

FIGURE 3-23
Heat is lost from a hot water pipe to the air outside in the radial direction, and thus heat transfer from a long pipe is one-dimensional.

FIGURE 3-24
A long cylindrical pipe (or spherical shell) with specified inner and outer surface temperatures T_{1} and T_{2}.

3-4 - HEAT CONDUCTION IN CYLINDERS AND SPHERES

Consider steady heat conduction through a hot water pipe. Heat is continuously lost to the outdoors through the wall of the pipe, and we intuitively feel that heat transfer through the pipe is in the normal direction to the pipe surface and no significant heat transfer takes place in the pipe in other directions (Fig. 3-23). The wall of the pipe, whose thickness is rather small, separates two fluids at different temperatures, and thus the temperature gradient in the radial direction will be relatively large. Further, if the fluid temperatures inside and outside the pipe remain constant, then heat transfer through the pipe is steady. Thus heat transfer through the pipe can be modeled as steady and one-dimensional. The temperature of the pipe in this case will depend on one direction only (the radial r-direction) and can be expressed as $T=T(r)$. The temperature is independent of the azimuthal angle or the axial distance. This situation is approximated in practice in long cylindrical pipes and spherical containers.

In steady operation, there is no change in the temperature of the pipe with time at any point. Therefore, the rate of heat transfer into the pipe must be equal to the rate of heat transfer out of it. In other words, heat transfer through the pipe must be constant, $\dot{Q}_{\text {cond, cyl }}=$ constant.

Consider a long cylindrical layer (such as a circular pipe) of inner radius r_{1}, outer radius r_{2}, length L, and average thermal conductivity k (Fig. 3-24). The two surfaces of the cylindrical layer are maintained at constant temperatures T_{1} and T_{2}. There is no heat generation in the layer and the thermal conductivity is constant. For one-dimensional heat conduction through the cylindrical layer, we have $T(r)$. Then Fourier's law of heat conduction for heat transfer through the cylindrical layer can be expressed as

$$
\begin{equation*}
\dot{Q}_{\text {cond, cyl }}=-k A \frac{d T}{d r} \tag{W}
\end{equation*}
$$

where $A=2 \pi r L$ is the heat transfer area at location r. Note that A depends on r, and thus it varies in the direction of heat transfer. Separating the variables in the above equation and integrating from $r=r_{1}$, where $T\left(r_{1}\right)=T_{1}$, to $r=r_{2}$, where $T\left(r_{2}\right)=T_{2}$, gives

$$
\begin{equation*}
\int_{r=r_{1}}^{r_{2}} \frac{\dot{Q}_{\text {cond, cyl }}}{A} d r=-\int_{T=T_{1}}^{T_{2}} k d T \tag{3-36}
\end{equation*}
$$

Substituting $A=2 \pi r L$ and performing the integrations give

$$
\begin{equation*}
\dot{Q}_{\text {cond, cyl }}=2 \pi L k \frac{T_{1}-T_{2}}{\ln \left(r_{2} / r_{1}\right)} \tag{W}
\end{equation*}
$$

since $\dot{Q}_{\text {cond, cyl }}=$ constant. This equation can be rearranged as

$$
\begin{equation*}
\dot{Q}_{\mathrm{cond}, \mathrm{cyl}}=\frac{T_{1}-T_{2}}{R_{\mathrm{cyl}}} \tag{W}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{\text {cy1 }}=\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi L k}=\frac{\ln (\text { Outer radius } / \text { Inner radius })}{2 \pi \times(\text { Length }) \times(\text { Thermal conductivity })} \tag{3-39}
\end{equation*}
$$

is the thermal resistance of the cylindrical layer against heat conduction, or simply the conduction resistance of the cylinder layer.

We can repeat the analysis above for a spherical layer by taking $A=4 \pi r^{2}$ and performing the integrations in Eq. 3-36. The result can be expressed as

$$
\begin{equation*}
\dot{Q}_{\text {cond, sph }}=\frac{T_{1}-T_{2}}{R_{\text {sph }}} \tag{3-40}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{\text {sph }}=\frac{r_{2}-r_{1}}{4 \pi r_{1} r_{2} k}=\frac{\text { Outer radius }- \text { Inner radius }}{4 \pi(\text { Outer radius)(Inner radius)(Thermal conductivity) }} \tag{3-41}
\end{equation*}
$$

is the thermal resistance of the spherical layer against heat conduction, or simply the conduction resistance of the spherical layer.

