
3–4 HEAT CONDUCTION IN
CYLINDERS AND SPHERES

Consider steady heat conduction through a hot water pipe. Heat is continu-
ously lost to the outdoors through the wall of the pipe, and we intuitively feel
that heat transfer through the pipe is in the normal direction to the pipe surface
and no significant heat transfer takes place in the pipe in other directions
(Fig. 3–23). The wall of the pipe, whose thickness is rather small, separates
two fluids at different temperatures, and thus the temperature gradient in the
radial direction will be relatively large. Further, if the fluid temperatures in-
side and outside the pipe remain constant, then heat transfer through the pipe
is steady. Thus heat transfer through the pipe can be modeled as steady and
one-dimensional. The temperature of the pipe in this case will depend on one
direction only (the radial r-direction) and can be expressed as T � T(r). The
temperature is independent of the azimuthal angle or the axial distance. This
situation is approximated in practice in long cylindrical pipes and spherical
containers.

In steady operation, there is no change in the temperature of the pipe with
time at any point. Therefore, the rate of heat transfer into the pipe must be
equal to the rate of heat transfer out of it. In other words, heat transfer through
the pipe must be constant, Q

·
cond, cyl � constant.

Consider a long cylindrical layer (such as a circular pipe) of inner radius r1,
outer radius r2, length L, and average thermal conductivity k (Fig. 3–24). The
two surfaces of the cylindrical layer are maintained at constant temperatures
T1 and T2. There is no heat generation in the layer and the thermal conductiv-
ity is constant. For one-dimensional heat conduction through the cylindrical
layer, we have T(r). Then Fourier’s law of heat conduction for heat transfer
through the cylindrical layer can be expressed as

Q
·

cond, cyl � �kA (W) (3-35)

where A � 2�rL is the heat transfer area at location r. Note that A depends on
r, and thus it varies in the direction of heat transfer. Separating the variables
in the above equation and integrating from r � r1, where T(r1) � T1, to r � r2,
where T(r2) � T2, gives

dr � � k dT (3-36)

Substituting A � 2�rL and performing the integrations give

Q
·

cond, cyl � 2�Lk (W) (3-37)

since Q
·

cond, cyl � constant. This equation can be rearranged as

Q
·

cond, cyl � (W) (3-38)
T1 � T2

Rcyl

T1 � T2

ln(r2 /r1)

�T2

T�T1

� r2

r�r1

 
Q· cond, cyl

A

dT
dr

�
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FIGURE 3–23
Heat is lost from a hot water pipe to
the air outside in the radial direction,
and thus heat transfer from a long
pipe is one-dimensional.
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FIGURE 3–24
A long cylindrical pipe (or spherical
shell) with specified inner and outer
surface temperatures T1 and T2.
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where

Rcyl � (3-39)

is the thermal resistance of the cylindrical layer against heat conduction, or
simply the conduction resistance of the cylinder layer.

We can repeat the analysis above for a spherical layer by taking A � 4�r2

and performing the integrations in Eq. 3–36. The result can be expressed as

Q
·

cond, sph � (3-40)

where

Rsph � � (3-41)

is the thermal resistance of the spherical layer against heat conduction, or sim-
ply the conduction resistance of the spherical layer.

Now consider steady one-dimensional heat flow through a cylindrical or
spherical layer that is exposed to convection on both sides to fluids at temper-
atures T�1 and T�2 with heat transfer coefficients h1 and h2, respectively, as
shown in Fig. 3–25. The thermal resistance network in this case consists of
one conduction and two convection resistances in series, just like the one for
the plane wall, and the rate of heat transfer under steady conditions can be ex-
pressed as

Q
·

� (3-42)
T�1 � T�2

Rtotal

Outer radius � Inner radius
4�(Outer radius)(Inner radius)(Thermal conductivity)

r2 � r1

4�r1r2 k

T1 � T2

Rsph

ln(r2 /r1)
2�Lk

�
ln(Outer radius/Inner radius)

2� 
 (Length) 
 (Thermal conductivity)
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FIGURE 3–25
The thermal resistance network

for a cylindrical (or spherical)
shell subjected to convection from
both the inner and the outer sides.
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where

Rtotal � Rconv, 1 � Rcyl � Rconv, 2

� (3-43)

for a cylindrical layer, and

Rtotal � Rconv, 1 � Rsph � Rconv, 2

� (3-44)

for a spherical layer. Note that A in the convection resistance relation Rconv �
1/hA is the surface area at which convection occurs. It is equal to A � 2�rL
for a cylindrical surface and A � 4�r2 for a spherical surface of radius r. Also
note that the thermal resistances are in series, and thus the total thermal resis-
tance is determined by simply adding the individual resistances, just like the
electrical resistances connected in series.

