z directions,

respectively, and t indicates variation with time. In the preceding chapter, we
considered heat conduction under steady conditions, for which the tempera-
ture of a body at any point does not change with time. This certainly simpli-
fied the analysis, especially when the temperature varied in one direction only,
and we were able to obtain analytical solutions. In this chapter, we consider
the variation of temperature with time as well as position in one- and multi-
dimensional systems.

We start this chapter with the analysis of lumped systems in which the tem-
perature of a solid varies with time but remains uniform throughout the solid
at any time. Then we consider the variation of temperature with time as well
as position for one-dimensional heat conduction problems such as those asso-
ciated with a large plane wall, a long cylinder, a sphere, and a semi-infinite
medium using transient temperature charts and analytical solutions. Finally,
we consider transient heat conduction in multidimensional systems by uti-
lizing the product solution.
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4–1 LUMPED SYSTEM ANALYSIS
In heat transfer analysis, some bodies are observed to behave like a “lump”
whose interior temperature remains essentially uniform at all times during a
heat transfer process. The temperature of such bodies can be taken to be a
function of time only, T(t). Heat transfer analysis that utilizes this idealization
is known as lumped system analysis, which provides great simplification
in certain classes of heat transfer problems without much sacrifice from
accuracy.

Consider a small hot copper ball coming out of an oven (Fig. 4–1). Mea-
surements indicate that the temperature of the copper ball changes with time,
but it does not change much with position at any given time. Thus the tem-
perature of the ball remains uniform at all times, and we can talk about the
temperature of the ball with no reference to a specific location.

Now let us go to the other extreme and consider a large roast in an oven. If
you have done any roasting, you must have noticed that the temperature dis-
tribution within the roast is not even close to being uniform. You can easily
verify this by taking the roast out before it is completely done and cutting it in
half. You will see that the outer parts of the roast are well done while the cen-
ter part is barely warm. Thus, lumped system analysis is not applicable in this
case. Before presenting a criterion about applicability of lumped system
analysis, we develop the formulation associated with it.

Consider a body of arbitrary shape of mass m, volume V, surface area As,
density �, and specific heat Cp initially at a uniform temperature Ti (Fig. 4–2).
At time t � 0, the body is placed into a medium at temperature T�, and heat
transfer takes place between the body and its environment, with a heat trans-
fer coefficient h. For the sake of discussion, we will assume that T� � Ti, but
the analysis is equally valid for the opposite case. We assume lumped system
analysis to be applicable, so that the temperature remains uniform within the
body at all times and changes with time only, T � T(t).

During a differential time interval dt, the temperature of the body rises by a
differential amount dT. An energy balance of the solid for the time interval dt
can be expressed as

or

hAs(T� � T) dt � mCp dT (4-1)

Noting that m � �V and dT � d(T � T�) since T� � constant, Eq. 4–1 can be
rearranged as

dt (4-2)

Integrating from t � 0, at which T � Ti, to any time t, at which T � T(t), gives

ln t (4-3)
T(t) � T�

Ti � T�
� �

hAs

�VCp

d(T � T�)
T � T�

� �
hAs

�VCp

�Heat transfer into the body
during dt � � �The increase in the

energy of the body
during dt �

�
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FIGURE 4–1
A small copper ball can be modeled
as a lumped system, but a roast
beef cannot.

 SOLID BODY

m = mass
V = volume
ρ = density
Ti = initial temperature

         T = T(t)

= hAs[T� – T(t)]

As

h
T�

Q
·

FIGURE 4–2
The geometry and parameters
involved in the lumped
system analysis.
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Taking the exponential of both sides and rearranging, we obtain

� e�bt (4-4)

where

b � (1/s) (4-5)

is a positive quantity whose dimension is (time)�1. The reciprocal of b has
time unit (usually s), and is called the time constant. Equation 4–4 is plotted
in Fig. 4–3 for different values of b. There are two observations that can be
made from this figure and the relation above:

1. Equation 4–4 enables us to determine the temperature T(t) of a body at
time t, or alternatively, the time t required for the temperature to reach
a specified value T(t).