Now consider steady one-dimensional heat flow through a cylindrical or spherical layer that is exposed to convection on both sides to fluids at temperatures $T_{\infty 1}$ and $T_{\infty 2}$ with heat transfer coefficients h_{1} and h_{2}, respectively, as shown in Fig. 3-25. The thermal resistance network in this case consists of one conduction and two convection resistances in series, just like the one for the plane wall, and the rate of heat transfer under steady conditions can be expressed as

$$
\begin{equation*}
\dot{Q}=\frac{T_{\infty 1}-T_{\infty 2}}{R_{\text {total }}} \tag{3-42}
\end{equation*}
$$

$$
R_{\mathrm{total}}=R_{\mathrm{conv}, 1}+R_{\mathrm{cyl}}+R_{\mathrm{conv}, 2}
$$

FIGURE 3-25
The thermal resistance network for a cylindrical (or spherical) shell subjected to convection from both the inner and the outer sides.
where

$$
\begin{align*}
R_{\text {total }} & =R_{\text {conv }, 1}+R_{\text {cyl }}+R_{\text {conv }, 2} \\
& =\frac{1}{\left(2 \pi r_{1} L\right) h_{1}}+\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi L k}+\frac{1}{\left(2 \pi r_{2} L\right) h_{2}} \tag{3-4}
\end{align*}
$$

for a cylindrical layer, and

$$
\begin{align*}
R_{\text {total }} & =R_{\text {conv }, 1}+R_{\text {sph }}+R_{\text {conv }, 2} \\
& =\frac{1}{\left(4 \pi r_{1}^{2}\right) h_{1}}+\frac{r_{2}-r_{1}}{4 \pi r_{1} r_{2} k}+\frac{1}{\left(4 \pi r_{2}^{2}\right) h_{2}} \tag{3-44}
\end{align*}
$$

for a spherical layer. Note that A in the convection resistance relation $R_{\text {conv }}=$ $1 / h A$ is the surface area at which convection occurs. It is equal to $A=2 \pi r L$ for a cylindrical surface and $A=4 \pi r^{2}$ for a spherical surface of radius r. Also note that the thermal resistances are in series, and thus the total thermal resistance is determined by simply adding the individual resistances, just like the electrical resistances connected in series.

Multilayered Cylinders and Spheres

Steady heat transfer through multilayered cylindrical or spherical shells can be handled just like multilayered plane walls discussed earlier by simply adding an additional resistance in series for each additional layer. For example, the steady heat transfer rate through the three-layered composite cylinder of length L shown in Fig. 3-26 with convection on both sides can be expressed as

$$
\begin{equation*}
\dot{Q}=\frac{T_{\infty 1}-T_{\infty 2}}{R_{\text {total }}} \tag{3-45}
\end{equation*}
$$

FIGURE 3-26
The thermal resistance network for heat transfer through a three-layered composite cylinder subjected to convection on both sides.
where $R_{\text {total }}$ is the total thermal resistance, expressed as

$$
\begin{align*}
R_{\text {total }} & =R_{\mathrm{conv}, 1}+R_{\mathrm{cyl}, 1}+R_{\mathrm{cyl}, 2}+R_{\mathrm{cyl}, 3}+R_{\mathrm{conv}, 2} \\
& =\frac{1}{h_{1} A_{1}}+\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi L k_{1}}+\frac{\ln \left(r_{3} / r_{2}\right)}{2 \pi L k_{2}}+\frac{\ln \left(r_{4} / r_{3}\right)}{2 \pi L k_{3}}+\frac{1}{h_{2} A_{4}} \tag{3-46}
\end{align*}
$$

where $A_{1}=2 \pi r_{1} L$ and $A_{4}=2 \pi r_{4} L$. Equation 3-46 can also be used for a three-layered spherical shell by replacing the thermal resistances of cylindrical layers by the corresponding spherical ones. Again, note from the thermal resistance network that the resistances are in series, and thus the total thermal resistance is simply the arithmetic sum of the individual thermal resistances in the path of heat flow.

