TRANSIENT HEAT Conduction

he temperature of a body, in general, varies with time as well as position. In rectangular coordinates, this variation is expressed as T(x, y, z, t), where (x, y, z) indicates variation in the x, y, and z directions, respectively, and t indicates variation with time. In the preceding chapter, we considered heat conduction under *steady* conditions, for which the temperature of a body at any point does not change with time. This certainly simplified the analysis, especially when the temperature varied in one direction only, and we were able to obtain analytical solutions. In this chapter, we consider the variation of temperature with *time* as well as *position* in one- and multidimensional systems.

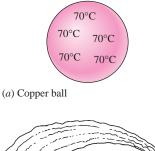
We start this chapter with the analysis of *lumped systems* in which the temperature of a solid varies with time but remains uniform throughout the solid at any time. Then we consider the variation of temperature with time as well as position for one-dimensional heat conduction problems such as those associated with a large plane wall, a long cylinder, a sphere, and a semi-infinite medium using *transient temperature charts* and analytical solutions. Finally, we consider transient heat conduction in multidimensional systems by utilizing the *product solution*.

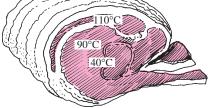
CHAPTER

CONTENTS

- 4–1 Lumped Systems Analysis 210
- 4–2 Transient Heat Conduction in Large Plane Walls, Long Cylinders, and Spheres with Spatial Effects *216*
- 4–3 Transient Heat Conduction in Semi-Infinite Solids 228
- 4–4 Transient Heat Conduction in Multidimensional Systems 231 **Topic of Special Interest:** Refrigeration and Freezing of Foods 239

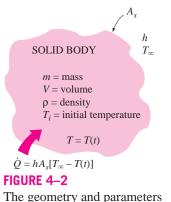
HEAT TRANSFER





(*b*) Roast beef **FIGURE 4–1**

A small copper ball can be modeled as a lumped system, but a roast beef cannot.



The geometry and parameters involved in the lumped system analysis.

4-1 • LUMPED SYSTEM ANALYSIS

In heat transfer analysis, some bodies are observed to behave like a "lump" whose interior temperature remains essentially uniform at all times during a heat transfer process. The temperature of such bodies can be taken to be a function of time only, T(t). Heat transfer analysis that utilizes this idealization is known as **lumped system analysis**, which provides great simplification in certain classes of heat transfer problems without much sacrifice from accuracy.

Consider a small hot copper ball coming out of an oven (Fig. 4–1). Measurements indicate that the temperature of the copper ball changes with time, but it does not change much with position at any given time. Thus the temperature of the ball remains uniform at all times, and we can talk about the temperature of the ball with no reference to a specific location.

Now let us go to the other extreme and consider a large roast in an oven. If you have done any roasting, you must have noticed that the temperature distribution within the roast is not even close to being uniform. You can easily verify this by taking the roast out before it is completely done and cutting it in half. You will see that the outer parts of the roast are well done while the center part is barely warm. Thus, lumped system analysis is not applicable in this case. Before presenting a criterion about applicability of lumped system analysis, we develop the formulation associated with it.

Consider a body of arbitrary shape of mass *m*, volume *V*, surface area A_s , density ρ , and specific heat C_p initially at a uniform temperature T_i (Fig. 4–2). At time t = 0, the body is placed into a medium at temperature T_{∞} , and heat transfer takes place between the body and its environment, with a heat transfer coefficient *h*. For the sake of discussion, we will assume that $T_{\infty} > T_i$, but the analysis is equally valid for the opposite case. We assume lumped system analysis to be applicable, so that the temperature remains uniform within the body at all times and changes with time only, T = T(t).

During a differential time interval dt, the temperature of the body rises by a differential amount dT. An energy balance of the solid for the time interval dt can be expressed as

$$\begin{pmatrix} \text{Heat transfer into the body} \\ \text{during } dt \end{pmatrix} = \begin{pmatrix} \text{The increase in the} \\ \text{energy of the body} \\ \text{during } dt \end{pmatrix}$$

or

$$hA_s(T_{\infty} - T) dt = mC_p dT \tag{4-1}$$

Noting that $m = \rho V$ and $dT = d(T - T_{\infty})$ since $T_{\infty} = \text{constant}$, Eq. 4–1 can be rearranged as

$$\frac{d(T-T_{\infty})}{T-T_{\infty}} = -\frac{hA_s}{\rho V C_p} dt$$
(4-2)

Integrating from t = 0, at which $T = T_i$, to any time t, at which T = T(t), gives

$$\ln \frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = -\frac{hA_s}{\rho V C_p} t$$
(4-3)