2. The temperature of a body approaches the ambient temperature T�

exponentially. The temperature of the body changes rapidly at the
beginning, but rather slowly later on. A large value of b indicates that
the body will approach the environment temperature in a short time.
The larger the value of the exponent b, the higher the rate of decay in
temperature. Note that b is proportional to the surface area, but inversely
proportional to the mass and the specific heat of the body. This is not
surprising since it takes longer to heat or cool a larger mass, especially
when it has a large specific heat.

Once the temperature T(t) at time t is available from Eq. 4–4, the rate of con-
vection heat transfer between the body and its environment at that time can be
determined from Newton’s law of cooling as

Q
·
(t) � hAs[T(t) � T�] (W) (4-6)

The total amount of heat transfer between the body and the surrounding
medium over the time interval t � 0 to t is simply the change in the energy
content of the body:

Q � mCp[T(t) � Ti] (kJ) (4-7)

The amount of heat transfer reaches its upper limit when the body reaches the
surrounding temperature T�. Therefore, the maximum heat transfer between
the body and its surroundings is (Fig. 4–4)

Qmax � mCp(T� � Ti) (kJ) (4-8)

We could also obtain this equation by substituting the T(t) relation from Eq.
4–4 into the Q

·
(t) relation in Eq. 4–6 and integrating it from t � 0 to t → �.

Criteria for Lumped System Analysis
The lumped system analysis certainly provides great convenience in heat
transfer analysis, and naturally we would like to know when it is appropriate

hAs

�VCp

T(t) � T�

Ti � T�
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FIGURE 4–3
The temperature of a lumped

system approaches the environment
temperature as time gets larger.
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FIGURE 4–4
Heat transfer to or from a body

reaches its maximum value
when the body reaches

the environment temperature.
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to use it. The first step in establishing a criterion for the applicability of the
lumped system analysis is to define a characteristic length as

Lc �

and a Biot number Bi as

Bi � (4-9)

It can also be expressed as (Fig. 4–5)

Bi �

or

Bi �

When a solid body is being heated by the hotter fluid surrounding it (such as
a potato being baked in an oven), heat is first convected to the body and
subsequently conducted within the body. The Biot number is the ratio of the
internal resistance of a body to heat conduction to its external resistance to
heat convection. Therefore, a small Biot number represents small resistance
to heat conduction, and thus small temperature gradients within the body.

Lumped system analysis assumes a uniform temperature distribution
throughout the body, which will be the case only when the thermal resistance
of the body to heat conduction (the conduction resistance) is zero. Thus,
lumped system analysis is exact when Bi � 0 and approximate when Bi � 0.
Of course, the smaller the Bi number, the more accurate the lumped system
analysis. Then the question we must answer is, How much accuracy are we
willing to sacrifice for the convenience of the lumped system analysis?

Before answering this question, we should mention that a 20 percent
uncertainty in the convection heat transfer coefficient h in most cases is con-
sidered “normal” and “expected.” Assuming h to be constant and uniform is
also an approximation of questionable validity, especially for irregular geome-
tries. Therefore, in the absence of sufficient experimental data for the specific
geometry under consideration, we cannot claim our results to be better than
�20 percent, even when Bi � 0. This being the case, introducing another
source of uncertainty in the problem will hardly have any effect on the over-
all uncertainty, provided that it is minor. It is generally accepted that lumped
system analysis is applicable if

Bi � 0.1

When this criterion is satisfied, the temperatures within the body relative to
the surroundings (i.e., T � T�) remain within 5 percent of each other even for
well-rounded geometries such as a spherical ball. Thus, when Bi 	 0.1, the
variation of temperature with location within the body will be slight and can
reasonably be approximated as being uniform.

Lc /k
1/h

�
Conduction resistance within the body

Convection resistance at the surface of the body

h
k /Lc

 

T

T

�
Convection at the surface of the body

Conduction within the body

hLc

k

V
As
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Convection

h
T�Conduction

SOLID
BODY

Bi = ———————–heat convection
heat conduction

FIGURE 4–5
The Biot number can be viewed as the
ratio of the convection at the surface
to conduction within the body.
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The first step in the application of lumped system analysis is the calculation
of the Biot number, and the assessment of the applicability of this approach.
One may still wish to use lumped system analysis even when the criterion
Bi 	 0.1 is not satisfied, if high accuracy is not a major concern.