Once \dot{Q} is known, we can determine any intermediate temperature T_{j} by applying the relation $\dot{Q}=\left(T_{i}-T_{j}\right) / R_{\text {total, } i-j}$ across any layer or layers such that T_{i} is a known temperature at location i and $R_{\text {total }, i-j}$ is the total thermal resistance between locations i and j (Fig. 3-27). For example, once \dot{Q} has been calculated, the interface temperature T_{2} between the first and second cylindrical layers can be determined from

$$
\begin{equation*}
\dot{Q}=\frac{T_{\infty 1}-T_{2}}{R_{\mathrm{conv}, 1}+R_{\mathrm{cyl}, 1}}=\frac{T_{\infty 1}-T_{2}}{\frac{1}{h_{1}\left(2 \pi r_{1} L\right)}+\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi L k_{1}}} \tag{3-47}
\end{equation*}
$$

We could also calculate T_{2} from

$$
\begin{equation*}
\dot{Q}=\frac{T_{2}-T_{\infty 2}}{R_{2}+R_{3}+R_{\mathrm{conv}, 2}}=\frac{T_{2}-T_{\infty 2}}{\frac{\ln \left(r_{3} / r_{2}\right)}{2 \pi L k_{2}}+\frac{\ln \left(r_{4} / r_{3}\right)}{2 \pi L k_{3}}+\frac{1}{h_{o}\left(2 \pi r_{4} L\right)}} \tag{3-48}
\end{equation*}
$$

Although both relations will give the same result, we prefer the first one since it involves fewer terms and thus less work.

The thermal resistance concept can also be used for other geometries, provided that the proper conduction resistances and the proper surface areas in convection resistances are used.

EXAMPLE 3-7 Heat Transfer to a Spherical Container

A 3-m internal diameter spherical tank made of 2-cm-thick stainless steel ($k=15 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$) is used to store iced water at $T_{\infty 1}=0^{\circ} \mathrm{C}$. The tank is located in a room whose temperature is $T_{\infty 2}=22^{\circ} \mathrm{C}$. The walls of the room are also at $22^{\circ} \mathrm{C}$. The outer surface of the tank is black and heat transfer between the outer surface of the tank and the surroundings is by natural convection and radiation. The convection heat transfer coefficients at the inner and the outer surfaces of the tank are $h_{1}=80 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$ and $h_{2}=10 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$, respectively. Determine (a) the rate of heat transfer to the iced water in the tank and (b) the amount of ice at $0^{\circ} \mathrm{C}$ that melts during a 24 -h period.

SOLUTION A spherical container filled with iced water is subjected to convection and radiation heat transfer at its outer surface. The rate of heat transfer and the amount of ice that melts per day are to be determined.

$$
\begin{aligned}
& \dot{Q}=\frac{T_{\infty_{1}}-T_{1}}{R_{\text {conv }, 1}} \\
& =\frac{T_{\infty}-T_{2}}{R_{\text {conv }, 1}+R_{1}} \\
& =\frac{T_{1}-T_{3}}{R_{1}+R_{2}} \\
& =\frac{T_{2}-T_{3}}{R_{2}} \\
& =\frac{T_{2}-T_{\infty 2}}{R_{2}+R_{\text {conv }, 2}} \\
& =\cdots
\end{aligned}
$$

FIGURE 3-27
The ratio $\Delta T / R$ across any layer is equal to \dot{Q}, which remains constant in one-dimensional steady conduction.

FIGURE 3-28
Schematic for Example 3-7.

Assumptions 1 Heat transfer is steady since the specified thermal conditions at the boundaries do not change with time. 2 Heat transfer is one-dimensional since there is thermal symmetry about the midpoint. 3 Thermal conductivity is constant.

Properties The thermal conductivity of steel is given to be $k=15 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$. The heat of fusion of water at atmospheric pressure is $h_{i f}=333.7 \mathrm{~kJ} / \mathrm{kg}$. The outer surface of the tank is black and thus its emissivity is $\varepsilon=1$.

Analysis (a) The thermal resistance network for this problem is given in Fig. 3-28. Noting that the inner diameter of the tank is $D_{1}=3 \mathrm{~m}$ and the outer diameter is $D_{2}=3.04 \mathrm{~m}$, the inner and the outer surface areas of the tank are

$$
\begin{aligned}
& A_{1}=\pi D_{1}^{2}=\pi(3 \mathrm{~m})^{2}=28.3 \mathrm{~m}^{2} \\
& A_{2}=\pi D_{2}^{2}=\pi(3.04 \mathrm{~m})^{2}=29.0 \mathrm{~m}^{2}
\end{aligned}
$$

Also, the radiation heat transfer coefficient is given by

$$
h_{\mathrm{rad}}=\varepsilon \sigma\left(T_{2}^{2}+T_{\infty 2}^{2}\right)\left(T_{2}+T_{\infty 2}\right)
$$

But we do not know the outer surface temperature T_{2} of the tank, and thus we cannot calculate $h_{\text {rad }}$. Therefore, we need to assume a T_{2} value now and check the accuracy of this assumption later. We will repeat the calculations if necessary using a revised value for T_{2}.