Taking the exponential of both sides and rearranging, we obtain

$$\frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = e^{-bt}$$
(4-4)

where

$$b = \frac{hA_s}{\rho V C_p}$$
(1/s) (4-5)

is a positive quantity whose dimension is $(time)^{-1}$. The reciprocal of *b* has time unit (usually s), and is called the **time constant.** Equation 4–4 is plotted in Fig. 4–3 for different values of *b*. There are two observations that can be made from this figure and the relation above:

- 1. Equation 4–4 enables us to determine the temperature T(t) of a body at time *t*, or alternatively, the time *t* required for the temperature to reach a specified value T(t).
- 2. The temperature of a body approaches the ambient temperature T_{∞} exponentially. The temperature of the body changes rapidly at the beginning, but rather slowly later on. A large value of *b* indicates that the body will approach the environment temperature in a short time. The larger the value of the exponent *b*, the higher the rate of decay in temperature. Note that *b* is proportional to the surface area, but inversely proportional to the mass and the specific heat of the body. This is not surprising since it takes longer to heat or cool a larger mass, especially when it has a large specific heat.

Once the temperature T(t) at time t is available from Eq. 4–4, the *rate* of convection heat transfer between the body and its environment at that time can be determined from Newton's law of cooling as

$$\dot{Q}(t) = hA_s[T(t) - T_{\infty}]$$
 (W) (4-6)

The *total amount* of heat transfer between the body and the surrounding medium over the time interval t = 0 to t is simply the change in the energy content of the body:

$$Q = mC_p[T(t) - T_i]$$
 (kJ) (4-7)

The amount of heat transfer reaches its *upper limit* when the body reaches the surrounding temperature T_{∞} . Therefore, the *maximum* heat transfer between the body and its surroundings is (Fig. 4–4)

$$Q_{\rm max} = mC_p(T_\infty - T_i) \qquad (kJ)$$

We could also obtain this equation by substituting the T(t) relation from Eq. 4–4 into the $\dot{Q}(t)$ relation in Eq. 4–6 and integrating it from t = 0 to $t \to \infty$.

Criteria for Lumped System Analysis

The lumped system analysis certainly provides great convenience in heat transfer analysis, and naturally we would like to know when it is appropriate

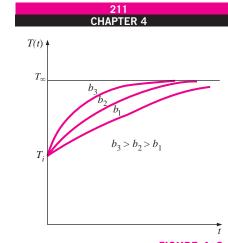
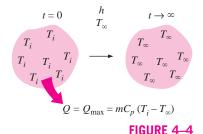


FIGURE 4–3 The temperature of a lumped system approaches the environment temperature as time gets larger.



Heat transfer to or from a body reaches its maximum value when the body reaches the environment temperature.

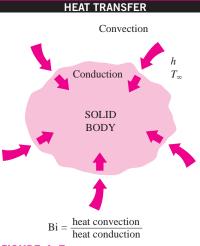


FIGURE 4–5

The Biot number can be viewed as the ratio of the convection at the surface to conduction within the body.

to use it. The first step in establishing a criterion for the applicability of the lumped system analysis is to define a **characteristic length** as

 $L_c = \frac{V}{A_s}$

and a Biot number Bi as

or

$$\operatorname{Bi} = \frac{hL_c}{k} \tag{4-9}$$

It can also be expressed as (Fig. 4–5)

$$Bi = \frac{h}{k/L_c} \frac{\Delta T}{\Delta T} = \frac{Convection at the surface of the body}{Conduction within the body}$$

 $Bi = \frac{L_c/k}{1/h} = \frac{Conduction resistance within the body}{Convection resistance at the surface of the body}$

When a solid body is being heated by the hotter fluid surrounding it (such as a potato being baked in an oven), heat is first *convected* to the body and subsequently *conducted* within the body. The Biot number is the *ratio* of the internal resistance of a body to *heat conduction* to its external resistance to *heat convection*. Therefore, a small Biot number represents small resistance to heat conduction, and thus small temperature gradients within the body.

Lumped system analysis assumes a *uniform* temperature distribution throughout the body, which will be the case only when the thermal resistance of the body to heat conduction (the *conduction resistance*) is zero. Thus, lumped system analysis is *exact* when Bi = 0 and *approximate* when Bi > 0. Of course, the smaller the Bi number, the more accurate the lumped system analysis. Then the question we must answer is, How much accuracy are we willing to sacrifice for the convenience of the lumped system analysis?

Before answering this question, we should mention that a 20 percent uncertainty in the convection heat transfer coefficient *h* in most cases is considered "normal" and "expected." Assuming *h* to be *constant* and *uniform* is also an approximation of questionable validity, especially for irregular geometries. Therefore, in the absence of sufficient experimental data for the specific geometry under consideration, we cannot claim our results to be better than ± 20 percent, even when Bi = 0. This being the case, introducing another source of uncertainty in the problem will hardly have any effect on the overall uncertainty, provided that it is minor. It is generally accepted that lumped system analysis is *applicable* if

 $Bi \le 0.1$

When this criterion is satisfied, the temperatures within the body relative to the surroundings (i.e., $T - T_{\infty}$) remain within 5 percent of each other even for well-rounded geometries such as a spherical ball. Thus, when Bi < 0.1, the variation of temperature with location within the body will be slight and can reasonably be approximated as being uniform.