Multilayered Cylinders and Spheres
Steady heat transfer through multilayered cylindrical or spherical shells can be
handled just like multilayered plane walls discussed earlier by simply add-
ing an additional resistance in series for each additional layer. For example,
the steady heat transfer rate through the three-layered composite cylinder
of length L shown in Fig. 3–26 with convection on both sides can be ex-
pressed as

Q
·

� (3-45)
T�1 � T�2

Rtotal

1
(4�r 2

1 )h1
�

r2 � r1

4�r1r2 k
�

1
(4�r 2

2 )h2

1
(2�r1L)h1

�
ln(r2 /r1)

2�Lk
�

1
(2�r2L)h2
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FIGURE 3–26
The thermal resistance network for heat transfer through a three-layered composite cylinder
subjected to convection on both sides.
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where Rtotal is the total thermal resistance, expressed as

Rtotal � Rconv, 1 � Rcyl, 1 � Rcyl, 2 � Rcyl, 3 � Rconv, 2

� (3-46)

where A1 � 2�r1L and A4 � 2�r4L. Equation 3–46 can also be used for a
three-layered spherical shell by replacing the thermal resistances of cylindri-
cal layers by the corresponding spherical ones. Again, note from the thermal
resistance network that the resistances are in series, and thus the total thermal
resistance is simply the arithmetic sum of the individual thermal resistances in
the path of heat flow.

Once Q
·

is known, we can determine any intermediate temperature Tj by ap-
plying the relation Q

·
� (Ti � Tj)/Rtotal, i � j across any layer or layers such that

Ti is a known temperature at location i and Rtotal, i � j is the total thermal resis-
tance between locations i and j (Fig. 3–27). For example, once Q

·
has been

calculated, the interface temperature T2 between the first and second cylindri-
cal layers can be determined from

Q
·

� (3-47)

We could also calculate T2 from

Q
·

� (3-48)

Although both relations will give the same result, we prefer the first one since
it involves fewer terms and thus less work.

The thermal resistance concept can also be used for other geometries, pro-
vided that the proper conduction resistances and the proper surface areas in
convection resistances are used.

T2 � T�2

R2 � R3 � Rconv, 2
�

T2 � T�2

ln(r3 /r2)
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�
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�
1
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= ————
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Q
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FIGURE 3–27
The ratio 	T/R across any layer is

equal to Q·
, which remains constant in

one-dimensional steady conduction.

EXAMPLE 3–7 Heat Transfer to a Spherical Container

A 3-m internal diameter spherical tank made of 2-cm-thick stainless steel
(k � 15 W/m · °C) is used to store iced water at T�1 � 0°C. The tank is located
in a room whose temperature is T�2 � 22°C. The walls of the room are also at
22°C. The outer surface of the tank is black and heat transfer between the outer
surface of the tank and the surroundings is by natural convection and radiation.
The convection heat transfer coefficients at the inner and the outer surfaces of
the tank are h1 � 80 W/m2 · °C and h2 � 10 W/m2 · °C, respectively. Determine
(a) the rate of heat transfer to the iced water in the tank and (b) the amount of
ice at 0°C that melts during a 24-h period.

SOLUTION A spherical container filled with iced water is subjected to convec-
tion and radiation heat transfer at its outer surface. The rate of heat transfer
and the amount of ice that melts per day are to be determined.
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Assumptions 1 Heat transfer is steady since the specified thermal conditions at
the boundaries do not change with time. 2 Heat transfer is one-dimensional
since there is thermal symmetry about the midpoint. 3 Thermal conductivity is
constant.

Properties The thermal conductivity of steel is given to be k � 15 W/m · °C.
The heat of fusion of water at atmospheric pressure is hif � 333.7 kJ/kg. The
outer surface of the tank is black and thus its emissivity is � � 1.

Analysis (a) The thermal resistance network for this problem is given in
Fig. 3–28. Noting that the inner diameter of the tank is D1 � 3 m and the outer
diameter is D2 � 3.04 m, the inner and the outer surface areas of the tank are

A1 � � � �(3 m)2 � 28.3 m2

A2 � � � �(3.04 m)2 � 29.0 m2

Also, the radiation heat transfer coefficient is given by

hrad � ��( )(T2 � T�2)

But we do not know the outer surface temperature T2 of the tank, and thus we
cannot calculate hrad. Therefore, we need to assume a T2 value now and check
the accuracy of this assumption later. We will repeat the calculations if neces-
sary using a revised value for T2.