We note that T_{2} must be between $0^{\circ} \mathrm{C}$ and $22^{\circ} \mathrm{C}$, but it must be closer to $0^{\circ} \mathrm{C}$, since the heat transfer coefficient inside the tank is much larger. Taking $T_{2}=5^{\circ} \mathrm{C}=278 \mathrm{~K}$, the radiation heat transfer coefficient is determined to be

$$
\begin{aligned}
h_{\mathrm{rad}} & =(1)\left(5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)\left[(295 \mathrm{~K})^{2}+(278 \mathrm{~K})^{2}\right][(295+278) \mathrm{K}] \\
& =5.34 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}=5.34 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Then the individual thermal resistances become

$$
\begin{aligned}
R_{i} & =R_{\text {conv, } 1}=\frac{1}{h_{1} A_{1}}=\frac{1}{\left(80 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)\left(28.3 \mathrm{~m}^{2}\right)}=0.000442^{\circ} \mathrm{C} / \mathrm{W} \\
R_{1} & =R_{\text {sphere }}=\frac{r_{2}-r_{1}}{4 \pi k r_{1} r_{2}}=\frac{(1.52-1.50) \mathrm{m}}{4 \pi\left(15 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)(1.52 \mathrm{~m})(1.50 \mathrm{~m})} \\
& =0.000047^{\circ} \mathrm{C} / \mathrm{W} \\
R_{o} & =R_{\text {conv, } 2}=\frac{1}{h_{2} A_{2}}=\frac{1}{\left(10 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)\left(29.0 \mathrm{~m}^{2}\right)}=0.00345^{\circ} \mathrm{C} / \mathrm{W} \\
R_{\mathrm{rad}} & =\frac{1}{h_{\mathrm{rad}} A_{2}}=\frac{1}{\left(5.34 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)\left(29.0 \mathrm{~m}^{2}\right)}=0.00646^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

The two parallel resistances R_{o} and $R_{\text {rad }}$ can be replaced by an equivalent resistance $R_{\text {equiv }}$ determined from

$$
\frac{1}{R_{\text {equiv }}}=\frac{1}{R_{o}}+\frac{1}{R_{\mathrm{rad}}}=\frac{1}{0.00345}+\frac{1}{0.00646}=444.7 \mathrm{~W} /{ }^{\circ} \mathrm{C}
$$

which gives

$$
R_{\text {equiv }}=0.00225^{\circ} \mathrm{C} / \mathrm{W}
$$

Now all the resistances are in series, and the total resistance is determined to be

$$
R_{\text {total }}=R_{i}+R_{1}+R_{\text {equiv }}=0.000442+0.000047+0.00225=0.00274^{\circ} \mathrm{C} / \mathrm{W}
$$

Then the steady rate of heat transfer to the iced water becomes

$$
\dot{Q}=\frac{T_{\infty 2}-T_{\infty 1}}{R_{\text {total }}}=\frac{(22-0)^{\circ} \mathrm{C}}{0.00274^{\circ} \mathrm{C} / \mathrm{W}}=8029 \mathrm{~W} \quad(\text { or } \dot{Q}=8.027 \mathrm{~kJ} / \mathrm{s})
$$

To check the validity of our original assumption, we now determine the outer surface temperature from

$$
\begin{aligned}
\dot{Q}=\frac{T_{\infty 2}-T_{2}}{R_{\text {equiv }}} \longrightarrow T_{2} & =T_{\infty 2}-\dot{Q} R_{\text {equiv }} \\
& =22^{\circ} \mathrm{C}-(8029 \mathrm{~W})\left(0.00225^{\circ} \mathrm{C} / \mathrm{W}\right)=4^{\circ} \mathrm{C}
\end{aligned}
$$

which is sufficiently close to the $5^{\circ} \mathrm{C}$ assumed in the determination of the radiation heat transfer coefficient. Therefore, there is no need to repeat the calculations using $4^{\circ} \mathrm{C}$ for T_{2}.
(b) The total amount of heat transfer during a 24-h period is

$$
Q=\dot{Q} \Delta t=(8.029 \mathrm{~kJ} / \mathrm{s})(24 \times 3600 \mathrm{~s})=673,700 \mathrm{~kJ}
$$