The first step in the application of lumped system analysis is the calculation of the *Biot number*, and the assessment of the applicability of this approach. One may still wish to use lumped system analysis even when the criterion Bi < 0.1 is not satisfied, if high accuracy is not a major concern.

Note that the Biot number is the ratio of the *convection* at the surface to *conduction* within the body, and this number should be as small as possible for lumped system analysis to be applicable. Therefore, *small bodies* with *high thermal conductivity* are good candidates for lumped system analysis, especially when they are in a medium that is a poor conductor of heat (such as air or another gas) and motionless. Thus, the hot small copper ball placed in quiescent air, discussed earlier, is most likely to satisfy the criterion for lumped system analysis (Fig. 4–6).

Some Remarks on Heat Transfer in Lumped Systems

To understand the heat transfer mechanism during the heating or cooling of a solid by the fluid surrounding it, and the criterion for lumped system analysis, consider this analogy (Fig. 4–7). People from the mainland are to go *by boat* to an island whose entire shore is a harbor, and from the harbor to their destinations on the island *by bus*. The overcrowding of people at the harbor depends on the boat traffic to the island and the ground transportation system on the island. If there is an excellent ground transportation system with plenty of buses, there will be no overcrowding at the harbor, especially when the boat traffic is light. But when the opposite is true, there will be a huge overcrowding at the harbor, creating a large difference between the populations at the harbor and inland. The chance of overcrowding is much lower in a small island with plenty of fast buses.

In heat transfer, a poor ground transportation system corresponds to poor heat conduction in a body, and overcrowding at the harbor to the accumulation of heat and the subsequent rise in temperature near the surface of the body relative to its inner parts. Lumped system analysis is obviously not applicable when there is overcrowding at the surface. Of course, we have disregarded radiation in this analogy and thus the air traffic to the island. Like passengers at the harbor, heat changes *vehicles* at the surface from *convection* to *conduction*. Noting that a surface has zero thickness and thus cannot store any energy, heat reaching the surface of a body by convection must continue its journey within the body by conduction.

Consider heat transfer from a hot body to its cooler surroundings. Heat will be transferred from the body to the surrounding fluid as a result of a temperature difference. But this energy will come from the region near the surface, and thus the temperature of the body near the surface will drop. This creates a *temperature gradient* between the inner and outer regions of the body and initiates heat flow by conduction from the interior of the body toward the outer surface.

When the convection heat transfer coefficient h and thus convection heat transfer from the body are high, the temperature of the body near the surface will drop quickly (Fig. 4–8). This will create a larger temperature difference between the inner and outer regions unless the body is able to transfer heat from the inner to the outer regions just as fast. Thus, the magnitude of the maximum temperature difference within the body depends strongly on the ability of a body to conduct heat toward its surface relative to the ability of

213 CHAPTER 4

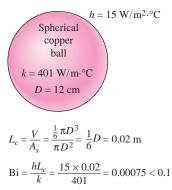


FIGURE 4–6

Small bodies with high thermal conductivities and low convection coefficients are most likely to satisfy the criterion for lumped system analysis.

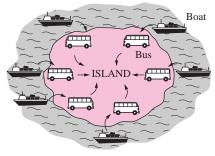


FIGURE 4-7

Analogy between heat transfer to a solid and passenger traffic to an island.

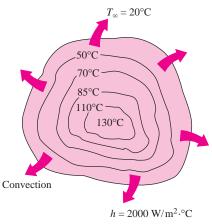
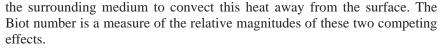


FIGURE 4–8

When the convection coefficient h is high and k is low, large temperature differences occur between the inner and outer regions of a large solid.



Recall that heat conduction in a specified direction *n* per unit surface area is expressed as $\dot{q} = -k \partial T / \partial n$, where $\partial T / \partial n$ is the temperature gradient and *k* is the thermal conductivity of the solid. Thus, the temperature distribution in the body will be *uniform* only when its thermal conductivity is *infinite*, and no such material is known to exist. Therefore, temperature gradients and thus temperature differences must exist within the body, no matter how small, in order for heat conductivity are inversely proportional for a given heat flux. Therefore, the larger the thermal conductivity, the smaller the temperature gradient.