Note that the Biot number is the ratio of the convection at the surface to con-
duction within the body, and this number should be as small as possible for
lumped system analysis to be applicable. Therefore, small bodies with high
thermal conductivity are good candidates for lumped system analysis, es-
pecially when they are in a medium that is a poor conductor of heat (such as
air or another gas) and motionless. Thus, the hot small copper ball placed in
quiescent air, discussed earlier, is most likely to satisfy the criterion for
lumped system analysis (Fig. 4–6).

Some Remarks on Heat Transfer in Lumped Systems
To understand the heat transfer mechanism during the heating or cooling of a
solid by the fluid surrounding it, and the criterion for lumped system analysis,
consider this analogy (Fig. 4–7). People from the mainland are to go by boat
to an island whose entire shore is a harbor, and from the harbor to their desti-
nations on the island by bus. The overcrowding of people at the harbor de-
pends on the boat traffic to the island and the ground transportation system on
the island. If there is an excellent ground transportation system with plenty of
buses, there will be no overcrowding at the harbor, especially when the boat
traffic is light. But when the opposite is true, there will be a huge overcrowd-
ing at the harbor, creating a large difference between the populations at the
harbor and inland. The chance of overcrowding is much lower in a small is-
land with plenty of fast buses.

In heat transfer, a poor ground transportation system corresponds to poor
heat conduction in a body, and overcrowding at the harbor to the accumulation
of heat and the subsequent rise in temperature near the surface of the body
relative to its inner parts. Lumped system analysis is obviously not applicable
when there is overcrowding at the surface. Of course, we have disregarded
radiation in this analogy and thus the air traffic to the island. Like passengers
at the harbor, heat changes vehicles at the surface from convection to conduc-
tion. Noting that a surface has zero thickness and thus cannot store any energy,
heat reaching the surface of a body by convection must continue its journey
within the body by conduction.

Consider heat transfer from a hot body to its cooler surroundings. Heat will
be transferred from the body to the surrounding fluid as a result of a tempera-
ture difference. But this energy will come from the region near the surface,
and thus the temperature of the body near the surface will drop. This creates a
temperature gradient between the inner and outer regions of the body and ini-
tiates heat flow by conduction from the interior of the body toward the outer
surface.

When the convection heat transfer coefficient h and thus convection heat
transfer from the body are high, the temperature of the body near the surface
will drop quickly (Fig. 4–8). This will create a larger temperature difference
between the inner and outer regions unless the body is able to transfer heat
from the inner to the outer regions just as fast. Thus, the magnitude of the
maximum temperature difference within the body depends strongly on the
ability of a body to conduct heat toward its surface relative to the ability of
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FIGURE 4–6
Small bodies with high thermal

conductivities and low convection
coefficients are most likely

to satisfy the criterion for
lumped system analysis.
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FIGURE 4–7
Analogy between heat transfer to a

solid and passenger traffic
to an island.
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FIGURE 4–8
When the convection coefficient h is
high and k is low, large temperature
differences occur between the inner

and outer regions of a large solid.
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the surrounding medium to convect this heat away from the surface. The
Biot number is a measure of the relative magnitudes of these two competing
effects.

Recall that heat conduction in a specified direction n per unit surface area is
expressed as q· � �k �T/�n, where �T/�n is the temperature gradient and k is
the thermal conductivity of the solid. Thus, the temperature distribution in the
body will be uniform only when its thermal conductivity is infinite, and no
such material is known to exist. Therefore, temperature gradients and thus
temperature differences must exist within the body, no matter how small, in
order for heat conduction to take place. Of course, the temperature gradient
and the thermal conductivity are inversely proportional for a given heat flux.
Therefore, the larger the thermal conductivity, the smaller the temperature
gradient.
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EXAMPLE 4–1 Temperature Measurement by Thermocouples

The temperature of a gas stream is to be measured by a thermocouple whose
junction can be approximated as a 1-mm-diameter sphere, as shown in Fig.
4–9. The properties of the junction are k � 35 W/m · °C, � � 8500 kg/m3, and
Cp � 320 J/kg · °C, and the convection heat transfer coefficient between the
junction and the gas is h � 210 W/m2 · °C. Determine how long it will take for
the thermocouple to read 99 percent of the initial temperature difference.