Noting that it takes 333.7 kJ of energy to melt 1 kg of ice at $0^{\circ} \mathrm{C}$, the amount of ice that will melt during a 24-h period is

$$
m_{\text {ice }}=\frac{Q}{h_{i f}}=\frac{673,700 \mathrm{~kJ}}{333.7 \mathrm{~kJ} / \mathrm{kg}}=2079 \mathrm{~kg}
$$

Therefore, about 2 metric tons of ice will melt in the tank every day.
Discussion An easier way to deal with combined convection and radiation at a surface when the surrounding medium and surfaces are at the same temperature is to add the radiation and convection heat transfer coefficients and to treat the result as the convection heat transfer coefficient. That is, to take $h=10+$ $5.34=15.34 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$ in this case. This way, we can ignore radiation since its contribution is accounted for in the convection heat transfer coefficient. The convection resistance of the outer surface in this case would be

$$
R_{\text {combined }}=\frac{1}{h_{\text {combined }} A_{2}}=\frac{1}{\left(15.34 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)\left(29.0 \mathrm{~m}^{2}\right)}=0.00225^{\circ} \mathrm{C} / \mathrm{W}
$$

which is identical to the value obtained for the equivalent resistance for the parallel convection and the radiation resistances.

EXAMPLE 3-8 Heat Loss through an Insulated Steam Pipe

Steam at $T_{\infty 1}=320^{\circ} \mathrm{C}$ flows in a cast iron pipe ($k=80 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$) whose inner and outer diameters are $D_{1}=5 \mathrm{~cm}$ and $D_{2}=5.5 \mathrm{~cm}$, respectively. The pipe is covered with 3 -cm-thick glass wool insulation with $k=0.05 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$. Heat is lost to the surroundings at $T_{\infty 2}=5^{\circ} \mathrm{C}$ by natural convection and radiation, with

FIGURE 3-29
Schematic for Example 3-8.
a combined heat transfer coefficient of $h_{2}=18 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$. Taking the heat transfer coefficient inside the pipe to be $h_{1}=60 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}$, determine the rate of heat loss from the steam per unit length of the pipe. Also determine the temperature drops across the pipe shell and the insulation.

SOLUTION A steam pipe covered with glass wool insulation is subjected to convection on its surfaces. The rate of heat transfer per unit length and the temperature drops across the pipe and the insulation are to be determined.
Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat transfer is one-dimensional since there is thermal symmetry about the centerline and no variation in the axial direction. 3 Thermal conductivities are constant. 4 The thermal contact resistance at the interface is negligible.
Properties The thermal conductivities are given to be $k=80 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$ for cast iron and $k=0.05 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$ for glass wool insulation.
Analysis The thermal resistance network for this problem involves four resistances in series and is given in Fig. 3-29. Taking $L=1 \mathrm{~m}$, the areas of the surfaces exposed to convection are determined to be

$$
\begin{aligned}
& A_{1}=2 \pi r_{1} L=2 \pi(0.025 \mathrm{~m})(1 \mathrm{~m})=0.157 \mathrm{~m}^{2} \\
& A_{3}=2 \pi r_{3} L=2 \pi(0.0575 \mathrm{~m})(1 \mathrm{~m})=0.361 \mathrm{~m}^{2}
\end{aligned}
$$

Then the individual thermal resistances become

$$
\begin{aligned}
& R_{i}=R_{\text {conv, } 1}=\frac{1}{h_{1} A}=\frac{1}{\left(60 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)\left(0.157 \mathrm{~m}^{2}\right)}=0.106^{\circ} \mathrm{C} / \mathrm{W} \\
& R_{1}=R_{\text {pipe }}=\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi k_{1} L}=\frac{\ln (2.75 / 2.5)}{2 \pi\left(80 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)(1 \mathrm{~m})}=0.0002^{\circ} \mathrm{C} / \mathrm{W} \\
& R_{2}=R_{\text {insulation }}=\frac{\ln \left(r_{3} / r_{2}\right)}{2 \pi k_{2} L}=\frac{\ln (5.75 / 2.75)}{2 \pi\left(0.05 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}\right)(1 \mathrm{~m})}=2.35^{\circ} \mathrm{C} / \mathrm{W} \\
& R_{o}=R_{\text {conv, } 2}=\frac{1}{h_{2} A_{3}}=\frac{1}{\left(18 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}\right)\left(0.361 \mathrm{~m}^{2}\right)}=0.154^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$

Noting that all resistances are in series, the total resistance is determined to be

$$
R_{\text {total }}=R_{i}+R_{1}+R_{2}+R_{o}=0.106+0.0002+2.35+0.154=2.61^{\circ} \mathrm{C} / \mathrm{W}
$$

Then the steady rate of heat loss from the steam becomes

$$
\dot{Q}=\frac{T_{\infty 1}-T_{\infty 2}}{R_{\text {total }}}=\frac{(320-5)^{\circ} \mathrm{C}}{2.61^{\circ} \mathrm{C} / \mathrm{W}}=121 \mathrm{~W} \quad \text { (per m pipe length) }
$$

The heat loss for a given pipe length can be determined by multiplying the above quantity by the pipe length L.