We note that T2 must be between 0°C and 22°C, but it must be closer 
to 0°C, since the heat transfer coefficient inside the tank is much larger. Taking
T2 � 5°C � 278 K, the radiation heat transfer coefficient is determined to be

hrad � (1)(5.67 
 10�8 W/m2 · K4)[(295 K)2 � (278 K)2][(295 � 278) K]

� 5.34 W/m2 · K � 5.34 W/m2 · °C

Then the individual thermal resistances become

Ri � Rconv, 1 � � 0.000442°C/ W

R1 � Rsphere �

� 0.000047°C/ W

Ro � Rconv, 2 � � 0.00345°C/ W

Rrad � � 0.00646°C/ W

The two parallel resistances Ro and Rrad can be replaced by an equivalent resis-
tance Requiv determined from

� 444.7 W/°C

which gives

Requiv � 0.00225°C/ W

1
Requiv

�
1
Ro

�
1
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�
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1
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FIGURE 3–28
Schematic for Example 3–7.
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Now all the resistances are in series, and the total resistance is determined
to be

Rtotal � Ri � R1 � Requiv � 0.000442 � 0.000047 � 0.00225 � 0.00274°C/ W

Then the steady rate of heat transfer to the iced water becomes

Q
·

� � 8029 W (or Q
·

� 8.027 kJ/s)

To check the validity of our original assumption, we now determine the outer
surface temperature from

Q
·

� → T2 � T�2 � Q
·
R equiv

� 22°C � (8029 W)(0.00225°C/ W) � 4°C

which is sufficiently close to the 5°C assumed in the determination of the radi-
ation heat transfer coefficient. Therefore, there is no need to repeat the calcu-
lations using 4°C for T2.
(b) The total amount of heat transfer during a 24-h period is

Q � Q
·

	t � (8.029 kJ/s)(24 
 3600 s) � 673,700 kJ

Noting that it takes 333.7 kJ of energy to melt 1 kg of ice at 0°C, the amount
of ice that will melt during a 24-h period is

mice � � 2079 kg

Therefore, about 2 metric tons of ice will melt in the tank every day.
Discussion An easier way to deal with combined convection and radiation at a
surface when the surrounding medium and surfaces are at the same tempera-
ture is to add the radiation and convection heat transfer coefficients and to treat
the result as the convection heat transfer coefficient. That is, to take h � 10 �
5.34 � 15.34 W/m2 · °C in this case. This way, we can ignore radiation since
its contribution is accounted for in the convection heat transfer coefficient. The
convection resistance of the outer surface in this case would be

Rcombined � � 0.00225°C/ W

which is identical to the value obtained for the equivalent resistance for the par-
allel convection and the radiation resistances.

1
hcombined A2

�
1

(15.34 W/m2 ·  °C)(29.0 m2)

Q
hif

�
673,700 kJ
333.7 kJ/kg

T�2 � T2

Requiv

T�2 � T�1

Rtotal
�

(22 � 0)°C
0.00274°C/ W

EXAMPLE 3–8 Heat Loss through an Insulated Steam Pipe

Steam at T�1 � 320°C flows in a cast iron pipe (k � 80 W/m · °C) whose inner
and outer diameters are D1 � 5 cm and D2 � 5.5 cm, respectively. The pipe is
covered with 3-cm-thick glass wool insulation with k � 0.05 W/m · °C. Heat is
lost to the surroundings at T�2 � 5°C by natural convection and radiation, with
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a combined heat transfer coefficient of h2 � 18 W/m2 · °C. Taking the heat
transfer coefficient inside the pipe to be h1 � 60 W/m2 · °C, determine the rate
of heat loss from the steam per unit length of the pipe. Also determine the tem-
perature drops across the pipe shell and the insulation.