SOLUTION The temperature of a gas stream is to be measured by a thermo-
couple. The time it takes to register 99 percent of the initial 
T is to be
determined.
Assumptions 1 The junction is spherical in shape with a diameter of D �
0.001 m. 2 The thermal properties of the junction and the heat transfer coeffi-
cient are constant. 3 Radiation effects are negligible.
Properties The properties of the junction are given in the problem statement.
Analysis The characteristic length of the junction is

Lc � (0.001 m) � 1.67 � 10�4 m

Then the Biot number becomes

Bi � � 0.001 	 0.1

Therefore, lumped system analysis is applicable, and the error involved in this
approximation is negligible.

In order to read 99 percent of the initial temperature difference Ti � T�

between the junction and the gas, we must have

� 0.01

For example, when Ti � 0°C and T� � 100°C, a thermocouple is considered to
have read 99 percent of this applied temperature difference when its reading
indicates T (t ) � 99°C.

T (t ) � T�

Ti � T�

hLc

k
�

(210 W/m2 ·  °C)(1.67 � 10�4 m)
35 W/m ·  °C

V
As

�

1
6


D 3


D 2 �
1
6
 D �

1
6

Gas

Junction

D = 1 mm
T(t)

Thermocouple
wire

T�, h

FIGURE 4–9
Schematic for Example 4–1.
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The value of the exponent b is

b � � 0.462 s�1

We now substitute these values into Eq. 4–4 and obtain

� e�bt → 0.01 � e�(0.462 s�1)t

which yields

t � 10 s

Therefore, we must wait at least 10 s for the temperature of the thermocouple
junction to approach within 1 percent of the initial junction-gas temperature
difference.

Discussion Note that conduction through the wires and radiation exchange
with the surrounding surfaces will affect the result, and should be considered in
a more refined analysis.

T (t ) � T�

Ti � T�

hAs

�CpV
�

h
�Cp Lc

�
210 W/m2 ·  °C

(8500 kg/m3)(320 J/kg ·  °C)(1.67 � 10�4 m)

EXAMPLE 4–2 Predicting the Time of Death

A person is found dead at 5 PM in a room whose temperature is 20°C. The tem-
perature of the body is measured to be 25°C when found, and the heat trans-
fer coefficient is estimated to be h � 8 W/m2 · °C. Modeling the body as a
30-cm-diameter, 1.70-m-long cylinder, estimate the time of death of that per-
son (Fig. 4–10).

SOLUTION A body is found while still warm. The time of death is to be
estimated.

Assumptions 1 The body can be modeled as a 30-cm-diameter, 1.70-m-long
cylinder. 2 The thermal properties of the body and the heat transfer coefficient
are constant. 3 The radiation effects are negligible. 4 The person was healthy(!)
when he or she died with a body temperature of 37°C.

Properties The average human body is 72 percent water by mass, and thus we
can assume the body to have the properties of water at the average temperature
of (37 � 25)/2 � 31°C; k � 0.617 W/m · °C, � � 996 kg/m3, and Cp � 4178
J/kg · °C (Table A-9).

Analysis The characteristic length of the body is

Lc � � 0.0689 m

Then the Biot number becomes

Bi � � 0.89 � 0.1
hLc

k
�

(8 W/m2 ·  °C)(0.0689 m)
0.617 W/m ·  °C

V
As

�

r 2

o  L

2
ro L � 2
r 2
o

�

(0.15 m)2(1.7 m)

2
(0.15 m)(1.7 m) � 2
(0.15 m)2

FIGURE 4–10
Schematic for Example 4–2.
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