The temperature drops across the pipe and the insulation are determined from Eq. 3-17 to be

$$
\begin{aligned}
\Delta T_{\text {pipe }} & =\dot{Q} R_{\text {pipe }}=(121 \mathrm{~W})\left(0.0002^{\circ} \mathrm{C} / \mathrm{W}\right)=0.02^{\circ} \mathrm{C} \\
\Delta T_{\text {insulation }} & =\dot{Q} R_{\text {insulation }}=(121 \mathrm{~W})\left(2.35^{\circ} \mathrm{C} / \mathrm{W}\right)=284^{\circ} \mathrm{C}
\end{aligned}
$$

That is, the temperatures between the inner and the outer surfaces of the pipe differ by $0.02^{\circ} \mathrm{C}$, whereas the temperatures between the inner and the outer surfaces of the insulation differ by $284^{\circ} \mathrm{C}$.

Discussion Note that the thermal resistance of the pipe is too small relative to the other resistances and can be neglected without causing any significant error. Also note that the temperature drop across the pipe is practically zero, and thus the pipe can be assumed to be isothermal. The resistance to heat flow in insulated pipes is primarily due to insulation.

3-5 - CRITICAL RADIUS OF INSULATION

We know that adding more insulation to a wall or to the attic always decreases heat transfer. The thicker the insulation, the lower the heat transfer rate. This is expected, since the heat transfer area A is constant, and adding insulation always increases the thermal resistance of the wall without increasing the convection resistance.

Adding insulation to a cylindrical pipe or a spherical shell, however, is a different matter. The additional insulation increases the conduction resistance of the insulation layer but decreases the convection resistance of the surface because of the increase in the outer surface area for convection. The heat transfer from the pipe may increase or decrease, depending on which effect dominates.
Consider a cylindrical pipe of outer radius r_{1} whose outer surface temperature T_{1} is maintained constant (Fig. 3-30). The pipe is now insulated with a material whose thermal conductivity is k and outer radius is r_{2}. Heat is lost from the pipe to the surrounding medium at temperature T_{∞}, with a convection heat transfer coefficient h. The rate of heat transfer from the insulated pipe to the surrounding air can be expressed as (Fig. 3-31)

$$
\begin{equation*}
\dot{Q}=\frac{T_{1}-T_{\infty}}{R_{\text {ins }}+R_{\text {conv }}}=\frac{T_{1}-T_{\infty}}{\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi L k}+\frac{1}{h\left(2 \pi r_{2} L\right)}} \tag{3-49}
\end{equation*}
$$

The variation of \dot{Q} with the outer radius of the insulation r_{2} is plotted in Fig. 3-31. The value of r_{2} at which \dot{Q} reaches a maximum is determined from the requirement that $d \dot{Q} / d r_{2}=0$ (zero slope). Performing the differentiation and solving for r_{2} yields the critical radius of insulation for a cylindrical body to be

$$
\begin{equation*}
r_{\mathrm{cr}, \text { cylinder }}=\frac{k}{h} \tag{3-50}
\end{equation*}
$$

Note that the critical radius of insulation depends on the thermal conductivity of the insulation k and the external convection heat transfer coefficient h. The rate of heat transfer from the cylinder increases with the addition of insulation for $r_{2}<r_{\mathrm{cr}}$, reaches a maximum when $r_{2}=r_{\mathrm{cr}}$, and starts to decrease for $r_{2}>r_{\text {cr }}$. Thus, insulating the pipe may actually increase the rate of heat transfer from the pipe instead of decreasing it when $r_{2}<r_{\mathrm{cr}}$.
The important question to answer at this point is whether we need to be concerned about the critical radius of insulation when insulating hot water pipes or even hot water tanks. Should we always check and make sure that the outer

FIGURE 3-30
An insulated cylindrical pipe exposed to convection from the outer surface and the thermal resistance network associated with it.

FIGURE 3-31