SOLUTION A steam pipe covered with glass wool insulation is subjected to
convection on its surfaces. The rate of heat transfer per unit length and the
temperature drops across the pipe and the insulation are to be determined.
Assumptions 1 Heat transfer is steady since there is no indication of any
change with time. 2 Heat transfer is one-dimensional since there is thermal
symmetry about the centerline and no variation in the axial direction. 3 Thermal
conductivities are constant. 4 The thermal contact resistance at the interface is
negligible.
Properties The thermal conductivities are given to be k � 80 W/m · °C for cast
iron and k � 0.05 W/m · °C for glass wool insulation.
Analysis The thermal resistance network for this problem involves four resis-
tances in series and is given in Fig. 3–29. Taking L � 1 m, the areas of the
surfaces exposed to convection are determined to be

A1 � 2�r1L � 2�(0.025 m)(1 m) � 0.157 m2

A3 � 2�r3L � 2�(0.0575 m)(1 m) � 0.361 m2

Then the individual thermal resistances become

Ri � Rconv, 1 � � 0.106°C/ W

R1 � Rpipe � � 0.0002°C/ W

R2 � Rinsulation � � 2.35°C/ W

Ro � Rconv, 2 � � 0.154°C/ W

Noting that all resistances are in series, the total resistance is determined to be

Rtotal � Ri � R1 � R2 � Ro � 0.106 � 0.0002 � 2.35 � 0.154 � 2.61°C/ W

Then the steady rate of heat loss from the steam becomes

Q
·

� � 121 W (per m pipe length)

The heat loss for a given pipe length can be determined by multiplying the
above quantity by the pipe length L.

The temperature drops across the pipe and the insulation are determined
from Eq. 3–17 to be

	Tpipe � Q
·
R pipe � (121 W)(0.0002°C/ W) � 0.02°C

	Tinsulation � Q
·
R insulation � (121 W)(2.35°C/ W) � 284°C

That is, the temperatures between the inner and the outer surfaces of the pipe
differ by 0.02°C, whereas the temperatures between the inner and the outer
surfaces of the insulation differ by 284°C.

T�1 � T�2

Rtotal
�

(320 � 5)°C
2.61°C/W

1
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�
1
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�
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�
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FIGURE 3–29
Schematic for Example 3–8.
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3–5 CRITICAL RADIUS OF INSULATION
We know that adding more insulation to a wall or to the attic always decreases
heat transfer. The thicker the insulation, the lower the heat transfer rate. This
is expected, since the heat transfer area A is constant, and adding insulation
always increases the thermal resistance of the wall without increasing the
convection resistance.

Adding insulation to a cylindrical pipe or a spherical shell, however, is a dif-
ferent matter. The additional insulation increases the conduction resistance of
the insulation layer but decreases the convection resistance of the surface be-
cause of the increase in the outer surface area for convection. The heat trans-
fer from the pipe may increase or decrease, depending on which effect
dominates.

Consider a cylindrical pipe of outer radius r1 whose outer surface tempera-
ture T1 is maintained constant (Fig. 3–30). The pipe is now insulated with a
material whose thermal conductivity is k and outer radius is r2. Heat is lost
from the pipe to the surrounding medium at temperature T�, with a convection
heat transfer coefficient h. The rate of heat transfer from the insulated pipe to
the surrounding air can be expressed as (Fig. 3–31)

Q
·

� (3-49)

The variation of Q
·

with the outer radius of the insulation r2 is plotted in
Fig. 3–31. The value of r2 at which Q

·
reaches a maximum is determined from

the requirement that dQ
·
/dr2 � 0 (zero slope). Performing the differentiation

and solving for r2 yields the critical radius of insulation for a cylindrical
body to be

rcr, cylinder � (m) (3-50)

Note that the critical radius of insulation depends on the thermal conductivity
of the insulation k and the external convection heat transfer coefficient h.
The rate of heat transfer from the cylinder increases with the addition of insu-
lation for r2 � rcr, reaches a maximum when r2 � rcr, and starts to decrease for
r2 
 rcr. Thus, insulating the pipe may actually increase the rate of heat trans-
fer from the pipe instead of decreasing it when r2 � rcr.

The important question to answer at this point is whether we need to be con-
cerned about the critical radius of insulation when insulating hot water pipes
or even hot water tanks. Should we always check and make sure that the outer

k
h

T1 � T�

Rins � Rconv
�

T1 � T�

ln(r2 /r1)
2�Lk

�
1

h(2�r2L)

�
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Discussion Note that the thermal resistance of the pipe is too small relative to
the other resistances and can be neglected without causing any significant
error. Also note that the temperature drop across the pipe is practically zero,
and thus the pipe can be assumed to be isothermal. The resistance to heat flow
in insulated pipes is primarily due to insulation.

T1

RconvRins

r2r1

Insulation

T�

T�

h

k

FIGURE 3–30
An insulated cylindrical pipe

exposed to convection from the outer
surface and the thermal resistance

network associated with it.
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FIGURE 3–31
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