EXAMPLE 4–1 Temperature Measurement by Thermocouples

The temperature of a gas stream is to be measured by a thermocouple whose junction can be approximated as a 1-mm-diameter sphere, as shown in Fig. 4–9. The properties of the junction are k = 35 W/m \cdot °C, $\rho = 8500$ kg/m³, and $C_p = 320$ J/kg \cdot °C, and the convection heat transfer coefficient between the junction and the gas is h = 210 W/m² \cdot °C. Determine how long it will take for the thermocouple to read 99 percent of the initial temperature difference.

SOLUTION The temperature of a gas stream is to be measured by a thermocouple. The time it takes to register 99 percent of the initial ΔT is to be determined.

Assumptions 1 The junction is spherical in shape with a diameter of D = 0.001 m. 2 The thermal properties of the junction and the heat transfer coefficient are constant. 3 Radiation effects are negligible.

Properties The properties of the junction are given in the problem statement. **Analysis** The characteristic length of the junction is

$$L_c = \frac{V}{A_s} = \frac{\frac{1}{6}\pi D^3}{\pi D^2} = \frac{1}{6}D = \frac{1}{6}(0.001 \text{ m}) = 1.67 \times 10^{-4} \text{ m}$$

Then the Biot number becomes

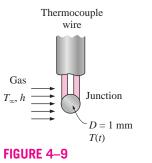
Bi =
$$\frac{hL_c}{k} = \frac{(210 \text{ W/m}^2 \cdot ^\circ\text{C})(1.67 \times 10^{-4} \text{ m})}{35 \text{ W/m} \cdot ^\circ\text{C}} = 0.001 < 0.1$$

Therefore, lumped system analysis is applicable, and the error involved in this approximation is negligible.

In order to read 99 percent of the initial temperature difference $T_i - T_{\infty}$ between the junction and the gas, we must have

$$\frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = 0.01$$

For example, when $T_i = 0^{\circ}$ C and $T_{\infty} = 100^{\circ}$ C, a thermocouple is considered to have read 99 percent of this applied temperature difference when its reading indicates $T(t) = 99^{\circ}$ C.



Schematic for Example 4–1.

The value of the exponent *b* is

$$b = \frac{hA_s}{\rho C_p V} = \frac{h}{\rho C_p L_c} = \frac{210 \text{ W/m}^2 \cdot ^\circ\text{C}}{(8500 \text{ kg/m}^3)(320 \text{ J/kg} \cdot ^\circ\text{C})(1.67 \times 10^{-4} \text{ m})} = 0.462 \text{ s}^{-1}$$

We now substitute these values into Eq. 4-4 and obtain

$$\frac{T(t) - T_{\infty}}{T_i - T_{\infty}} = e^{-bt} \longrightarrow 0.01 = e^{-(0.462 \text{ s}^{-1})t}$$

which yields

t = 10 s

Therefore, we must wait at least 10 s for the temperature of the thermocouple junction to approach within 1 percent of the initial junction-gas temperature difference.

Discussion Note that conduction through the wires and radiation exchange with the surrounding surfaces will affect the result, and should be considered in a more refined analysis.

EXAMPLE 4–2 Predicting the Time of Death

A person is found dead at 5 PM in a room whose temperature is 20°C. The temperature of the body is measured to be 25°C when found, and the heat transfer coefficient is estimated to be $h = 8 \text{ W/m}^2 \cdot \text{°C}$. Modeling the body as a 30-cm-diameter, 1.70-m-long cylinder, estimate the time of death of that person (Fig. 4–10).

SOLUTION A body is found while still warm. The time of death is to be estimated.

Assumptions 1 The body can be modeled as a 30-cm-diameter, 1.70-m-long cylinder. **2** The thermal properties of the body and the heat transfer coefficient are constant. **3** The radiation effects are negligible. **4** The person was healthy(!) when he or she died with a body temperature of 37°C.

Properties The average human body is 72 percent water by mass, and thus we can assume the body to have the properties of water at the average temperature of $(37 + 25)/2 = 31^{\circ}$ C; k = 0.617 W/m · °C, $\rho = 996$ kg/m³, and $C_{p} = 4178$ J/kg · °C (Table A-9).

Analysis The characteristic length of the body is

$$L_c = \frac{V}{A_s} = \frac{\pi r_o^2 L}{2\pi r_o L + 2\pi r_o^2} = \frac{\pi (0.15 \text{ m})^2 (1.7 \text{ m})}{2\pi (0.15 \text{ m})(1.7 \text{ m}) + 2\pi (0.15 \text{ m})^2} = 0.0689 \text{ m}$$

Then the Biot number becomes

Bi =
$$\frac{hL_c}{k} = \frac{(8 \text{ W/m}^2 \cdot {}^\circ\text{C})(0.0689 \text{ m})}{0.617 \text{ W/m} \cdot {}^\circ\text{C}} = 0.89 > 0.1$$

FIGURE 4–10 Schematic for Example 4–2.